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Neural oscillations represent a fundamental mechanism that enables coordinated action
during normal brain functioning. Auditory steady-state responses (ASSRs) are used to
test the ability to generate gamma-range activity. Different non-invasive brain stimulation
(NIBS) techniques have the potential to modulate neural activation patterns that are
aberrant in a variety of neuropsychiatric disorders. Here, we summarize the current
state of knowledge on how different methods of NIBS (transcranial altering current
stimulation—tACS, transcranial direct current stimulation—tDCS, transcranial random
noise stimulation—tRNS, paired associative stimulation—PAS, repetitive transcranial
magnetic stimulation—rTMS) affect the gamma-range ASSRs in both healthy and
clinical populations. We show that the current research has been far from systematic
and methodologically heterogeneous. Nevertheless, some brain stimulation techniques,
especially tACS and rTMS show strong potential for further exploration. We outline
the main findings and provide directions for further research into neuromodulation of
ASSRs as a promising biomarker of different psychopathological conditions such as
schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD), autism.

Keywords: auditory steady-state response (ASSR), gamma, brain stimulation, biomarker,
neuropsychiatric disorders

INTRODUCTION

Neural oscillations in the gamma band (30–80 Hz) are thought to play a crucial role for information
processing in cortical networks (Uhlhaas et al., 2009, 2011; Bosman et al., 2014) as well as are
affected in a variety of neuropsychiatric disorders (for review see Herrmann and Demiralp, 2005)
and associated with clinical symptoms (McNally and McCarley, 2016; Grent-’t-Jong et al., 2018),
cognitive deficits (Bosman et al., 2014) and therapeutic outcomes of pharmaco-treatment (Khalid
et al., 2016; Minzenberg et al., 2016; Arikan et al., 2018; Nugent et al., 2019).

Evaluation of brain responses to rhythmically repeated or modulated stimuli allows
experimental assessment of gamma activity (Brenner et al., 2009). The largest auditory
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steady-state responses (ASSRs) recorded with EEG and/or MEG
are observed at around 40 Hz (Galambos et al., 1981) with
the current views on ASSRs reflecting both the aspect of
superposition of middle-latency responses (Presacco et al., 2010)
and a periodic activity related to the resonance within the
activated system (Santarelli et al., 1995; Ross et al., 2005)
These responses, though being distinct from transient evoked
gamma (Ross et al., 2005), originate in auditory cortical and
subcortical regions (Herdman et al., 2002) with a potential
contribution from frontal, motor, parietal and occipital lobes
(Farahani et al., 2017, 2019). ASSRs reflect the integrity of
neural circuits and excitation/inhibition balance (for details
refer to Tada et al., 2019) supported by N-methyl-D-aspartate
(NMDA) and γ-aminobutyric acid (GABA) systems (Vohs et al.,
2010; Sullivan et al., 2015; Sivarao et al., 2016; Koshiyama
et al., 2018b). Accordingly, the alterations of 40-Hz ASSRs
were consistently shown in schizophrenia (for review see Thuné
et al., 2016) where both preclinical impairment (Tada et al.,
2016) and potential to predict treatment outcome (Koshiyama
et al., 2018a) were reported, making ASSRs a promising
biomarker (O’Donnell et al., 2013). ASSRs were also viewed as
indexing for typical and atypical cortical development (Edgar
et al., 2016), with variable responses throughout the lifetime
(Griskova-Bulanova et al., 2013).

Currently available pharmaco-treatments are relatively
ineffective for remediation of cognitive impairments in
neuropsychiatric conditions (Goff et al., 2011; Pan et al.,
2017; Robbins, 2019). NIBS techniques were proposed as
an alternative for pharmaco-treatments and as a cognitive
enhancement approach (Cinel et al., 2019; Ishii et al., 2019).
The NIBS induces changes in the excitability of target brain
areas potentially leading to normalization of altered activation
patterns and consequently—to clinically beneficial outcomes
(Holtzheimer et al., 2012). Different NIBS techniques use
either electrical or magnetic fields to modulate brain activity
(for review see Lewis et al., 2016). rTMS uses a magnetic
field which is generated by brief current pulses in the coil
placed on the scalp, while PAS combines sensory stimulation
(e.g., electrical stimulation on the wrist extensor muscle, or
auditory stimuli) and magnetic cortical stimulation to induce
changes in cortical excitability. Electrical currents (usually
up to 2 mA) are used to modulate brain activity between the
two electrodes of the opposing polarity in constant (tDCS),
altering (tACS) or noise waveform (tRNS) manner. Although
the application of these methods has reportedly contributed
to the positive outcomes in clinical states (e.g., see Lefaucheur
et al., 2020), the effects induced in the brain are not fully
understood. According to the growing number of meta-analyses,
the efficacy of brain stimulation methods is inconsistent across
different conditions, e.g., depression (Razza et al., 2020; Sonmez
et al., 2019; Moffa et al., 2020), mild cognitive impairments
and dementia (Vacas et al., 2019; Chou et al., 2020; Wang
et al., 2020), anxiety and post-traumatic stress (Cirillo et al.,
2019), autism spectrum disorders (Barahona-Corrêa et al.,
2018), ADHD (Salehinejad et al., 2019), positive and negative
symptoms of schizophrenia (Aleman et al., 2018; Kim et al.,
2019; Yang et al., 2019). Further research could benefit from

the combination of NIBS with different neurophysiological
measures like ASSR.

Considering a growing interest in ASSR as a biomarker
of neuropsychiatric disorders, it is important to evaluate the
effects that NIBS induces on gamma-range ASSRs. Despite
its promise for clinical application, this line of research has
been pursued sporadically so far. Due to a small number
of studies, a comprehensive systematic review is not possible
at this time. We attempt to summarize the existing research
on the neuromodulation of ASSRs, describe the common
patterns found, and define further directions for research on
neuromodulation of gamma-range ASSRs.

MATERIALS AND METHODS

Online-searches were performed in PubMed and ScienceDirect
databases for the keywords ‘‘auditory steady-state response,’’
‘‘auditory steady-state evoked potential,’’ ‘‘auditory entrainment’’
in combination with ‘‘neurostimulation,’’ ‘‘neuromodulation,’’
‘‘tDCS,’’ ‘‘tACS,’’ ‘‘TES’’ (transcranial electrical stimulation),
‘‘ECT’’ (electroconvulsive therapy), ‘‘TMS.’’ Potentially relevant
articles were also identified by a manual search among the
reference lists of included articles. Titles and abstracts were
scanned by authors (KS and IG-B) to meet the selection
criteria. When the abstract provided insufficient information, the
‘‘Materials and Methods’’ section of the article was reviewed.
When a disagreement on the inclusion arose, the last author’s
(JB) opinion was sought.

The following inclusion criteria were used: (1) EEG/MEG
with gamma-range (30–80 Hz) auditory stimulation;
(2) statistical comparison of ASSR measures pre- to post-
stimulation; (3) original research articles. Articles published in
non-English languages and animal studies were excluded. When
articles were not accessible as a full text or lacking necessary
information, efforts were made to retrieve missing data by
contacting the authors.

From each study, we extracted: (1) sample (type, size,
age, gender composition); (2) brain stimulation technique and
relevant parameters (electrode/coil position, settings, duration,
number of sessions); (3) control group/condition; (4) auditory
stimulation settings (stimulation frequencies, stimulation type,
number of repetitions, duration); and (5) EEG assessment (site,
measures evaluated).

RESULTS

In total nine articles were included in the review (Table 1,
study numbers are further used as references). The majority
of studies assessed basic mechanisms and were conducted on
young healthy subjects. Only three studies included patient
samples—schizophrenia patients were studied in one tACS/tDCS
research (St1), and tinnitus patients—in two rTMS studies
(St6-7). Overall, both tACS (St1-2, 5) and tDCS (St8-9)
were used in three studies each [tDCS acted as a control
condition for tACS in one study (St1)]; in addition, one
study employed tRNS (St3). The remaining three studies
(St4, 6–7) used a variety of TMS-based protocols. The sham
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TABLE 1 | Summary of brain stimulation effects on auditory steady-state responses and methodological descriptions for the included studies.

Nr Article Sample size,
Type, gender,
mean age

Stimulation type/
settings

Control
group/condition

Number of
sessions

Auditory
stimulation

Method to
measure ASSR

ASSR results Behavioral
outcome

1 Ahn et al. (2019) Schizophrenia
patients; N = 22
(7 f, 15 m),
38.48 ± 10.2 years

tACS; Electrodes
placement: between
F3 and Fp1; between
T3 and P3, and Cz (return);
Intensity: ± 1 mA
(0.04 mA/cm2); Frequency:
10 Hz; Duration: 20 min

tDCS; Electrodes
placement: between
F3 and Fp1 (anode),
between T3 and P3
(cathode); Intensity: ± 2 mA

(1) Sham condition
(2) Active control tDCS
condition

Two sessions per
day for 5 days

Click-trains; 10 Hz,
20 Hz, 30 Hz,
40 Hz and 80 Hz;
90 dB SPL;
200 repetitions
each lasting for
500 ms (15 min in
total); Binaurally

EEG,
128 electrodes,
−0.1 to 0.5 s
epoch, amplitude
and ITPC

40 Hz ASSR
enhancement after
tACS; no effect of
tDCS

Negative correlation
between changes
of 40 Hz ASSR and
hallucination scores

2 Baltus et al. (2018) Healthy
participants; N = 26
(14 f, 12 m),
24 ± 3.2 years

tACS; Electrodes
placement: Group A at
FC5 and TP7/P7, Group B
at FC6 and TP8/P8;
Intensity: ± 1 mA
(0.20 mA/cm2);
Frequency: ± 4 Hz IGF
(median IGF − 49 Hz);
Duration: 2 min pre-task
(7 min total)

No control. Two
Groups: A and B
received different
stimulation frequency

Single session 1,000 Hz AM,
modulated at IGF,
at IGF+4 Hz, and
IGF − 4 Hz for 10 s
twice; intensity not
reported; Binaurally

EEG, 32 channel,
Fz, Cz, or Pz,
amplitude

ASSRs at
stimulation
frequency
increased after
tACS

Changes did not
resemble
gap-detection task
performance

3 Van Doren et al.
(2014)

Healthy
participants; N = 14
(7 f, 7 m),
24.6 ± 1.9 years

tRNS; Electrodes
placement: T6 and T7;
Intensity: 2 mA
(0.057 mA/cm2);
Frequency: noise at
101-640 Hz; Duration:
20 min

Sham condition Single session 1,000 Hz AM;
20 Hz and 40 Hz;
50 dB sensation
level;
140 repetitions,
each lasting for
800 ms (7 min in
total); Binaurally

EEG,
50 electrodes; ROI
from F1, Fz, F2,
FC1, FCz, FC2, C1,
Cz, C2, CP1, CPz,
CP2; −2 to 2.5 s
epochs; power

40 Hz ASSR
enhancement after
tRNS

No behavioral
assessment

4 Engel et al. (2017) Healthy
participants; N = 18
(10 f, 8 m),
21.28 ± 2.37 years

PAS (TMS); Coil
placement: 2.5 cm upward
from T3 and 1.5 cm in the
posterior direction
perpendicularly to the line
T3–Cz; Settings: 110% MT
at 0.1 Hz; 200 auditory
stimuli (4,000 Hz) paired
with TMS; an interstimulus
interval of 45 ms between
tone onset and TMS pulse

Sham stimulation Single session 4,000 Hz AM paired
tone/ 1,000 Hz AM
control tone;
modulated at 20 Hz
and 40 Hz; intensity
not reported;
200 pair repetitions
each lasting for
800 ms; Binaurally

EEG, 64 channel,
ROI from F1, Fz,
F2, FC1, FCz, FC2,
C1, Cz, C2;
analyzed
500–800 ms,
amplitude

No effect of TMS on
40 Hz ASSR; 20 Hz
ASSR decreased
after TMS (only with
4,000 Hz AM)

No behavioral
assessment

(Continued)
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TABLE 1 | Continued

Nr Article Sample size,
Type, gender,
mean age

Stimulation type/
settings

Control
group/condition

Number of
sessions

Auditory
stimulation

Method to
measure ASSR

ASSR results Behavioral
outcome

5 Hyvärinen et al.
(2018)

Healthy
participants;
N = 18 (6 f, 12 m),
26.6 ± 4.1 years

tACS; Electrodes placement:
T3 and T4; Intensity: 1.5 mA
(0.043 mA/cm2); Frequency:
6.5 Hz and 12 Hz; Duration:
5 min

(1) Sham stimulation
(2) Two blocks of
6.5 Hz tACS for 1 min

Two sessions Click-train; 41 Hz;
30 dB above this
hearing threshold;
Continuous; Binaurally

MEG,
102 magnetometers,
204 planar
gradiometers; source
power

41 Hz ASSR
decreased after
12 Hz tACS; No
effect of 6.5 Hz
tACS

No behavioral
assessment

6 Li et al. (2019) Tinnitus patients;
N = 24 (10 f, 14 m),
40-73 years
(mean 46)

Healthy controls;
N = 12 (6 f, 6 m),
30-64 years,
mean 48)

rTMS; Coil placement: BA
41 based on individual MRI;
Settings: 110% MT at 1 Hz,
1,800 pulses per session;
Duration: 30 min

(1) Healthy controls
(2) Sham stimulation in
12 of tinnitus patients

One session per
day for 5 days

1,000 Hz AM; 37 Hz;
50 dB SL, 180 s
duration twice;
Binaurally

MEG, whole-head
306-channel
magnetometer, strength
of equivalent current
dipole

37 Hz ASSR
decreased after
rTMS course over
right hemisphere;

Significant
reduction of tinnitus
handicap inventory
scores

7 Lorenz et al. (2010) Tinnitus patients;
N = 10 (3 f, 7 m),
21-70 years
(mean 49.8)

rTMS; Coil placement: 2.5 cm
upward from T3 and 1.5 cm in
the posterior direction
perpendicularly to the line
T3–Cz; Settings: 110% MT;
1) rTMS at 1 Hz 1,000 pulses;
2) rTMS at IAF (8 − 12 Hz,
20 trains with 50 pulses and
25-s intertrain interval);
3) iTBS (10 trains of 10 bursts
at a 5 Hz with an 8-s intertrain
interval and bursts consisting of
three pulses at 50 Hz);
4) cTBS; (at 5 Hz with bursts
consisting of three pulses at
50 Hz)

Sham stimulation One session per
stimulation

250 Hz AM, 1,000 Hz
AM, 4,000 Hz AM
modulated at 40 Hz;
set to a loudness of a
reference tone (1 kHz,
50 dB SL);
70 repetitions per AM
frequency, each lasting
for 800 ms; Monaurally
to the ear affected by
tinnitus

MEG, 148-channel
whole-head
magnetometer system,
strength of ROI around
the auditory cortices
ipsilateral and
contralateral to the
TMS stimulation

40 Hz ASSR
reduced after iTBS,
cTBS and rTMS

Positive correlation
between left
hemisphere ASSR
and tinnitus
loudness after
rTMS

8 Miyagishi et al.
(2018).

Healthy
participants; N = 24
(all males), 20-23
years (mean 21.3)

tDCS; Electrodes placement:
F3 (anode) and F4 (cathode);
Intensity: 2 mA; Duration:
13 min

Sham condition Two sessions with
20 mins break

Click-train; 40 Hz;
80 dB SPL; 250 trials,
each lasting for
1,000 ms with an
inter-trial interval of
2,000 ms; Binaurally

MEG, 160 channel,
−500 to 1,500 ms
epochs, ERSP and
ITPC of ROI

No effect of tDCS
on 40 Hz ASSR

No behavioral
assessment

9 Pellegrino et al.
(2019)

Healthy
participants; N = 15
(12 f, 3 m), 20-50
years (mean
28.8 ± 3)

tDCS; Electrodes placement:
C3 (anode) and C4 (cathode);
Intensity: 2 mA
(0.057 mA/cm2); Duration:
20 min

Sham condition Single session 1,000 Hz AM; 40 Hz;
85 dB; 180 repetitions
each lasting 1,000 ms;
Binaurally

MEG,
275 gradiometers,
−1.5 s to +1.5 s
epochs, ITPC and
power of individual
source

40 Hz less
synchronized after
tDCS

No behavioral
assessment

Abbreviations: ASSR, auditory steady state response; tACS, transcranial alternating current stimulation; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation; PAS, paired associative stimulation; rTMS,
repetitive transcranial magnetic stimulation; iTBS, intermittent theta burst stimulation; cTBS, continuous theta burst stimulation; IGF, individual gamma frequency; IAF, individual alpha frequency (IAF); AM, amplitude modulated; ITPC,
inter-trial phase coherence; ERSP, event-related spectral perturbation; MT, motor threshold; ROI, region of interest.
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condition was used as a control in all except one (St2) of
included articles. Additionally, three studies (St1-2, 7) included
a different stimulation approach to serve as an active control
condition for the specific hypothesis testing. A healthy control
group was used only in one (St6) out of three studies in
clinical populations. The clinically/behaviorally relevant domains
were assessed in four articles, i.e. hallucination prevalence
(St1), tinnitus-related impairment (St6-7), and gap detection
performance (St2).

Five studies (St5-9) evaluated MEG as an outcome measure.
40-Hz ASSR was assessed in five reports (St1, 3, 4, 7–9); three
studies utilized near 40 Hz stimulation (individual gamma
frequencies around 50 Hz (St1); 41 (St5) or 37 Hz (St6));
additionally, responses to 20 Hz (St1, 3–4) and 10, 30 and
80 Hz (St1) stimulation were evaluated. Monaural presentation
of sounds was used only in two tinnitus-oriented reports (St6-7);
remaining studies employed binaural stimulation. The duration
of auditory stimuli varied from 180 ms to the continuous
sound presentation and only three studies (St1, 5, 8) utilized
stimulation with click trains. All included studies focused on
either amplitude or power measures of the ASSRs; three studies
(St1, 8–9) additionally evaluated phase-locking properties of the
response (inter-trial phase coherence, ITPC). Activity at the
source level was assessed in three MEG-based works (St5-6, 9);
remaining articles reported themeasures at the region-of-interest
basis. The effects induced by the course of stimulation (5 daily
sessions) with tACS (St1) and TMS (St6) were estimated in two
studies; single or double daily stimulation was performed in the
remaining reports.

Of the reviewed articles, two tACS reports (St1-2) and one
tRNS-based report (St3) observed 40-Hz ASSR increase after the
stimulation, and one study (St5) reported decreased 41-Hz ASSR
after tACS. Among the included studies, two utilized tACS at the
alpha frequency (10 Hz (St1) and 12 Hz (St5)); however, both
reports produced contradictory results on 40-Hz ASSR. Three
studies did not find a tDCS effect on the power of 40-Hz ASSR
(St1, 8–9); however, in one study a drop of phase-locking after
stimulation was reported (St9). TMS-based protocols resulted in
a decrease of ASSRs at 20 (St4), 37 (St6), and 40 Hz (St7).

DISCUSSION

We assessed available studies addressing the effects of
neuromodulatory/brain stimulation approaches on the
gamma-range auditory steady-state responses and summarized
their results.

Among the most consistent results are two reports on the
rTMS-induced reduction of 40-Hz ASSR in tinnitus (Lorenz
et al., 2010; Li et al., 2019), where rTMS potentially causes
long-term depression of synaptic transmission in the auditory
cortex (Li et al., 2019). Lorenz et al. (2010) reported significantly
attenuated ASSRs along with tinnitus loudness in patients
after both 1 Hz rTMS and continuous theta burst rTMS
(Lorenz et al., 2010). In support of this, a recent study
of Li et al. (2019) provided evidence for the long-term
effect of rTMS on both ASSRs and tinnitus reduction (Li
et al., 2019). In healthy participants (Engel et al., 2017),

no significant changes were observed for 40-Hz ASSRs after
the PAS session where TMS and auditory stimuli were
delivered 45 ms apart; however, 20-Hz ASSR was decreased
pointing to spike-timing-dependent plasticity as a mechanism of
action. Collectively, these findings suggest that rTMS might be
potentially used in tinnitus where initial gamma-range ASSRs
are elevated; yet, longitudinal studies are needed for more
powerful evidence.

Spike-timing-dependent plasticity is proposed as a mode of
action of tACS (Tavakoli and Yun, 2017). Although gamma-
range tACS has been used to modulate various behavioral aspects
in both visual and auditory domains (Rufener et al., 2016;
Gonzalez-Perez et al., 2019), surprisingly, no studies published
in full to date evaluated the effect of periodic 40 Hz electrical
stimulation on the periodic 40 Hz brain responses. In the
conference abstract by Knott et al. (2019) (not included in the
review due to insufficient information), authors provide initial
evidence that no effects of 40 Hz tACS (vs. sham tACS) on 40-Hz
ASSRs could be observed (Knott et al., 2019). However, among
reviewed studies, Baltus et al. (2018) reported an increase of the
gamma-range responses at the stimulation frequencies around
50 Hz compared to individual estimated responses during
the rest. Overall, increasing evidence suggests that tACS may
modulate cross-frequency interactions (Herrmann et al., 2016).
Accordingly, among the reviewed studies, two utilized tACS at
lower frequencies—theta (6.5 Hz tACS) and alpha (10 and 12 Hz
tACS)—to estimate the role of low-frequency oscillations in the
modulation of the 40-Hz ASSRs (Hyvärinen et al., 2018; Ahn
et al., 2019). Hyvärinen et al. (2018) suggested that tACS at alpha
frequency could induce immediate inhibition of 40-Hz ASSRs.
In line with this assumption, the authors observed reduced
40-Hz ASSRs in healthy subjects after a single session of bilateral
12 Hz tACS compared to sham condition. On the contrary,
Ahn et al. (2019) expected 10 Hz tACS to enhance 40-Hz
ASSRs in schizophrenia patients. The observed augmentation
after the course of left-sided stimulation administered for 5 days
was linked to the increase in functional connectivity and the
reduction in auditory hallucinations. However, a course of five
left-sided tACS sessions did not result in evident aftereffects at
the 1-week and 1-month follow-up (Ahn et al., 2019), suggesting
induced changes being short-lived. Importantly, no significant
difference was found in ASSR under the bilateral 6.5 Hz tACS
compared to sham in the study by Hyvärinen et al. (2018),
and the difference in ASSR change between 12 Hz tACS and
6.5 Hz stimulation conditions was not significant. Nevertheless,
in the preliminary report of Knott et al. (2019), bilateral 6 Hz
tACS resulted in a significant reduction of amplitude and phase-
locking of 40-Hz ASSRs (Knott et al., 2019). In contrast, a
single study employing rRNS at 101–640 Hz, resulted in a
significant increase of 40-Hz ASSRs when compared to the
baseline (Van Doren et al., 2014). These observations suggest
the potential for theta, alpha and high-frequency tACS protocols
to modulate gamma-range ASSRs. The effect could be due to
the direct action on underlying networks (Tavakoli and Yun,
2017) and/or modulation of attention towards auditory stimuli
(Hopfinger et al., 2017; Wöstmann et al., 2018), as ASSRs
are sensitive to variations in attention level (Skosnik et al.,
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2007; Griskova-Bulanova et al., 2011). However, the effects
of tACS on attention are still unclear, thus this possibility
should be addressed in future studies: experimental designs with
attentional distraction or audio-visual conflict paradigm may
provide insight into top-down vs. bottom-up effects of NIBS
on ASSRs.

The effect of tDCS on gamma-range ASSRs, acting through
long-term potentiation and long-term depression (LTP/LTD)-
like neuroplasticity (Roche et al., 2015), was assessed in three
recent studies (Miyagishi et al., 2018; Ahn et al., 2019; Pellegrino
et al., 2019). Ahn et al. (2019) employed a left-sided tDCS as a
control condition for tACS in schizophrenia patients, expecting
no effect of tDCS on 40-Hz ASSRs; on the contrary, Miyagishi
et al. (2018) and Pellegrino et al. (2019) anticipated modulation
of 40-Hz ASSRs in healthy subjects. Both Ahn et al. (2019) and
Miyagishi et al. (2018) did not find changes of ASSR after the
stimulation, whereas Pellegrino et al. (2019) reported a decrease
in phase-locking of 40-Hz ASSRs in the right temporal cortex
without a significant influence on response power (Pellegrino
et al., 2019) after a single session of tDCS over the central region.
These findings point to the potential site-specific and measure-
specific effects of tDCS.

Altogether, it seems that different neuromodulatory
techniques can produce physiologically relevant changes in
ASSRs. However, this rather new line of research should adopt
standardization of brain stimulation protocols (e.g., for TMS
see Lefaucheur et al., 2020) to avoid some of the most common
issues in NIBS research. First, the use of sham-controlled
designs is essential; even though some sham-protocols were
shown to produce effects beyond intended sensational masking
(for discussion see Duecker and Sack, 2015; Fonteneau et al.,
2019; Zis et al., 2020), the success in blinding procedures and
any unexpected sham-effects should be reported. Second, the
consistency of stimulation protocols applied is needed to increase
reproducibility. So far, frontal (Miyagishi et al., 2018; Ahn et al.,
2019), sensory-motor (Pellegrino et al., 2019) and temporal
(Hyvärinen et al., 2018) areas were stimulated to achieve
modulation of ASSRs; however, the primary modulation target
for auditory responses should be the auditory cortex. As 40-Hz
ASSRs are somewhat asymmetric across the hemispheres, with
a right-hemispheric dominance (Ross et al., 2005; Draganova
et al., 2008) in healthy subjects, and diminished left-right
hemispheric asymmetry in schizophrenia and bipolar disorder
(Teale et al., 2003; Reite et al., 2009; Tsuchimoto et al., 2011),
the bipolar homolog positioning of the electrodes for TES
and TMS coil navigation following MRI-based atlases (Jiang
et al., 2020) could be an appropriate starting point. If targeting
at temporal lobes is ineffective, other areas beyond auditory
pathways should be considered (see Farahani et al., 2017, 2019).
Third, sample sizes in the reviewed studies are relatively small
(10–26 participants) with no a priori or a posteriori power
estimations provided. A priori power analysis (e.g., using
free tools such as G ∗ Power; Faul et al., 2007) and, where
appropriate, adoption of within-subject study design to control
the interindividual differences (Li et al., 2015) should help to
achieve higher reproducibility. Furthermore, it must be noted
that only four studies (Lorenz et al., 2010; Baltus et al., 2018; Ahn

et al., 2019; Li et al., 2019) evaluated behavior output alongside
EEG/MEG assessment. The majority of neuromodulation
studies use either physiological or behavioral outputs; however,
the concurrent monitoring of neurophysiological and behavioral
performance is necessary to gain a better understanding of
NIBS effects (Abellaneda-Pérez et al., 2020). Moreover, even
though tACS and TMS show a great promise, it remains unclear
which NIBS technique most effectively modulates neural circuits
underlying ASSRs; thus, future studies should comparatively
assess the effects of multiple brain stimulation methods (Ahn
et al., 2019). Finally, only two studies (Ahn et al., 2019; Li
et al., 2019) assessed long-term changes after the stimulation
course; future research should investigate longitudinal effects
on the neural activity, their duration, and potential functional
side-effects.

CONCLUSION

There is a limited amount of research analyzing the impact
of neuromodulation on gamma-range ASSRs. It has been
shown that ASSRs can be either enhanced, decreased, or stay
unaffected following NIBS with inconsistent findings both
within and across different stimulation approaches. The research
on rTMS has shown promising results in regards to the
reduction of ASSRs in tinnitus; however, future research should
aim to provide more evidence on the long-term effects of
rTMS. Among TES protocols, tACS at theta, alpha, and high
frequencies showed the potential to modulate gamma-range
ASSRs. However, future investigations are necessary to explore
the mechanisms underlying the modulation of gamma-range
ASSRs to develop the non-invasive brain stimulation-based
treatments for abnormal auditory processing. A standardization
of brain stimulation protocols and ASSR assessment approaches,
more rigorous study designs (including adequate control
condition, a priori power-based determination of sample sizes,
minimizing and controlling for potential confounding factors,
etc.) as well as inclusion of a wide range of outcome measures
to account for unexpected findings, would be beneficial for this
research field.
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