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Dynamic functional connectivity (DFC) was established in the past decade as a
potent approach to reveal non-trivial, time-varying properties of neural interactions –
such as their multifractality or information content –, that otherwise remain hidden
from conventional static methods. Several neuropsychiatric disorders were shown
to be associated with altered DFC, with schizophrenia (SZ) being one of the
most intensely studied among such conditions. Here we analyzed resting-state
electroencephalography recordings of 14 SZ patients and 14 age- and gender-matched
healthy controls (HC). We reconstructed dynamic functional networks from delta band
(0.5–4 Hz) neural activity and captured their spatiotemporal dynamics in various global
network topological measures. The acquired network measure time series were made
subject to dynamic analyses including multifractal analysis and entropy estimation.
Besides group-level comparisons, we built a classifier to explore the potential of DFC
features in classifying individual cases. We found stronger delta-band connectivity,
as well as increased variance of DFC in SZ patients. Surrogate data testing verified
the true multifractal nature of DFC in SZ, with patients expressing stronger long-
range autocorrelation and degree of multifractality when compared to controls. Entropy
analysis indicated reduced temporal complexity of DFC in SZ. When using these indices
as features, an overall cross-validation accuracy surpassing 89% could be achieved in
classifying individual cases. Our results imply that dynamic features of DFC such as
its multifractal properties and entropy are potent markers of altered neural dynamics in
SZ and carry significant potential not only in better understanding its pathophysiology
but also in improving its diagnosis. The proposed framework is readily applicable for
neuropsychiatric disorders other than schizophrenia.
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INTRODUCTION

Schizophrenia (SZ) is a severe psychiatric disorder that can
be characterized by altered perception and sensory processing,
distorted thinking and impaired affective, social and cognitive
functions (Uhlhaas and Singer, 2010). Yet being one of the
most prevalent mental diseases affecting approximately 1% of
the worldwide population (Bhugra, 2005), still no objective
diagnostic test exists for SZ (Boutros et al., 2008; Calhoun et al.,
2008). Moreover, the etiology of SZ is still unclear, despite being
the subject of intense research for more than 100 years (Uhlhaas
and Singer, 2010; Yu et al., 2015). Evidently, there has been
a growing interest recently in developing tools that can yield
quantitative markers of SZ with a biological basis. The expected
benefits of these would be twofold: (i) advancing diagnosis
and screening of the disease, while also (ii) providing further
insights on its underlying neural mechanisms. The hypothesis
of abnormal or altered connectivity has been suggested as a
key feature of SZ (Friston and Frith, 1995; Bullmore et al.,
1997), referring to it as a dysconnectivity syndrome (Friston
et al., 2016). Accordingly, many recent studies utilized tools of
functional neuroimaging and connectivity analyses to identify
biomarkers of SZ (Arbabshirani et al., 2013; Du et al., 2015, 2018;
Rashid et al., 2016).

Many SZ-related alterations of functional connectivity (FC)
were revealed both at rest and during task modulation (Calhoun
et al., 2009; van den Heuvel and Fornito, 2014; Kambeitz et al.,
2016; Sheffield and Barch, 2016), however results from different
studies are often inconsistent (Fox and Greicius, 2010). FC is
most commonly defined as the statistical interdependence of
neural activity recorded from disparate brain regions (Friston
et al., 1993). This dependence can be captured in many ways
from bivariate methods (Sakkalis, 2011; Smitha et al., 2017)
to data-driven multivariate approaches such as independent
component analysis (ICA) (Li et al., 2009). The large variety of
available analytical tools can be considered as one of the (many
possible) reasons of contradictory results (Maran et al., 2016).
Recently, it has also been proposed (Damaraju et al., 2014) that
the inconsistency may arise from the fact that most previous
studies analyzed FC in a static manner, i.e., implicitly regarding
functional connectivity constant during the measurement period
(static functional connectivity, SFC). On the other hand, it has
been shown that FC fluctuates even in the resting state (Chang
and Glover, 2010; Hutchison et al., 2013; Allen et al., 2014).
Indeed, several studies revealed alterations of dynamic functional
connectivity (DFC) in SZ that could not be captured by simple
SFC analyses (Damaraju et al., 2014; Ma et al., 2014).

Much progress has been made in the past decade in terms of
developing methods to capture and characterize dynamic features
of FC (see Preti et al., 2017 for a recent review). Among others,
dynamic graph theoretical analysis has emerged as a frequently
used approach (Dimitriadis et al., 2010; Tagliazucchi et al., 2012;
Yu et al., 2015). Graph theory is a popular and powerful tool
of FC studies (Bullmore and Sporns, 2009) and is used to
describe various topological aspects of complex brain networks
reconstructed from physiological data through a set of relatively
simple graph theoretical measures (Rubinov and Sporns, 2010).

It was also adapted to the DFC framework by multiple studies
to capture the spatio-temporal evolution of functional networks
(Dimitriadis et al., 2010; Tagliazucchi et al., 2012). As details
of brain graph reconstruction fundamentally depend on the
particular neuroimaging modality in use, functional magnetic
resonance imaging (fMRI) is currently the most frequently used
imaging technique. Electroencephalography (EEG) on the other
hand provides a reasonable alternative with – albeit lower spatial,
but – much higher temporal resolution, thus allowing for a
more detailed reconstruction of network dynamics. Despite this
and other advantages of EEG imaging (i.e., its accessibility and
mobility), up to date not many studies have used dynamic graph
analysis of electrophysiological recordings to investigate DFC in
SZ (Dimitriadis, 2019).

Dynamic graph theoretical measures were reported to express
reduced variance in schizophrenic patients when compared to
healthy individuals (Yu et al., 2015) and features extracted
by dynamic graph analysis lead to a better classification of
SZ patients than simple static network measures (Lombardi
et al., 2019). However, it has been shown that global FC
fluctuates according to scale-free (or fractal) dynamics (Stam
and de Bruin, 2004; Van de Ville et al., 2010). Statistical
properties (such as the variance) of scale-free processes do not
have a characteristic time scale, but they depend on the scale
of observation according to a power-law function, and the
relationship is established via the scaling exponent (Eke et al.,
2000). The scale-free property manifests itself in the time domain
as long-range autocorrelation, meaning that such processes have
an autocorrelation function that decays according to a power-
law rather than an exponential function like of those having
characteristic time scales (Eke et al., 2000). Furthermore, in our
recent works we showed that functional brain networks express
not only scale-free/fractal but indeed multifractal dynamics (Racz
et al., 2018a,b), meaning that the local scaling exponent also
changes with time. More generally, mono- and multifractality
has been recognized previously as a fundamental property of
not only DFC but brain dynamics in general, across species
and modalities (Herman et al., 2011; Nagy et al., 2017). Such
dynamic features cannot be captured by simple first and second-
order statistics, thus multifractal time series analysis called for
providing a more detailed characterization of network dynamics.
Temporal complexity of brain network dynamics can also be
efficiently captured in entropy-related measures – which capture
the information production rate of processes – such as sample
entropy (SE) (Richman and Moorman, 2000) or permutation
entropy (PE) (Bandt and Pompe, 2002). Indeed, temporal
complexity of DFC has been shown to express characteristic
regional patterns that reflect well the underlying functional
organization of the brain (Racz et al., 2019). Similar studies
revealed that patients with SZ express higher SE in their FC
dynamics than healthy control (HC) individuals (Jia et al., 2017;
Jia and Gu, 2019). Since the aforementioned methods appear
promising tools in characterizing DFC, our main goal in this
study was to investigate network dynamics in SZ by means of
multifractal and entropy-related analysis. To the best of our
knowledge, this is the first study applying multifractal analysis to
characterize network dynamics in schizophrenia.
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Beyond group-level inferences, the true utility of the extracted
dynamic features would lie with their ability to enhance the
discrimination of individual cases. Machine learning techniques
can be used to build models for classifying individual subjects as
HC or SZ, however most methods do not yield any additional
information on which predictors play the most important role
in the classification process. One of the exceptions is the class of
random forest classifiers (RFCs) which can provide measures on
the importance of each individual feature (Breiman, 2001) and
thus are frequently and efficiently used not only for classification
but for feature selection purposes as well (Archer and Kirnes,
2008; Menze et al., 2009). Our goal in this study therefore
was not only to investigate if multifractal and entropy-related
properties of DFC are altered in SZ, but also to explore how
these features could serve as potential markers of the disease
when classifying individual cases. We analyzed resting-state EEG
recordings from healthy individuals and patients with SZ, and
performed dynamic graph theoretical analysis to capture brain
network dynamics. Since electrophysiological abnormalities are
reported most frequently and consistently in delta band (0.5–
4 Hz) neural activity (Newson and Thiagarajan, 2019), in our
analysis we primarily focused on this frequency range. Besides
conventional first- and second-order indices (such as the mean
and variance), connectivity dynamics were characterized by their
multifractal and entropy-related properties, while a traditional
SFC analysis was also performed as a baseline. Apart from
group-level comparisons, an RFC was trained and validated
using a leave-one-out scheme, and estimates on predictor
importances were extracted.

MATERIALS AND METHODS

Participants and Data Acquisition
Resting-state EEG recordings of an openly available database
published previously (Olejarczyk and Jernajczyk, 2017) were
analyzed. The dataset comprised EEG records of 14 SZ patients (7
females aged 28.3 ± 4.1 years and 7 males aged 27.9 ± 3.3 years)
and 14 age- and gender-matched HC individuals (7 females aged
28.7 ± 3.4 years and 7 males aged 26.8 ± 2.9 years). Subjects
of the SZ group were diagnosed with paranoid schizophrenia
according to the International Classification of Diseases ICD-
10 criteria (category F20.0) and were hospitalized at the
Institute of Psychiatry and Neurology in Warsaw, Poland. Only
individuals over the age of 18 were allowed to participate
in the original study and subjects of the SZ group had a
medication washout period of a minimum of 1 week prior
to the measurement. Exclusion criteria included organic brain
pathology, first episode of schizophrenia, other neurological
diseases such as epilepsy, Alzheimer’s or Parkinson’s disease, or
presence of any general medical condition (for further details, see
Olejarczyk and Jernajczyk, 2017). All participants were informed
of the measurement protocol and provided written informed
consent prior to participation. The original study was approved
by the Ethics Committee of the Institute of Psychiatry and
Neurology in Warsaw. The data was downloaded from the
repository at http://dx.doi.org/10.18150/repod.0107441.

Measurement of all participants was performed in an eyes-
closed resting-state condition where EEG activity was recorded
at a sampling rate of 250 Hz from 19 cortical regions (Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2)
according to the standard 10–20 montage (Nuwer et al., 1998)
with an additional reference electrode placed at FCz. The original
datasets consisted of 15 min of raw EEG data, from which a 3
min long artifact-free segment was selected for each participant
for further analysis.

Preprocessing
Data preprocessing was carried out in a fully automatized
manner using the Batch EEG Automated Preprocessing Platform
(Levin et al., 2018). The data was first band-pass filtered
between 0.5 and 45 Hz with additional “cleanline” filtering at
50 Hz to remove line noise. Subsequently, artifact removal was
performed using the Harvard Automated Processing Pipeline
for Electroencephalography (Gabard-Durnam et al., 2018), a
built-in module of BEAPP for standardized artifact removal.
HAPPE was set to perform the following steps: (i) wavelet-
enhanced ICA filtering for spike artifact removal (You and
Chen, 2005), (ii) subsequent ICA with automated component
rejection using the Multiple Artifact Rejection Algorithm
(Winkler et al., 2011, 2014), and (iii) re-referencing against
the common average reference. For ICA, HAPPE used the
extended Infomax algorithm as implemented in the EEGLAB
software package (Delorme and Makeig, 2004). Finally, EEG
data was forward-backward filtered using a 5th order zero-
phase Butterworth filter with lower and upper cutoff frequencies
0.5 and 4 Hz, respectively. Data preprocessing and subsequent
analysis steps were carried out using Matlab (MathWorks, Natick,
MA, United States).

Dynamic Functional Connectivity
Estimation
The Synchronization likelihood (SL) method (Stam and van Dijk,
2002) was used to estimate functional connectivity between all
pairs of brain regions. SL is a dynamic measure of generalized
synchronization that estimates the probability of synchronization
between two processes for every time point. It utilizes a temporal
embedding scheme (Takens, 1981) and looks for similarities in
recurrences around every time point in a “k-nearest neighbor”
manner, using the L2 (Euclidean) norm. SL requires five input
parameters: the embedding dimension m, the embedding time
lag L, a window parameter w1 controlling for autocorrelation
effects, a window parameter w2 that serves a similar purpose as
the time window in a sliding window approach and a resolution
parameter pref . In case of data with explicit frequency limits and
fixed sampling rate – such as narrow-band EEG signals –, these
parameters (except for pref ) can be defined in a standardized
manner according to simple signal processing principles (Montez
et al., 2006). Accordingly, in the current analysis we had the
following set of parameters: m = 25, L = 20, w1 = 960, and
w2 = 1959, while we set pref to be equal to 0.05, similarly to
previous studies (Stam and van Dijk, 2002; Jalili, 2016). Being
a probability-type measure, SL takes on values between 0 and
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1 with 0 indicating complete lack of synchronization and 1
indicating perfect synchronization.

SL per se estimates synchronization of two processes
in a time-resolved manner (Stam and van Dijk, 2002).
Therefore, computing SL between all possible pairs of channels
yielded a dynamically changing synchronization matrix (i.e., a
synchronization matrix for every time point) for every subject,
from which the first 215 consecutive matrices were made subject
for further analysis. Additionally, as a reference we also computed
static FC between all channels, where static SL was acquired
according to Stam and van Dijk (2002) by averaging the
time-resolved values of SL. This procedure yielded only one
synchronization matrix for every subject. Further details on the
SL method and its appropriate parameter settings are found
elsewhere (Stam and van Dijk, 2002; Montez et al., 2006).

Graph Theoretical Analysis
The synchronization matrices were first thresholded to exclude
non-significant and spurious connections (Rubinov and Sporns,
2010). For this purpose, we applied the cost-thresholding scheme
introduced by Achard and Bullmore (2007). In that, for every
time-point the threshold was set to a value so that only a desired
fraction K of all connections (i.e., the strongest connections)
were kept in the network. This procedure yielded dynamic
weighted networks with a constant number of connections, thus
graph theoretical measures truly captured the reorganizations
of functional network topology. The whole analysis pipeline
was carried out for multiple values of K ranging from 0.15 to
0.5 in 0.05 increments. The lower limit of K was set to 0.15
as we found that cost values below that often rendered the
functional networks disconnected, while the upper limit was
defined according to Achard and Bullmore (2007).

Subsequently we described the global topology of functional
brain networks for every time point with graph theoretical
measures connectivity strength (D), global clustering coefficient
(C), and global efficiency (E). Global connectivity strength was
acquired as the fraction of the sum of present edge weights
and the maximal possible value of overall edge weights in
the network (Rubinov and Sporns, 2010). The local clustering
coefficient of a particular node can be defined as the fraction
of the node’s neighbors that are also neighbors of each other
(Watts and Strogatz, 1998), while the global clustering coefficient,
C is the average taken over all nodes in the network. Global
network efficiency is defined as the average inverse shortest
path length of the network taken over all pairs of nodes
(Latora and Marchiori, 2001). C is a widely used measure of
segregation, i.e., how much nodes of the network (regions of the
brain) tend to form densely connected groups, and characterizes
information processing on the local level. On the other hand,
E is a measure of integration, i.e., how the brain combines
specific information distributed over disparate regions and thus
it represents information processing on the global level. All
weighted network measures were computed using functions of
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

This analysis yielded network measure time series (NMTS)
for each cost value and graph theoretical measure, a total of 28
subjects× 8 costs× 3 network measures = 672 NMTS, that were

subjected to dynamic analysis. Finally, graph theoretical analyses
were also performed on the static synchronization matrices as
well, yielding one value of D, C, and E for every cost, per subject.

Dynamic Features of Brain Connectivity
First, the mean and variance (µ and σ2, respectively) of each
NMTS were calculated. We also computed the excursion from
median (EfM) measure recently proposed by Zalesky et al.
(2014) to capture the true dynamic nature of functional brain
networks. This measure was suggested to capture time-varying
behavior more efficiently than the variance as it takes into
account both the amplitude and the duration of periods where
the process deviates from its median. EfM was calculated
with the input parameters a = 0.9 and b = 1, as suggested
by previous studies (Zalesky et al., 2014; Hindriks et al.,
2016). Yet EfM was originally proposed as a test statistic
for distinguishing true FC dynamics from random statistical
fluctuations of stationary FC, here we only used it as a non-
linear measure on grading of “how dynamic” functional brain
network topology was.

We used the focus-based multifractal signal summation
conversion (FMF-SSC) method (Mukli et al., 2015) to capture
multifractal properties of the NMTS. FMF-SSC estimates the
multifractal spectrum by first calculating the scaling function
S(q, s) according to:

S
(
q, s
)
=

{
1

Ns

Ns∑
υ=1

σ (υ, s)q

} 1
q

(1)

where s is the scale, Ns is the number of non-overlapping
windows of size s, υ is the index of the window, σ(υ, s)
is the standard deviation of the υth window at scale s and
q is the moment. The generalized Hurst exponent, H(q),
is then estimated by focus-based multiple linear regression
for every q simultaneously. Finally, the multifractal spectrum
is acquired via applying Legendre transformation to H(q).
Consequently, FMF-SSC qualifies as an indirect approach when
analyzing multifractality by providing information about the
distribution of local scaling exponents of the investigated process
through its multifractal spectrum. The key steps of FMF-
SSC are illustrated in Figure 1, while further details of FMF-
SSC and its parametrization are described elsewhere (Mukli
et al., 2015). Accordingly, we performed FMF-SSC with the
following settings: s were set according to 2n datapoints per
window with n ranging from 3 to 13 in steps of 1, and
q ranging from -15 to 15 with increments of 1. The lower
limit of n was defined to have 8 data points, while the
upper limit was set to be equal to 1/4 of the signal length.
FMF-SSC yields two endpoint measures, hmax and FWHM.
hmax is the Hölder exponent at the peak of the multifractal
spectrum and is strongly related (although not strictly equal)
to the degree of global long-term autocorrelation of the
process. FWHM is the full width at half maximum of the
multifractal spectrum and captures the degree of multifractality,
i.e., how much the local scaling exponent (and thus the local
degree of autocorrelation) varies in time. Essentially, the larger
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FIGURE 1 | Steps of focus-based multifractal analysis. (A) After the scaling function (marked in black) is acquired, linear regression is used to fit power-law functions
(marked in green) at each moment order q. On double logarithmic plots these appear as linear functions whose slopes are the scaling exponents. Also, in case of
finite length signals, these converge to one point, the Focus, that is used as a reference point during regression. (B) The generalized Hurst exponent, H(q) is acquired
as the scaling exponents of the functions fitted on the scaling function at each value of q. The focus-based formalism enforces the monotonously decreasing nature
of H(q); a prerequisite for Legendre transformation. (C) The multifractal spectrum is acquired from H(q) via Legendre transformation and is described by the Hölder
exponent at its maximal value (hmax ) and its full width at half maximum (FWHM).

hmax is, the stronger is the global long-term autocorrelation
while the smaller FWHM is, the smaller is the variability
of the local scaling exponent in time. A theoretical FWHM
value of zero would mean that the scaling exponent does
not change at all, and in which case the process does
not express multifractality but reduces to a simple scale-
free (or monofractal) process. However, even monofractal
signals produce multifractal background noise when analyzed
in a multifractal manner due to the finite length of real-
life signals (Grech and Pamula, 2012) and the focus-based
regression scheme. In order to exclude these cases, a multi-
step surrogate data testing framework (Racz et al., 2019) was
also carried out against 40 surrogates in each step to verify
true multifractality of NMTS. By this means, we verified if
time series truly expressed power-law scaling and that their
FWHM values were significantly larger than those of strictly
monofractal surrogate signals of otherwise similar properties.
In all cases, NMTS were considered significantly different from
their surrogates in their investigated property if it was found
outside the µ± 2∗σ range where µ and σ denotes the mean and
standard deviation acquired from the surrogates. After verifying
normality of surrogate indices, this yields an approximate
confidence level of 0.05.

Temporal complexity of NMTS was captured by their
information theoretical entropy (Bandt and Pompe, 2002). Since
it is possible that network topology does not change in two
consecutive time points, we calculated a modified version of PE
(mPE) that allows for this effect yet still yields accurate estimates
of signal complexity (Bian et al., 2012). mPE also builds on
the temporal embedding approach; thus its input parameters
include the embedding dimension and the embedding time
lag. To achieve the highest resolution possible within the
current experimental setup, we set the embedding dimension
to 7 and the embedding time lag to 3 according to previous
studies (Staniek and Lehnertz, 2008). The analysis pipeline is
summarized in Figure 2.

FIGURE 2 | Flowchart of the analysis pipeline. The analysis pipeline for static
connectivity analysis is not shown as it is equivalent in most steps to the
dynamic pipeline, except that only one connectivity matrix is acquired per
subject, leading to only one value for each network measure instead of a time
series, thus dynamic analyses are bypassed. SL, synchronization likelihood;
D, connectivity strength; C, clustering coefficient; E, global efficiency; Th,
thresholding; K, cost; AUC, area under the curve.

Statistical Analyses
First, we compared HC and SZ groups in a cost-dependent
manner. Since assumptions of a two-way repeated measures
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ANOVA were violated in most cases, we compared values of
the HC and SZ groups for each cost separately. In case of
normally distributed data and equal variances two sample t-tests
were used, while Mann-Whitney U tests otherwise. The acquired
p-values were corrected for multiple comparisons using the false
discovery rate (FDR) approach (Benjamini and Hochberg, 1995)
with level α = 0.05. Significant effect of cost on the acquired
indices was verified with Friedman tests with complementary
Kendall’s W coefficient calculation in order to estimate the
concordance among subjects.

Furthermore, in order to render the results independent of
cost and thus reduce dimensionality for classification (see below)
we calculated the area under the curve (AUC) for all calculated
network measures. AUC values of all measures in the HC and
SZ groups were compared using two sample t-tests or Mann–
Whitney U-tests. Note that the AUC approach is commonly used
in FC studies to avoid selecting a specific cost/threshold value (He
et al., 2009; Koshimori et al., 2016). However, in most DFC studies
AUC values for network measures are calculated for every time
point first, and then dynamics of the AUC time series are analyzed
(Yu et al., 2015; Kim et al., 2017). Here we took a different
approach (by analyzing dynamics first for each K and calculating
AUC afterward), as the prior summation of values could lead
to undesired effects in multifractal analysis (Nagy et al., 2017).
Statistical analysis was carried out using StatSoft Statistica 13.2.

Classification
Due to the small sample size, it is unlikely that a classifier built
from this dataset would generalize well on unseen real-world
data. With that in mind, our goal instead was to explore if
the dynamic measures of FC described above could serve as
valuable features for classifiers in the future, trained on larger
datasets. Therefore, we intentionally selected a standard machine
learning method where information on feature importances
could be easily and readily extracted. One of such methods
are random forest classifiers (RFC, Breiman, 2001). A random
forest consists of a set of binary decision trees, each grown from
a different bootstrap sample of the training dataset. However,
unlike a regular unpruned decision tree, trees of the forest
do not use all predictors but split the data using only a
random subset of the features. Finally, when a new example
is presented, it is subjected to all trees in the forest and the
target variable is predicted by aggregating the predictions of
all trees, i.e., as a “majority vote.” A big advantage of RFCs
is that they provide multiple estimates on feature importances
(Menze et al., 2009). From these, we selected the Gini importance,
a widely used measure that captures how much prediction
accuracy would be affected if the given feature was not used
when splitting the data (Breiman, 2001). Although there is no
theoretical limit to the number of features used for training
an RFC, in most cases it is accepted as a rule of thumb
that the number of features should not exceed the number
of training examples. For this reason, the AUC values of
seven indices (static, mean, variance, EfM, hmax, FWHM, and
mPE) acquired from the three network measures (D, C, and
E) were used for training, resulting in a total number of 21
training features.

The sample size of the dataset did not allow for a statistically
robust train-test split, so that the generalization of the model
could be reliably tested. Thus, we evaluated model performance
via cross-validation according to a stratified leave-one-out
scheme (Calhoun et al., 2008; Rashid et al., 2016). In that, the
dataset was first divided into a training and a holdout set. The
holdout set always consisted of one HC and one SZ subject;
thus the training set comprised the remaining 26 subjects. Then,
the model was trained using data of the training set and its
performance was validated on the holdout subjects. In each
cross-validation run, model performance was evaluated using
six standard report measures: accuracy, specificity, sensitivity,
positive predictive value, negative predictive value and the AUC
of the receiver-operator-characteristic (ROC) curve. Similarly,
the Gini importance of each feature was extracted at the end
of each cross-validation cycle. The whole process was then
repeated using a different pair of HC-SZ subjects as holdout
set. Each HC and SZ subject were put exactly once in the
holdout set; thus the model was cross-validated 14 times. Overall
classifier performance was captured in the average of the six
report measures over the cross-validation runs, while the overall
importance of each feature was quantified as the sum of its Gini
importance over the cross-validation runs.

An RFC has many hyperparameters (parameters that have to
be set before training) including but not limited to the number
of trees in the forest and the allowed maximum number of
features used by each tree for splitting the data. Since RFC
performance can strongly depend on the appropriate setting of
these hyperparameters, we performed a grid search in order to
find the parameter settings that yield the best overall classifier
performance. Finally, we also evaluated the performance of
the classifier against surrogate datasets. In that, we carried
out the cross-validation scheme described previously on 100
surrogate datasets, each acquired by randomly permuting group
labels among subjects (but leaving features/predictors intact).
All performance measures were compared to those of surrogate
data and were considered significant if they exceeded the µ±

2∗σ range acquired from surrogates. RFCs were implemented
in Python 3.7 using the RandomForestClassifier class of the
Scikit-Learn package and grid search was carried out using
GridSearchCV class. Details on the hyperparameter settings of
the final RFC model, as well as definitions of the performance
measures are provided in Supplementary Material.

RESULTS

Throughout the results, for all dynamic indices the network
measure it was calculated on is indicated in the left superscript,
e.g., Chmax standing for the hmax of clustering coefficient.
AUC indices are indicated in the left subscript, e.g., C

AUChmax
refers to the AUC index calculated from the hmax values of
clustering coefficient.

Static Functional Connectivity
Static synchronization matrices revealed a high degree of
similarity in topology between HC and SZ groups (Figure 3A).
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FIGURE 3 | Group-average connectivity matrices and results of static functional connectivity analysis. (A) Group-average static connectivity matrices for healthy
controls (left) and patients with schizophrenia (right). For a better comparison, the matrices are in the same color scale. Channels are grouped according to
macroanatomical brain regions. (B) Results of the cost-dependent analysis. Data corresponding to healthy controls is marked in blue, while those of patients with
schizophrenia are marked in orange. Dots mark median values, the shaded area refers to the 25th and 75th percentiles, and vertical lines range from 10th to 90th
percentiles. Asterisk marks significant group difference (p < 0.05, corrected) acquired with two sample t-test. (C) Violin plots of static FC results for all three network
measures. In each violin plot the central black line indicates the mean and the central red line indicates the median. The lower and upper horizontal lines of the
rectangle mark the 25th and 75th percentile, respectively, and the outer horizontal lines indicate the 10th and 90th percentile values. The colored areas illustrate the
estimated probability density function of the corresponding datasets. An asterisk marks significant group difference (p < 0.05) identified with two-sample t-test, while
a plus sign marks significant difference identified with Mann-Whitney U-test. SL, synchronization likelihood; FR, frontal cortex; FT, frontotemporal regions; PA, parietal
cortex; SM, somatomotor cortex; VI, visual cortex; AUC, area under the curve; HC, healthy control; SZ, schizophrenia.
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TABLE 1 | Effect of cost on static network measures.

Connectivity strength Clustering coefficient Global efficiency

HC SZ HC SZ HC SZ

Static p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 1 1 0.8042 0.7075 1 1

The upper row contains p-values from the Friedman tests, while the lower row
contains Kendall’s coefficient of concordance (W) values. W = 1 indicates perfect
agreement among subjects. HC, healthy control; SZ, schizophrenia.

In both groups, clusters of stronger connections were observable
linking the frontal with the occipital as well as parietal regions.
In these three regions, the within-regional connections also
appeared to be stronger than in the rest of the network. Cost-
dependent analysis showed a tendency of stronger FC in SZ
for all three network measures, nevertheless, this difference was
significant only in the case of C with K = 20% (Figure 3B). In both
groups, the cost had a significant, although trivial effect on all
three network measures (Table 1), as their values increased with

increasing K. On the other hand, when we compared the AUC
values acquired from D, C and E we found significant differences
between the two groups, with SZ subjects expressing stronger
static FC as captured in all three measures (Figure 3C).

Mean, Variance, and Excursions From
Median
The mean of DFC measures can be understood as a statistically
more reliable estimation of static FC. This effect was
demonstrated convincingly as the cost-dependent analysis
indicated significantly higher D and C values in the SZ group
with all K (Figure 4). As expected, cost had a similar effect
on the mean of D, C and E as in the case of static FC analysis
(Table 2). In addition, significantly higher variance of D and
C was identified in the SZ group at almost all values of K
(Figure 4). Interestingly, increasing the cost resulted in an
increase of Dσ2 but a decrease of Cσ2, while had an indistinct
effect on Eσ2. Nearly identical results to those of the variance
were acquired when investigating EfM with additionally CEfM
being significantly higher in SZ for every cost value (Figure 4

FIGURE 4 | Cost-dependent results of the mean, variance and excursions from median analysis of network measures. Mean, variance, and excursions of median
(EFM) values of the three network measures are plotted as functions of the cost. Black markers indicate significant group level difference (p < 0.05, corrected).
*Two-sample t-test; +Mann–Whitney U-test; HC, healthy control; SZ, schizophrenia.
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TABLE 2 | Effect of cost on the mean (µ ), variance (σ2), and excursions from
median (EfM) of dynamic network theoretical measures.

Connectivity strength Clustering coefficient Global efficiency

HC SZ HC SZ HC SZ

µ p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 1 1 1 1 1 1

σ2 p <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001

W 1 1 1 0.9968 0.9111 0.8365

EfM p < 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 1 1 1 1 0.7291 0.8287

For each index, the upper rows contain p-values from Friedman tests, while the
lower rows contain Kendall’s coefficient of concordance (W) values. HC: healthy
control; SZ: schizophrenia.

and Table 2). This is in accordance with previous findings where
EfM was found to have power equal to standard deviation in
distinguishing true FC dynamics (Hindriks et al., 2016). The
AUC analysis reassured stronger FC, as well as higher temporal
variability of DFC in SZ (Figure 5).

Multifractal Measures and Entropy
Since multifractality can emerge due to phenomena other than
the presence of long-term autocorrelations, appropriate surrogate
testing is indispensable (Kantelhardt et al., 2002). In order to
verify true multifractality of each NMTS, we replicated the four-
step testing framework as described in detail in Racz et al.
(2019). In that, we (i) generated surrogate time series with power-
law spectra and equal spectral slope and compared goodness of
fit statistics to those of the original time series, (ii) generated
surrogates by shuffling data points of the original datasets, (iii)
generated surrogates by phase-randomization, and (iv) generated
strictly monofractal signals with equal global scaling exponent.
In step i we compared the goodness of fit statistics of the spectra
of the original time series to those of surrogate data with known
power-law spectra, while in steps ii–iv we assessed multifractal
properties of the surrogates and compared them to the original
NMTS. Surrogate testing indicated that in the vast majority of
cases, NMTSs expressed a power-law scaling, thus their general
scale-free nature was confirmed. Shuffling reduced the process to
pure white noise, as indicated by their spectral slope and FWHM
being approximately zero. Finally, both phase randomization and
monofractal signal generation produced signals with significantly
smaller FWHM values, thus presence of true multifractality could
be concluded. The percentage of NMTS that passed each test are
shown for every test in Table 3. Values are reported combining
both groups, as we did not find any significant difference in
the fraction of NMTS that passed each test between HC and SZ
groups (Mann–Whitney U-test, p > 0.05 in all cases).

Cost-dependent analysis revealed significantly higher Chmax
in subjects of the SZ group for most values of K, while this
difference appeared only as a tendency in Dhmax (Figure 6).
Conversely, DFWHM was found significantly higher in the SZ
group for higher costs, while the same difference could be
observed in CFWHM and EFWHM only at two and one cost
values, respectively (Figure 6). On the other hand, DmPE was

significantly reduced in SZ subjects for all cost values, while the
same difference in CmPE was found significant only at K = 35%
(Figure 6). Increasing K resulted in significant increase of hmax
of all three network measures, while it has the opposite effect on
mPE (Table 4). In addition, the cost had indistinct or no effect on
the FWHM of D, C, and E.

Again, group-level differences were found much more
pronounced when comparing the AUC values of multifractal
and entropy measures (Figure 7). In that, significantly higher
D
AUChmax, C

AUChmax, D
AUCmPE, and C

AUCmPE values were found in
the SZ group, while the AUC of FWHM was found increased for
all three network measures. This indeed highlights the power of
AUC analysis as FWHM was found significantly higher in the SZ
group only at a few cost values.

Classification and Most Important
Features
Train and test performance metrics of the classifier are shown in
Table 5. Notably, the RFC was able to reach an overall 89.29%
cross-validation accuracy and 100% specificity. The bottom row
of Table 5 shows the mean test results for surrogate data
testing with the upper boundary of the confidence interval
in parentheses. Surrogate datasets yielded estimates close to
chance level (50%), as expected, indicating a significantly better
performance of the classifier in all metrics. The cumulative Gini
importance was the highest for Dσ2, Chmax, CmPE, and CFWHM,
highlighting the importance of dynamic indices, while in general
(with the exception of Estat) static and mean graph theoretical
measures were identified as less important for classification
(Table 6). Interestingly, while CFWHM was amongst the most
important features, DFWHM and EFWHM were identified as
negligible predictors.

DISCUSSION

There is a growing interest in investigating dynamic features of
FC in various clinical conditions (Calhoun et al., 2014; Preti
et al., 2017). However, the vast majority of such studies use
fMRI to capture neurodynamics, while other imaging modalities
such as EEG are rather underrepresented (Mutlu et al., 2012).
The orders of magnitude higher temporal resolution of EEG is
a clear advantage that allows for a more detailed assessment
of brain network dynamics. In this study, we reconstructed
dynamic functional networks of healthy controls and patients
with schizophrenia from delta-band EEG activity with a much
higher sampling rate that would have been possible with
fMRI. Ultimately, this allowed us to capture several aspects
of temporal complexity, namely multifractality and entropy,
in which our analytical framework was capable of revealing
disease-related changes. In particular, DFC in SZ patients
could be characterized by increased long-range autocorrelation
and degree of multifractality, while lower entropy values
indicated reduced temporal complexity. Furthermore, a machine
learning-based classification scheme identified these dynamic
connectivity features as highly relevant in classifying individual
cases. Additionally, we found higher static and mean dynamic
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FIGURE 5 | Results of the area-under-the-curve analysis regarding the mean, variance and excursions from median (EFM) of dynamic network measures. Higher
mean and temporal variability of dynamic functional connectivity in SZ is apparent as captured in both connectivity strength, clustering coefficient and global
efficiency. Asterisk marks significant group difference (p < 0.05) identified with two-sample t-test. HC, healthy control; SZ, schizophrenia.
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TABLE 3 | Testing results for true multifractality.

Spectrum Shuffling True MF PhaseRan

D 95.98% 100% 100% 94.64%

C 96.43% 100% 100% 100%

E 98.21% 100% 100% 100%

MF, multifractality; PhaseRan, phase randomization; D, connectivity strength; C,
clustering coefficient; E, global efficiency.

functional connectivity in schizophrenia, as well as subjects of the
patient group expressed higher temporal variability in their DFC
when compared to that of healthy controls.

Aberrant Connectivity Dynamics in SZ
In the present study, we report on increased FC in SZ, as well
as higher variability of dynamic graph theoretical measures in
the patient group. Static approach to FC was also able to reveal
this difference, although with less sensitivity than taking the
means of dynamic network topological indices. In general, there
is considerable inconsistency among results in the literature on
resting-state dysconnectivity in SZ not only in the fMRI field

(Fox and Greicius, 2010) but among electrophysiological studies,
too (Maran et al., 2016). The somewhat contradictory results
can be attributed to the differences in applied methods and
modalities (Jalili, 2016), however independent studies using the
same methodology reported both decreased (Winterer et al.,
2001) and increased (Kam et al., 2013) connectivity in delta-band
EEG. It also has to be noted, that the original study where the
current dataset was published (Olejarczyk and Jernajczyk, 2017)
performed SFC analyses using various pre-processing pipelines
and FC estimators, and reported on both increased and decreased
SFC in SZ, depending on the FC estimator or data pre-processing.
The pre-processing pipeline in our approach was designed to
be fully automatized and thus easily reproducible, however in
order to investigate the plausible effects of FC estimator selection
(SL in this case), we carried out the whole analysis using the
exact same settings but a different, widely used estimator of
connectivity, the Phase Lag Index (PLI, Stam et al., 2007).
A detailed report of this analysis is provided in Supplementary
Material. PLI takes a different approach from that of SL in
estimating FC, as it captures synchronization of two processes
based on the differences between their instantaneous phases
following Hilbert transformation (Stam et al., 2007). Despite

FIGURE 6 | Cost-dependent results of multifractal and entropy analysis of network measures. Multifractal measures (hmax and FWHM) and modified permutation
entropy (mPE) of all three network measures are plotted as functions of the cost. Black markers indicate significant group level difference (p < 0.05, corrected).
*Two-sample t-test; +Mann–Whitney U-test; HC, healthy control; SZ, schizophrenia.
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TABLE 4 | Effect of cost on the multifractal measures (hmax and FWHM) and
modified permutation entropy (mPE) of dynamic network theoretical measures.

Connectivity strength Clustering coefficient Global efficiency

HC SZ HC SZ HC SZ

hmax p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 0.8374 0.7048 0.9788 0.9417 1 1

FWHM p 0.0036 <0.0001 <0.0001 0.0001 0.1191 0.0069

W 0.2155 0.4242 0.8861 0.3061 0.1171 0.1985

mPE p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

For each index, the upper rows contain p-values from Friedman tests, while the
lower rows contain Kendall’s coefficient of concordance (W) values. HC, healthy
control; SZ, schizophrenia.

TABLE 5 | Performance report of the random forest classifier.

Test performance

ACC
(%)

SEN
(%)

SPE
(%)

PPV
(%)

NPV
(%)

ROC-
AUC
(%)

Train 93.41 86.83 100 100 88.55 99.32

Test 89.29 78.57 100 78.57 89.29 85.71

CI 49.93
(72.45)

46.14
(75.10)

53.71
(83.92)

35.21
(58.97)

39.00
(63.28)

51.39
(81.51)

In the bottom row, upper boundary of the confidence interval is presented in
parentheses below the mean. ACC, accuracy; SEN, sensitivity; SPE, specificity;
PPV, positive predictive value; NPV, negative predictive value; ROC-AUC, area
under the receiver operator characteristic curve; CI, confidence interval.

the fundamentally different nature of the two estimators, the
PLI analysis yielded highly similar results (see Supplementary
Material), thus making it improbable that the nature of our
results was significantly biased by the choice of FC estimator.

In order to further test the robustness of the identified
connectivity patterns, we also repeated the analysis pipeline
using the Weighted Phase Lag Index (WPLI, Vinck et al.,
2011) as the connectivity estimator. WPLI is derived from PLI
by weighing the phase differences by the magnitude of the
imaginary part of the cross-spectrum, and thus attributing less
importance to small (i.e., close to zero) phase differences (for
details see Supplementary Material), that are more susceptible
to common noise sources (Vinck et al., 2011). PLI was originally
introduced as an FC estimator that is robust against common
source effects originating from volume conduction and/or active
reference electrodes in case of EEG monitoring (Stam et al.,
2007), however, WPLI was shown to further reduce these
confounding factors (Vinck et al., 2011). Surprisingly, although
dynamic networks reconstructed using WPLI expressed true
multifractality in a proportion similarly high to those based of
SL or PLI (Supplementary Table 4), between-group differences
were found far less pronounced. In fact, only Dµ and Eµ

indicated significantly higher connectivity in SZ. At first, this may
imply that the previously observed results are not pronounced
enough to be identified by more sophisticated methods such as
WPLI. However, random forest classification was still able to

TABLE 6 | Feature importances extracted from the random forest classifier.

Rank Feature Importance

1 Dσ2 3.7912

2 Chmax 1.8674

3 CmPE 1.3843

4 CFWHM 1.3431

5 DEfM 1.0582

6 EEfM 1.0110

7 Estat 0.6700

8 Dhmax 0.3853

9 Ehmax 0.3510

10 Eσ2 0.3507

11 Cµ 0.3424

12 DmPE 0.3218

13 Cstat 0.3104

14 Cσ2 0.2683

15 CEfM 0.2224

16 EmPE 0.1630

17 Dµ 0.1134

18 Eµ 0.0322

19 Dstat 0.0137

20 DFWHM 0.0

21 EFWHM 0.0

For each index, the network measure it was calculated from is indicated in the
left superscript. Static network measures are indicated by the subscript “stat”
following their abbreviation. D, connectivity strength; C, clustering coefficient; E,
global efficiency; stat, static; µ, mean; σ2, variance; EfM, excursions from median;
hmax , Hölder exponent at the peak of the multifractal spectrum; FWHM, full width
at half maximum; mPE, modified permutation entropy.

reach comparable performance (see Supplementary Tables 8, 9),
indicating that connectivity dynamics were indeed substantially
different between HC and SZ individuals. The observed contrast
between the results of PLI- and WPLI-based analyses may emerge
from multiple origins. First, WPLI is superior to PLI when
detecting phase synchronization in the presence of uncorrelated,
volume-conducted noise sources (Vinck et al., 2011). Therefore,
the stronger connectivity captured by PLI in SZ may arise due
to the presence of more and/or stronger “noise sources” in
SZ patients. Second, WPLI generally weights down phase lags,
especially those close to zero. Consequently, it may be the case
that most connections responsible for significant group-level
differences could be characterized with small phase lags, which
were effectively pruned by the WPLI calculation, thus rendering
the dynamic networks indistinguishable. Although these findings
highlight that one must apply great caution when interpreting
the results of FC (and DFC) analyses, these issues – namely the
choice of the FC estimator and specifics of the preprocessing
pipeline – has also been emphasized by numerous recent studies
(Jalili, 2016; Olejarczyk and Jernajczyk, 2017; Lindquist, 2020).

Previous studies applying dynamic graph analysis reported
reduced mean (Du et al., 2016) and variance (Yu et al.,
2015) of D, C and E in SZ patients, in contrast to our
findings. Both of these studies used fMRI imaging and estimated
functional network connectivity (Jafri et al., 2008) from low-
frequency (0.01–0.1 Hz) spontaneous brain activity; thus a
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FIGURE 7 | Results of the area-under-the-curve analysis regarding multifractal and entropy-related properties of dynamic network measures. Black markers indicate
significant group level difference (p < 0.05). *Two-sample t-test; +Mann–Whitney U-test; HC, healthy control; SZ, schizophrenia; hmax , Hölder exponent at the peak
of the multifractal spectrum; FWHM, full width at half maximum; mPE, modified permutation entropy.

direct comparison would be difficult to make. Furthermore, the
exact origins and physiological functions of wake delta-band
oscillations are still debated (Dang-Vu et al., 2008; Harmony,
2013). It has been shown, that activity of resting-state networks

(RSNs) reconstructed from fMRI dynamics can be attributed
to not one but multiple EEG rhythms to various extents and
that each RSN could be characterized with a unique set of
correlations with different frequency bands (Mantini et al., 2007).
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For most RSNs, that largely overlap with many of the intrinsic
connectivity networks (ICNs) identified by the approach of Yu
et al. (2015) and Du et al. (2016), the highest correlations
were found with the alpha and beta bands. Thus, it can be
hypothesized that activity of these RSNs more closely resembles
alpha- and/or beta- rather than delta-band activity. In order
to test this hypothesis, we carried out our analysis pipeline on
alpha- and beta-filtered (8–13 Hz and 13–30 Hz, respectively)
EEG data as well. The analysis showed no significant differences
between HC and SZ connectivity dynamics in the alpha band,
while a slight (but insignificant) tendency of higher static and
mean C was found in the beta band of SZ patients. On the other
hand, it has been argued (Knyazev, 2012; Harmony, 2013) that
waking delta activity originates not only from thalamocortical
neurons (Hughes et al., 1998) but also from regions associated
with the default mode network (DMN) (Raichle et al., 2001).
Enhanced connectivity between thalamic and DMN regions in
SZ was reported by multiple studies earlier (Skudlarski et al.,
2010; Damaraju et al., 2014). In accordance with previous studies,
our results of cortical delta-band dysconnectivity therefore may
reflect the large-scale consequences of the involvement of these
structures in SZ. Moreover, delta-band dysconnectivity in SZ also
fits in with the hypothesis considering the role of wake delta
rhythm in motivational, cognitive and autonomous functions
(Knyazev, 2007, 2012), as these are broadly affected in SZ
(Insel, 2010).

Another plausible source of the apparent contradiction
between results reported in this study and those of previous works
is the heterogeneous nature of SZ itself as a clinical condition
(Seaton et al., 2001; Moran and Hong, 2011). It has been shown
for example, that patients with various subtypes of SZ that
could be characterized with largely different psychopathological
symptoms expressed distinct, specific alterations in cortical
electrophysiological activity (Harris et al., 2001). Likewise, several
studies reported on characteristic differences in EEG findings
between SZ phenotypes, i.e., those characterized mostly by
positive and/or negative symptoms (Begic et al., 2000; John
et al., 2009). Furthermore, brain electrical activity as assessed
by EEG in SZ was shown to be affected by acute as well
as chronic pharmaceutical treatment (Knott et al., 2001), the
type of medication (Tislerova et al., 2008) and disease duration
(Ranlund et al., 2014). These considerations, along with the
drawback of no available clinical information of the subjects
analyzed here, therefore prevents us to resolve this issue within
the scope of this study.

Multifractality and Temporal Complexity
of DFC in SZ
One of the main contributions of this study is reporting on
the true multifractal nature of DFC in SZ and its alterations
compared to healthy controls. Although scale-free aspects of
DFC have been known for a while (Stam and de Bruin, 2004;
Van de Ville et al., 2010), its true multifractal nature was
confirmed only recently (Racz et al., 2018a,b). It is a matter of
debate in the neuroscience field what aspect of brain function
manifests in scale-free neurodynamics (He, 2014). A view shared

by many is that scale-free fluctuations are the result of an
underlying self-organized critical state of the brain that gives rise
for its ability to perform large-scale reorganizations quickly in
response to external/internal stimuli (Linkenkaer-Hansen et al.,
2001; Bullmore et al., 2009; Chialvo, 2010; Beggs and Timme,
2012; Mukli et al., 2018). In support of this hypothesis, a close
correspondence was shown by Racz et al. (2018a) between
dynamic graph measures (node strength in particular) and the
seminal sand pile model of self-organized criticality (Bak et al.,
1987). It also has been shown that self-organized critical models
can express a scaling exponent different from 1 (De Los Rios
and Zhang, 1999), as well as not only mono- but indeed true
multifractal dynamics can emerge from systems in a critical state
(Lima et al., 2017). Based on these considerations, the increased
hmax in SZ could reflect on the impaired ability of the brain
to respond to stimuli incoming from the external or internal
environment. Although this hypothesis requires further research
in the future, investigation of the possible correspondence
between hmax of DFC and the severity of symptoms related
to altered perception in SZ appears an important question.
Note however, that criticality is by no means the only feasible
explanation for the scale-free nature of brain activity. It has
been argued previously, that the apparent power-law spectra of
local field potential recordings could result from the extracellular
medium acting as a 1/f filter (Bedard et al., 2006; Bedard and
Destexhe, 2009). However, this mechanism alone would not
explain the presence of fractal scaling in a much broader range
of neural phenomena (Beggs and Timme, 2012). Simulations
indicate that slow cortical oscillations may exhibit fractal scaling
due to the noisy nature of dynamical synapses with sufficiently
large recovery times, i.e., the combined presence of stochasticity
and synaptic fatigue is required for the emergence of power-
law distributions (Mejias et al., 2010). Neutral theory has been
recently proposed as a plausible explanation of scale-free neural
dynamics (Martinello et al., 2017), in which multiple causal
avalanches can coexist (producing power-law distributions of
avalanche sizes and durations) without the system being tuned
or self-organized to a critical point.

True multifractality often arises from various physiological
processes as the result of multiple antagonistic feedback
loops (Ivanov et al., 1998; Ashkenazy et al., 2002). Feedback
mechanisms play a crucial role in the generation of neural
oscillations and thus synchronization (Buzsaki and Draguhn,
2004). It has been shown that by suppressing feedback regulation
by administering an autonomic blockade, heart rate variability
loses its multifractal nature and reduces to simple monofractal
dynamics (Amaral et al., 2001). On this basis, the higher degree
of multifractality of DFC could indicate stronger neural feedback
regulation in SZ. Recent findings attributed increased global delta
synchrony to subthreshold activity of thalamocortical GABAergic
neurons (Herrera et al., 2016). As mentioned above, the exact
origins of waking delta rhythm are still unknown, however, these
results also point to the direction that thalamocortical neurons
may play an important role (Knyazev, 2012). Furthermore,
many studies support evidence for the key role of the thalamus
and thalamocortical dysfunction in the pathomechanism of SZ
(see e.g., Murray and Anticevic, 2017 for a review). We found
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increased delta connectivity as well as stronger multifractality in
SZ that indeed could indicate that thalamocortical projections
and feedback loops are affected, however, this hypothesis requires
further research. From a more practical standpoint, multifractal
dynamics often emerge from intermittent periods of larger
variance due to multiplicative mechanisms (Ihlen and Vereijken,
2010), which in the terms of DFC can be understood as large-
scale reorganizations of functional networks. Multiple studies
argued that brain dynamics are actually more prominent during
resting-state than in the presence of cognitive stimuli, as in wake
rest internal thought processes and self-referential activities are
unconstrained (Miall and Robertson, 2006; Deco et al., 2013).
General thought processes are often distorted and disorganized in
SZ patients that can be related to aberrant reorganization patterns
in DFC captured as increased degree of multifractality; a plausible
relationship yet to be elucidated.

Information-theoretical entropy-related measures (such as PE
or SE) refer on the temporal complexity of the process with
higher values implying more unpredictable behavior. Regional
differences in PE has been shown to reflect the functional
organization of the brain (Racz et al., 2019). It has also
been reported recently that several dynamic connections of
the amygdala show a decrease with aging in its complexity
as measured by SE, however, this decrease was absent in
patients suffering from SZ (Jia et al., 2017). Moreover, in
many connections SE was higher in the HC than in the SZ
group, implicating a lower dynamical complexity in the latter.
Interestingly, in a subsequent study using the same dataset, the
authors reported higher global SE in the SZ group that was later
revealed to be the consequence of connections with higher SE in
the visual recognition and auditory networks (Jia and Gu, 2019).
These results may seem contradictory at first, nevertheless, in
light of previous findings, they rather highlight the fact that FC
dynamics vary greatly among brain regions (Racz et al., 2019)
and that various regions could be affected in different ways in
SZ. Our current results indicate a lower dynamical complexity
of delta-band DFC in SZ. The rightful question arises of how
the performance of entropy-related measures could be affected
by the presence of long-range correlations. In an earlier study
we found that regions with stronger autocorrelation expressed
lower PE in their local FC dynamics and vice versa (Racz et al.,
2019). However, according to Xiong et al. (2017) this cannot be
simply a consequence of long-range autocorrelation, as it only
introduces a constant bias that is independent of the degree
of autocorrelation. A lower value of mPE implicates a lower
variability in spatio-temporal patterns in a sense that the process,
although varies over time, more prone to return to/repeat a
specific subset of patterns instead of switching randomly between
the full set. This is in line with previous DFC studies reporting
that SZ patients are prone to visit fewer of the possible meta-states
than HC subjects (Miller et al., 2014a,b).

It should be noted, that the obtained values for hmax,
FWHM, and mPE all indicate the presence of complex temporal
structuring in connectivity dynamics. In order to emphasize this,
we generated n = 100 random dynamic networks with equal
size to those reconstructed from EEG data, in which for each
time point all edges were randomly drawn from a distribution

approximating that of the edges of the original networks (a
normal distribution with mean 0.3 and variance 3∗10−4). The
networks were thresholded at K = 0.35. Network measures were
calculated for every time point and then multifractal and entropy
analyses were carried out using the same settings as previously.
As expected, all obtained indices (hmax, FWHM and mPE) were
found significantly different (p < 10−8 in all cases) from those
of real networks. In fact, they were found very similar to those
acquired for random noise (shuffled) time series used in surrogate
data testing (hmax = 0.513 ± 0.017; FWHM = 0.240 ± 0.007 and
mPE = 12.18 ± 0.003 with p > 0.05 in all cases expect DmPE of
HC and DFWHM, DmPE and Ehmax of SZ). Notably, the same
values were obtained for all three network measures. These results
further emphasize that dynamic brain networks express complex
temporal structuring, which is absent in dynamic networks with
randomly fluctuating connection patterns.

While the SL- and PLI-based analyses led to largely similar
results, some differences found regarding the cost-dependence
of fractal properties and mPE are worth noticing (see Figure 6
and Supplementary Figure 4). Namely, increasing the cost
thus including more of the weaker connections led to an
increase of Chmax and decrease of CmPE in SL-derived dynamic
networks. In contrast, the opposite pattern emerged in networks
reconstructed from the PLI-based analysis. This implies that
weak links in PLI networks introduce new information (that
can also be understood as increased unpredictability) to network
dynamics, while weaker links in SL analysis carry redundant
information as their inclusion reduces dynamical complexity and
increases autocorrelation. In other words, it seems as weaker
links destabilize PLI but stabilize SL networks. This is indeed an
interesting finding from the perspective of dynamic networks and
requires further research.

Automated Classification of Patients
With SZ
One of the major critiques of the FC field is that although it
was able to reveal characteristic alterations of various diseases
on the group level, its actual utility in the diagnosis of individual
cases is yet to be shown (Papo et al., 2014). Thus, recently more
and more studies attempt to utilize SFC and DFC features to
build classifiers in order to explore their true utility, especially
in the diagnosis and differential diagnosis of SZ (Calhoun et al.,
2008; Arbabshirani et al., 2013; Du et al., 2015; Kim et al.,
2016; Rashid et al., 2016). Our model was able to reach a
high cross-validation performance, comparable to those of most
recent reports. Additionally, this high-level performance could be
replicated when using AUC features from the PLI-based analysis
(Supplementary Table 5). Note that many studies reported
performance results surpassing ours, however all of these studies
worked with larger sample sizes. On the other hand, a study
working with the exact same dataset made available by Olejarczyk
and Jernajczyk (2017) was able to reach a 71.4% accuracy and
80% balanced accuracy using an RFC model and narrow-band
power values as features (Buettner et al., 2019). In a subsequent
report, using data augmentation by segmenting the data sets
into 1 min epochs, thus arbitrarily increasing sample size, the
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same group reported an outstanding 96.8% accuracy (Buettner
et al., 2020). Oh et al. (2019) also used the same dataset and fit
a convolutional neural network model on EEG data to classify
HC and SZ subjects. They also divided the data into 25 s long
epochs and were able to reach 98.1% accuracy. Although these
results highlight the importance of a large sample size, the
reported high accuracies may be biased, as the epochs used in
the training and test sets were not independent (i.e., segments
acquired from the same subject could be present both in the
training and test sets). Namely, this way the classifiers could
also learn and use subject-specific patterns for classification of
the epochs. This is supported by the fact that when Oh and
colleagues used a cross-validation scheme where data was split on
a subject-based manner (i.e., epochs of each subject only appeared
in either the training, validation or test sets), the accuracy of
their model dropped to 81.3% (Oh et al., 2019). Considering the
small size of the dataset, even though our classifiers performed
reasonably well, it is unlikely that they would generalize well
to real world-data. Therefore, we rather considered the RFC
model as a tool for exploring which features are the most
important for classification. From our results, it is apparent that
static FC measures carry less, though still relevant information
when compared to dynamic indices. On the other hand, Chmax,
CmPE, and CFWHM appear promising indices of DFC besides
the more commonly used σ2. Nevertheless, the results reported
here are essentially in agreement with those of previous studies
reporting on the superiority of DFC- over SFC-derived features
(Rashid et al., 2016).

Comparison With Existing Methods
In order to further clarify the advantages and plausible
disadvantages of our analytical pipeline, it is indispensable
to compare it with those already published in the literature.
Since it could be inconclusive to draw correspondences between
DFC approaches with vastly different methodologies, here
we selected three previous studies utilizing dynamic graph
theoretical analysis for comparison, namely those of Dimitriadis
et al. (2010), Tagliazucchi et al. (2012), and Yu et al.
(2015). The summary of the details is shown in Table 7.
Similarly to our study, Dimitriadis et al. (2010) used EEG
for monitoring brain activity, while Tagliazucchi et al. (2012)
and Yu et al. (2015) estimated connectivity dynamics based
on fMRI measurements. This – among other specifics such as
sampling rate or temporal resolution – inherently influenced
how nodes of the reconstructed networks were defined. In the
EEG-based approaches nodes corresponded to recording sites
(EEG channels), while Tagliazucchi et al. (2012) selected 90
cortical and subcortical regions according to the Automated
Anatomical Labeling template (Tzourio-Mazoyer et al., 2002) and
Yu et al. (2015) investigated connectivity between 48 ICNs (sets
of brain regions forming functional units). All studies utilized a
sliding window approach; however, in both EEG-based studies
the window length was adaptively defined to fit the frequency
characteristics of the data, while in the fMRI studies it was set
according to empirical considerations. The advantages of the
adaptive approach are that it reduces the number of subjective
parameters of the analysis pipeline, as well as it always yields a

complete characterization of the dynamics, while a short time
window (e.g., 40 s) prevents slow fluctuations to fully manifest,
especially if the data is filtered (e.g., between 0.01 and 0.1 Hz).
Most fMRI-based DFC approaches use Pearson cross-correlation
(or an inherently related similarity index such as in Yu et al.,
2015) as FC estimator, that only allows for the identification
of linear interactions. On the other hand, Dimitriadis et al.
(2010) computed dynamic Phase-Locking Index, while in this
study we used Synchronization Likelihood for DFC estimation
and PLI (and WPLI) for verification. These latter measures are
able to capture non-linear interactions, which is considered as
an inherent feature of functional coupling between neuronal
assemblies (Friston, 2000). Note, that all three studies discussed
here utilized only one FC estimator and did not validate
their results with a different method. All studies took different
approaches for network thresholding except for that of Yu et al.
(2015), where no additional threshold was applied. Dimitriadis
et al. (2010) introduced a novel algorithmic technique for the
objective selection of the most relevant edges, while similarly to
our approach Tagliazucchi et al. (2012) used cost thresholding.
However, while in the latter case the authors selected only one
cost value (K = 0.1) here we also explored the effect of cost on
network dynamics, which were revealed to be significant and
characteristic to the FC estimator used, as discussed previously.
All studies characterized the reconstructed networks with mostly
similar network measures (see Table 7), with the larger number
of nodes also allowing Tagliazucchi et al. (2012) to estimate
more sophisticated network characteristics such as betweenness
centrality. In this aspect our study is clearly the most constrained
among those discussed here, operating on networks with the
smallest number of nodes. Network size inherently limits the
set of graph theoretical measures that could reasonably be used
for network characterization (Rubinov and Sporns, 2010; van
Wijk et al., 2010), however previous results suggest that D, C,
and E could still provide valuable information even in case
of small networks (Racz et al., 2017). Finally, in all studies
the acquired NMTSs were analyzed in different fashions and
utilized for various purposes. Dimitriadis et al. (2010) utilized
the technique of replicator dynamics to identify consistent hub
regions of cortical structures. Tagliazucchi et al. (2012) used
correlation analysis to unfold the electrophysiological correlates
of fMRI-based connectivity fluctuations. Finally, Yu et al. (2015)
identified altered connectivity dynamics and patterns in SZ
patients when compared to HC subjects. A common pattern of
the aforementioned three studies though is that dynamic graph
theoretical measures were finally reduced to their mean, while
their dynamics were characterized by their variance or standard
deviation (see Table 7).

Accordingly, one of the main contribution of our approach lies
with the analysis of the multiscale and information-theoretical
aspects of connectivity dynamics. Although the studies discussed
above all provided valuable insights on physiological and
pathological brain function, they mainly neglected the already
established scale-free nature of DFC (Stam and de Bruin, 2004;
Racz et al., 2018a,b). On the other hand, our approach reveals
the complex temporal structuring of connectivity fluctuations
that otherwise remain undetected for most approaches. The
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TABLE 7 | Comparison of various DFC approaches based on dynamic graph-theoretical analysis.

Dimitriadis et al. Tagliazucchi et al. Yu et al. Racz et al.

Modality EEG fMRI fMRI EEG

Node definition Recording sites AAL-defined brain regions Intrinsic connectivity networks Recording sites

Number of nodes N = 30 N = 90 N = 48 N = 19

Window length Adaptive to frequency range 60TRs (≈2 min) 20 TRs (40 s) Adaptive to frequency range

Connectivity estimator Phase-Locking Index Pearson cross-correlation Similarity index Synchronization Likelihood,
Phase Lag Index

Thresholding Algorithmic identification of
most significant edges

Cost thresholding at K = 0.1 No thresholding Cost thresholding with K
ranging from 0.15 to 0.5

Network measures Global efficiency, local
efficiency, small-worldness

Clustering coefficient, average path
length, betweenness, small-worldness

Connectivity strength, clustering
coefficient, global efficiency

Connectivity strength,
clustering coefficient, global
efficiency

Analysis Mean Identification of
consistent hubs by using the
technique of replicator
dynamics

Standard deviation Correlations of
time-varying graph measures with
dynamic frontal-, central- and occipital
band-limited power

Variance Identification of reoccurring
connectivity states

Mean, variance, EfM Scale-free
(multifractal) analysis Temporal
complexity (information content)

EEG, electroencephalography; fMRI, functional magnetic resonance imaging; N, number of nodes; K, cost; EfM, excursions from median.

results presented here not only provide further confirmation
that multifractality is an inherent property of brain dynamics,
but also demonstrate that multifractal and entropy-related
properties of DFC could carry significant clinical potential. In
that, they could not only be utilized as disease biomarkers
but may also provide further insights on the underlying
mechanisms of neuropsychiatric morbidities. Note that the
methodology implemented here for reconstructing time-varying
brain graphs does not differ substantially from those of previous
approaches. Consequently, the framework put forward in this
study is readily adaptable for other DFC studies utilizing
different imaging techniques or investigating neuropsychiatric
disorders other than SZ.

Limitations and Future Directions
Clearly, the most severe drawback of the present work is the
lack of clinical data on SZ subjects such as illness duration,
medication or positive and negative symptom scores. Although
we revealed several differences between HC and SZ groups,
the physiological bases of these findings remain elusive until
their correspondence with clinical symptoms is investigated.
Furthermore, simultaneous fMRI-EEG measurements would be
also important not only for unfolding the neural basis of delta
synchronization but to reconcile contradictory results within
the FC field. The low spatial resolution (19 regions) is the
source of yet another limitation. A replication of this study
using high-density EEG (e.g., 128 or even 256 channels) would
benefit from a more detailed functional network reconstruction
and also allow for reliable source reconstruction with a
reasonable spatial resolution (although source reconstruction
can be performed using only 19 channels as well (e.g., Vecchio
et al., 2020). This way plausible volume conduction effects
could be further reduced and information could be gained
on the involvement of specific – even subcortical – brain
regions as well, thereby enhancing the interpretation of the
results. A high-density setup would also allow for detailed local

connectivity analyses which appear increasingly relevant in the
light of recent advancements recognizing the importance of
not only temporal, but spatial- and spatiotemporal patterns in
DFC (Iraji et al., 2020). Specifically, it has been demonstrated
by previous studies that regional alterations of DFC could
play a relevant role in SZ (Damaraju et al., 2014; Jia et al.,
2017; Jia and Gu, 2019), which may will be overlooked when
investigating network characteristics on the global level only.
Considering in addition, that multiscale and entropy-related
properties of DFC were shown to express significant regional
variability over the cortex (Racz et al., 2019), an extension
of the current framework to the analysis of local connectivity
dynamics appears as an important future research direction.
In this study, only datasets of 14-14 HC individuals and
SZ patients were analyzed, that limits the applicability and
power of machine learning classifiers. Most importantly, using
datasets of a larger sample size would allow for a train-test
split scenario where the training data itself would be sufficient
to perform the cross-validation and thus would allow fine-
tuning of model parameters before evaluating the true model
performance on previously unseen data. Small sample size
also limits to some extent the possible number of features
that can be used in a model. Although solutions (such as
penalization in case of logistic regression or the “dropout”
technique in case of neural networks) exist to circumvent
this problem and prevent overfitting, in most cases it is
accepted as a rule of thumb that for reliable performance
the number of cases should surpass the number of features
in a model (Hastie et al., 2009). Thus, increasing the sample
size would also permit the inclusion of other, non-connectivity
derived predictors commonly used in EEG analysis such as
band-limited power. Multifractal indices appeared as important
predictors, however a drawback of fractal- and especially
multifractal analysis is that it requires sufficiently long (i.e.,
at least a few thousand data points) signals to obtain reliable
estimates (Eke et al., 2000; Mukli et al., 2015). This makes
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multifractal analysis unfeasible for fMRI-based DFC analyses,
where time series are usually in the range of hundreds of data
points. Note, that PE (and mPE) does not suffer from this
limitation (Bandt and Pompe, 2002) and is readily applicable
to short time series as well. It is important to highlight that
the analysis pipeline was designed deliberately to be fully
automatized. This includes steps of pre-processing as well as
parameter settings of the applied analysis methods that were
defined based on purely data-driven considerations, thus the
procedure could be easily applied to different datasets. This
greatly enhances the potential of the proposed pipeline for clinical
applications, as in clinical settings practicality is an important
aspect. Finally, the utility of potential biomarkers lies with not
only in separating healthy from patient groups but also in
differentiating between diseases with similar and/or overlapping
clinical manifestations, such as schizophrenia, bipolar disorder
and schizoaffective diseases. Thus, further work is required to
investigate disease-related alterations of the dynamic indices
proposed in this study in neuropsychiatric morbidities and
conditions other than schizophrenia.

CONCLUSION

In summary, by applying dynamic graph theoretical analysis to
EEG signals, we found delta-band dysconnectivity in patients
with SZ. The SZ group expressed higher average and variance
of network measures when compared to HC. Moreover, here
we first report the multifractal nature of DFC in SZ that
expressed stronger fractal scaling and degree of multifractality
than in healthy controls. In accordance with previous studies,
lower temporal complexity of DFC in SZ was captured with
mPE analysis. Random forest classifiers indicated that indices of
complexity, such as multifractality and entropy were amongst
the most important predictors of the disease. This implies that
these features carry great potential as biomarkers of SZ for
future studies, that could facilitate its biologically- rather than
symptom-based diagnosis and progression monitoring.
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