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Magnetic resonance imaging (MRI) biomarkers require complex processing routines
that are time-consuming and labor-intensive for clinical users. The Single Subject Brain
Analysis Toolbox (SeSBAT) is a fully automated MATLAB toolbox with a graphical user
interface (GUI) that offers standardized and optimized protocols for the pre-processing
and analysis of anatomical MRI data at the single-subject level. In this study, the
two-fold strategy provided by SeSBAT is illustrated through its application on a cohort
of 42 patients with Huntington’s disease (HD), in pre-manifest and early manifest
stages, as a suitable model of neurodegenerative processes. On the one hand,
hypothesis-driven analysis can be used to extract biomarkers of neurodegeneration
in specific brain regions of interest (ROI-based analysis). On the other hand, an
exploratory voxel-based morphometry (VBM) approach can detect volume changes
due to neurodegeneration throughout the whole brain (whole-brain analysis). That
illustration reveals the potential of SeSBAT in providing potential prognostic biomarkers
in neurodegenerative processes in clinics, which could be critical to overcoming the
limitations of current qualitative evaluation strategies, and thus improve the diagnosis
and monitoring of neurodegenerative disorders. Furthermore, the importance of the
availability of tools for characterization at the single-subject level has been emphasized,
as there is high interindividual variability in the pattern of neurodegeneration. Thus, tools
like SeSBAT could pave the way towards more effective and personalized medicine.

Keywords: Huntington’s disease, individual differences, neurodegeneration, neuroimaging, structural MRI

INTRODUCTION

Magnetic resonance imaging (MRI) is becoming increasingly important as an excellent
non-invasive tool for the quantification of brain anatomy and function in a more sensitive,
reliable, and illustrative manner than commonly employed techniques. Clinical neuroradiologists
typically rely on visual inspection for MRI data interpretation. Although specific atrophy
patterns have been identified in various neurodegenerative disorders, the power of visual
inspection is intrinsically limited for their diagnosis and monitoring, as it only allows for a
qualitative description of the anatomy, and certain signs of neurodegeneration are not visible until
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the damage is significantly advanced. For this reason, it would
be necessary to make a shift in the radiological paradigm
towards the use of quantitative imaging, a crucial step towards
improved disease detection and diagnosis. Various recent
studies using quantitative imaging have revealed abnormalities
in gray (GM) and white matter (WM) integrity in different
neurodegenerative disorders such as Alzheimer’s disease (AD;
Pini et al., 2016; Chandra et al., 2019; Kunst et al., 2019),
Huntington’s disease (HD; Tabrizi et al., 2012; Aylward et al.,
2013; Minkova et al., 2018), amyotrophic lateral sclerosis
(ALS; Rajagopalan et al., 2013; Ferraro et al., 2017) and
Parkinson’s disease (PD; Shao et al., 2015; Kunst et al., 2019).
Furthermore, the characterization of pre-symptomatic MRI
biomarkers of neurodegeneration would pave the way for the
design of more sensitive protocols for clinical diagnosis by
highlighting the earliest affected brain regions (Schuster et al.,
2015). Thus, quantitative MRI may bring diagnosis back to the
pre-symptomatic stage or early symptomatic stages, allowing
early recruitment into clinical trials for seeking effective disease-
modifying treatments. Furthermore, the early detection of
possible anatomical markers of neurodegeneration would have
the potential to alert neuroradiologists to act in an optimal
window, geared towards precision and preventive medicine.

While quantitative imaging techniques are currently used in
research, mainly in the field of cognitive neuroscience, they have
not been applied to clinical routine. This is mainly due to the
complex processing routines required for the extraction of MRI
biomarkers, such as the parcellation of the brain into cortical and
subcortical regions, which are laborious and time-consuming
for clinical practitioners. To address these limitations various
standardized and optimized protocols should be integrated with
a user-friendly interface to provide a more straightforward,
handy, and automatic approach for the processing of anatomical
MRI data in clinics. Moreover, commonly used MRI pulse
sequences and analysis pipelines in neurodegenerative disorders
tend to be similar (Bede, 2017).

Until now, most research studies on neurodegenerative
disorders using neuroimaging approaches have typically
compared two groups, regarding individual differences as
a source of noise often eliminated by averaging data across
participants (Kanai and Rees, 2011). However, different
anatomical biomarkers allow for the detection of more subtle
differences and the characterization of neurodegeneration at the
single-subject level (Garcia-Gorro et al., 2019). Single-subject
studies provide data based on the individual subject, which
will be more accurate for clinical prognosis than data resulting
from averaging a group of individuals. Understanding the
neurobiological basis of individual variability is of utmost
importance to developing specific biomarkers and identifying
possible subgroups of patients for successful targeted clinical
trials (Garcia-Gorro et al., 2019).

All that together leads to the use of common imaging
approaches for seemingly different conditions. This has
motivated the development of the Single Subject Brain Analysis
Toolbox (SeSBAT). This toolbox represents a user-friendly
approach that integrates standard pipelines for the processing
of anatomical neuroimaging data at a single-subject level

to detect potential prognostic factors that could be used
for predicting an increased risk of developing a particular
neurodegenerative disorder.

Different automated segmentation software packages and
approaches have been developed to identify brain morphological
changes in the brain. Some tend to overestimate the volume of
the regions extracted while others tend to underestimate it, and
for specific tasks, other approaches might provide more accurate
and reliable results (Kassubek et al., 2011; Eggert et al., 2012;
Johnson et al., 2017). All of them are subject to inaccuracies in the
segmentation of certain regions (Johnson et al., 2017; Xie et al.,
2019). Currently, no method is considered superior in all aspects.

From the different possibilities, SeSBAT integrates both
Freesurfer and SPM software, two of the more popular
approaches for brain morphometry. Although both packages
provide detailed segmentation of the gray matter (GM) in the
brain, they do it in two complementary different ways. On
the one hand, Freesurfer provides a detailed parcellation of the
cortex and subcortical regions by combining volumetric and
surface-based segmentation, using a template-driven approach
(Fischl, 2012). On the other hand, SPM implements a voxel-
based morphometry (VBM) approach based on both linear
and non-linear registration of the brain to a standardized
template that allows to segment brain tissues by assigning tissue
probabilities per voxel (Ashburner and Friston, 2005).

This article describes the functionality of SeSBAT and its
application to HD, which is a devastating neurodegenerative
genetic disorder that shares many features with other more
common neurodegenerative disorders such as AD and PD, but it
is distinct in that individuals at risk of developing this disease can
be identified by predictive genetic testing before clinical manifest
onset (Ross and Tabrizi, 2011). This makes HD a suitable model
for testing SeSBAT in the early stages of neurodegeneration. In
other neurodegenerative diseases, specific diagnostic tests are
not available before the appearance of first symptoms, a point
in which neural degeneration is generally advanced. The early
stages of neurodegeneration are generally asymptomatic, and,
therefore, difficult to identify in advance.

Neuroimaging studies in HD have shown that it is
possible to detect changes in early HD patients. Although the
neurodegeneration is extended throughout the brain (Tabrizi
et al., 2009, 2012), the most robust finding so far has been
the caudate atrophy. In particular, atrophy in striatal structures
has systematically been observed, more prominently in dorsal
caudate and putamen, starting in the head of caudate in
preclinical individuals (Rosas et al., 2003; Kassubek et al., 2004).
Indeed, converging findings indicate that the striatum is the
earliest region to show volume loss (Aylward et al., 2004; Tabrizi
et al., 2009, 2011; Nopoulos et al., 2010). Changes in the caudate
and the putamen have been detectable more than 15 years
before expected disease onset (Paulsen et al., 2010). Moreover,
significant volume reduction in the basal ganglia can be identified
over 12 months in both pre-symptomatic and manifest HD
when compared to controls (Majid et al., 2011; Tabrizi et al.,
2011). Besides, the striatal neuronal loss is associated with CAG
repeat length (Penney et al., 1997; Rosas et al., 2001; Kassubek
et al., 2004), and also with motor and cognitive dysfunction
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(Montoya et al., 2006; Guo et al., 2012). Altogether highlights the
important role of the striatum as a biomarker in neuroimaging
for monitoring disease progression in HD (Harris et al., 1999;
Aylward et al., 2004; Paulsen et al., 2008; Hobbs et al., 2010).

In this work, we hence do not propose novel biomarkers for
neurodegeneration but we present a new tool that integrates
widely used research techniques to analyze anatomical brain
imaging data embedded in a user-friendly interface, to bridge one
of the gaps between research and clinical practice.

OVERVIEW OF SeSBAT DESIGN

SeSBAT was developed in a MATLABr environment that
provides a graphical user interface (GUI) framework (Figure 1),
allowing users-toolbox interaction without the need for prior
programming knowledge. This toolbox combines and integrates
different freely available neuroimaging software packages such
as FreeSurfer1 and SPM2 to provide automated, standardized,
and optimized data processing of imaging data. SeSBAT is freely
available upon request at http://brainvitge.org/.

Modules Included in SeSBAT
Input Data
Data can be loaded for individual subjects or for a group
of multiple subjects that will be analyzed independently. The
toolbox is compatible with DICOM and NIfTI data formats.
However, when loaded, DICOM images will be internally
converted into NIfTI for posterior processing. Once the
conversion is done, there is an option for visualizing the
converted data, as the FreeSurfer command, Freeview1, has been
integrated with SeSBAT.

Options
First, the group is selected to identify the participant as a patient
or control individual. Then, the disease is selected to predefine a
set of brain regions as the target of ROI-based analysis as per the
disease under study.

Reducing the number of regions to analyze helps avoid the
problems of multiple comparisons. If HD is selected, for instance,
the predefined subcortical regions will be those reported as
potential hallmarks of disease progression in the major cross-
sectional and longitudinal structural MRI studies in pre-HD and
early symptomatic HD patients (see review Weir et al., 2011),
which are: the caudate, the putamen, the accumbens area, and the
ventricles. Besides, some cortical areas (precentral, postcentral,
superior frontal, inferior and superior parietal, insula, and
medial orbitofrontal), and global measures will also be included
(Figure 2).

Brain Parcellation
In this section, the brain is automatically parcellated into
different subcortical and cortical regions. Specifically, cortical
volume and thickness measures are estimated using Freesurfer1.
From this parcellation, it is possible to extract biomarkers that
have previously been related to neurodegeneration: subcortical

1http://surfer.nmr.mgh.harvard.edu/
2https://www.fil.ion.ucl.ac.uk/spm/

volume, cortical volume, surface area, thickness and curvature,
some global measures of GM and WM volumes, as well as the
total intracranial volume (TIV). TIV is used to normalize the
above-mentioned measures and adjust for head size differences.

Additionally, the Python package visualqc (Raamana, 2018)
has been integrated to assist neuroradiologists in testing
the quality of brain parcellation. When testing subcortical
parcellation (Figure 3), the user will be asked to select the target
regions for testing (Figure 3A). Then, the software provides a
figure containing the structural delineation of the previously
selected subcortical regions (Figure 3B). A similar figure is
provided for the whole brain when testing cortical parcellation
(Figure 4).

Analyses
The toolbox allows analysis of neurodegeneration based on
comparing a control group and a single subject using two
different perspectives (see Figure 5).

The ROI-based analysis perspective is focused on specific
regions of interest expected to be pathologically affected. In this
case, FreeSurfer utilities allow for the parcellation of the brain
into cortical and subcortical regions.

More specifically, the anatomical segmentation ROIs were
obtained by processing the T1-weighted images of individual
participants using the default parameters of the automated
segmentation protocol (aparc + aseg) described previously
(‘‘recon-all’’ see Dale et al., 1999; Fischl et al., 1999), then
implemented in FreeSurfer v6.0 software1. Briefly, brain images
were first normalized into Talairach space, and non-brain tissue
was excluded. Then, WM bounders were identified by using
second intensity normalization, and left and right hemispheres
were separated from the isolated WM tissue. After this, the brain
stem and cerebellum were removed. Then, a triangular surface
tessellation was generated in each hemisphere to define GM/WM
andGM/cerebrospinal fluid surfaces. Finally, cortical regions and
subcortical regions were segmented into distinct brain tissues
using different atlases. Both intensity and continuity information
from the whole brain is used to estimate cortical thickness,
where the thickness is calculated as the nearest distance from
GM-WM to GM-CSF boundary at each vertex on the tessellated
surface (Fischl and Dale, 2000). From this parcellation process,
different biomarkers (volume and thickness) are extracted to
seek differences between a single subject and a control group.
This is done using Z-scores and/or a modified version of the
independent samples t-test, which accounts for the limited
size of the control group and was developed for clinical use
and single-case research (Crawford and Howell, 1998). This
approach contrasts an individual biomarker and normative
values derived from the control sample. Although caution has
to be taken to evaluate the results, especially in terms of
the number of participants and the normality of the control
group, it has been successfully used in several MRI studies to
run statistical comparisons between a single-subject structural
MRI biomarker and a control group (Gillebert et al., 2014;
Tuomiranta et al., 2014; Simó et al., 2015). Specifically, the
control group is adjusted to the subject’s age by setting a
maximum deviation between the age of the subject and the
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FIGURE 1 | Main graphical user interface (GUI) of SeSBAT.

FIGURE 2 | GUI for the selection of regions to target in regions of interest (ROI)-based analysis. This example shows the predefined regions for Huntington’s
disease (HD).

controls’ ages. In this way, the subject is only compared to
those controls that are the closest in age. By default, the age
deviation is set to 10 (age range of control group = Subject’s
age ± 10), but this can be tuned by the user. Although this
toolbox only considers age as a confounding factor, it would

be also possible to take different potential confounding factors
(such as gender, vascular health, years of education, etc.) into
account by having a candidate control group matched for the
selected factors when asked for selecting the folder that contains
controls data.
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FIGURE 3 | Subcortical parcellation quality control. (A) Selection panel to define the subcortical regions to test. In the example, the caudate and putamen are the
selected ROIs. (B) Visualization is generated by the package visualqc to test subcortical parcellation. The resulting parcellation of left (green) and right (orange)
caudate and left (purple) and right (yellow) putamen is shown at increasing levels of zoom.

The false discovery rate (FDR) approach was used to correct
all t-tests for multiple comparisons based on the number of
ROIs tested (q = 0.05). Both raw p-values (p) and the p-adjusted
FDR values (p-adj) are reported. Differences were considered as
statistically significant when p-adj < 0.05.

SeSBAT offers the option of exploring the longitudinal
changes in biomarkers significantly different from the control
group by plotting them while controlling for the time between
scans. It is therefore necessary to indicate the number of the
acquisition session in the input data module.

The whole-brain analysis perspective is a more exploratory
analysis, in which no assumptions are made regarding
anatomical neural correlates. More specifically, morphometric
analysis was carried out based on recommendations for a

standardized VBM using the CAT12 toolbox3 implemented
in the SPM12 software package (Welcome Department of
Imaging Neuroscience Group, London, UK) running on
MATLABr. To this end, images were realigned, segmented,
corrected for signal inhomogeneity, and normalized using the
Diffeomorphic Anatomic Registration Through Exponentiated
Lie algebra algorithm (DARTEL). Afterward, corresponding
normalization parameters were applied to the segmented
GM. Subsequently, the resulting GM normalized images
were modulated by their Jacobian determinants, allowing
direct comparisons of regional differences in GM volume
(Mechelli et al., 2005).

3http://dbm.neuro.uni-jena.de/cat/
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FIGURE 4 | Cortical parcellation quality control. Visualization is generated by the package visualqc with sagittal, coronal, and axial views of the resulting
cortical parcellation.

FIGURE 5 | Schema showing the two-fold strategy provided by SeSBAT. The ROI-based analysis (left) starts with the automatic parcellation of the brain, followed
by the extraction of cortical and subcortical measures. Then, the results from the statistical comparison are reported in tables and graphs to identify potential
prognostic factors. There is also an option for plotting results along time. The whole-brain analysis (right) consists of an exploratory voxel-based morphometry (VBM)
approach that results in the visualization of a T-statistic image with an overlay of the affected voxels found in the single subject compared to the control group.

At this point, SeSBAT gives the option to plot the resulting
registered images using the testing button. Smoothing can also
be applied to the images before statistical comparison by selecting
the specific kernel. The resulting T-statistic image derived from
the previously used T-test (Crawford and Howell, 1998) can be
visualized using the xjView toolbox4.

4http://www.alivelearn.net/xjview

ILLUSTRATION

In this section, we illustrate the functionality of SeSBAT
using a dataset of 42 HD patients, 19 with pre-manifest
HD and 23 at the early stages of the disease (I and II,
based on total functional capacity, TFC). The normative values
to perform the statistical comparison are extracted from a
group of 33 healthy controls that were matched with the
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TABLE 1 | Sociodemographic information of HD patients and controls at baseline.

Pre-Manifest HD Manifest HD HD all Controls

N 19 23∗ 42 33
Gender (f/m) 15/4 13/10 28/14 18/15
Age 36.42 ± 9.18 52.39 ± 10.13 45.17 ± 12.52 44.82 ± 10.59
Years of Education 13.53 ± 2.61 10.74 ± 2.90 12.00 ± 3.08 12.60 ± 2.75
CAG 43.68 ± 2.75 43.96 ± 3.23 43.83 ± 3.04 -
TFC 12.76 ± 0.75 11.26 ± 1.96 11.90 ± 1.72 -
Disease burden 284.61 ± 73.65 421.24 ± 121.15 359.43 ± 122.45 -
Motor domain
UHDRS-TMS 1.78 ± 3.19 22.57 ± 12.57 13.44 ± 14.15 -
Cognitive domain
Verbal fluency 141.88 ± 168.53 66.5 ± 106.23 99.59 ± 140.43 -
TMT-B-A 175.2 ± 73.30 291.94 ± 62.07 225.95 ± 90.50 -
SMDT 26.78 ± 11.9 48.50 ± 10.37 36.32 ± 15.58 -
Stroop Interference 46.34 ± 112.75 140.15 ± 168.63 89.69 ± 147.16 -

Data presented as mean ± standard deviation. Age and education are given in years. ∗Two manifest-HD participants did not complete UHDRS-Cognitive score assessment; N = 21 for
this cell only. HD, Huntington’s Disease; N, number of participants; f, females; m, males; UHDRS, Unified Huntington’s Disease Rating Scale (Huntington Study Group, 1996); TFC,
Total Functional Capacity; TMT B-A, Trail Making. Tests B-A; SDMT, Symbol Digit Modality Test.

HD cohort for age (t(70) = 0.145, p = 0.287) and years
of education (t(70) = −0.852, p = 0.460; see Table 1 for
demographic details of HD patients and controls at baseline).
We did not discuss the single-subject analysis for the entire
cohort, but we illustrate the different analysis steps for some
specific participants to make the process reproducible by
the user.

MRI data were acquired through a 3T whole-body MRI
scanner (Siemens Magnetom Trio; Hospital de Clínic,
Barcelona), using a 32-channel phased-array head coil. All
participants were acquired in the same scanner at both time
points using the same acquisition protocol. Specifically,
structural images comprised a conventional high-resolution
3D T1 image (magnetization-prepared rapid-acquisition
gradient echo sequence), 208 sagittal slices, TR = 1970 ms,
TE = 2.34 ms, TI = 1050 ms, flip angle = 9◦, FOV = 256 mm,
1 mm isotropic voxel with no gap between slices. These data
were collected at baseline with 18 ± 6 months follow-up of
all groups [pre-manifest HD (N = 13), manifest HD (N = 17),
and controls (N = 24)]. Also, participants were evaluated in the
three symptomatic domains (motor, cognitive, and psychiatric)
using a battery of clinical scales and questionnaires. The clinical
assessment was carried out using the UHDRS, which comprises
motor, cognitive and behavioral subscales. The UHDRS total
motor score was selected as a measure of motor disability,
with higher scores indicating more severe motor impairment.
The cognitive domain was assessed with measures of cognitive
flexibility [trail making test (TMT) B-A (Tombaugh, 2004)],
verbal fluency (phonemic letter fluency test FAS; Butters et al.,
1986), inhibitory control (Stroop interference; Golden, 1978),
psychomotor speed (symbol digit modalities test, SDMT;
Benedict et al., 2017). In this case, higher scores in TMT B-A
and Stroop interference indicate worse performance, while for
verbal fluency and SDMT poorer performance corresponds to
lower scores.

The proposed toolbox allows two different strategies for the
pre-processing and analysis of anatomical MRI data at the single-
subject level using specific standardized protocols.

First, in order to illustrate these two types of analysis at
subject level, two individual HD patients for each symptomatic
stage (pre-manifest and manifest) were randomly selected from
the whole sample. We conducted a ROI-based analysis using
z-scores as the statistic in the defined target regions of the
disease (Figure 6). As expected, both manifest HD patients
showed significant cortical thinning and volume loss in several
subcortical regions (especially in the caudate, putamen and
accumbens area) as well as global subcortical and cortical GM
and WM (Figure 6A). In addition, ventricle enlargement was
also observed to be significant. when was compared with the
corresponding control group. Aligned results were obtained
when we correlated the disease burden with the volume of the
basal ganglia both in the pre-manifest (R-caudate: r = −0.42,
p = 0.07; L-caudate: r = −0.52, p = 0.023; R-putamen: r = −0.50,
p = 0.03; L-putamen: r = −0.61, p = 0.006) and manifest HD
groups (R-caudate: r = −0.45, p = 0.031; L-caudate: r = −0.32,
p = 0.134; R-putamen: r = −0.52, p = 0.011; L-putamen:
r = −0.43, p = 0.038), and when all HD patients were considered
together (R-caudate: r = −0.64, p = 0.001; L-caudate: r = −0.62,
p = 0.001; R-putamen: r = −0.67, p = 0.001; L-putamen:
r = −0.67, p = 0.001).

In contrast, larger variability in the affected regions was
observed within the pre-manifest patients (Figure 6B), showing
no significant anatomical differences with the control group
in most biomarkers. In this regard, there is a large body of
evidence showing that despite the monogenic nature of HD,
there is a high degree of heterogeneity in the prominence
and evolution of the clinical symptoms of the pre-manifest
phase (Garcia-Gorro et al., 2017). One possible source of
such interindividual differences among HD patients could
be the variability in the degree of neurodegeneration. For
example, the preHD2 patient, displayed in Figure 7, showed a
pronounced neurodegeneration pattern compared to the other
pre-symptomatic patients, but in the subsequent follow-up
assessment, 18 months later became symptomatic. In this
line, correlation analyses using the extracted structural
biomarkers allow characterizing individual differences
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FIGURE 6 | Results derived from the ROI-based analysis. Graphs showing regions in which the subject under study significantly differs from the control group in
terms of subcortical volume (left), cortical thickness (center), and global volume of gray matter (GM) and white matter (WM; right) in the manifest (A) and pre-manifest
(B) individuals.

in the neurodegeneration pattern corresponding to the
clinical symptoms.

Furthermore, VBM analysis was then conducted, and the
findings from the comparison with the corresponding control
group supported the results from the ROI-based approach.

In Figure 7, the higher spatial resolution of the VBM is
highlighted, showing larger atrophy in rostral regions of the
caudate and the putamen, extending to the insula and the
premotor regions. In the pre-symptomatic group, in accord
with the results of the ROI-based analysis, higher individual

Frontiers in Systems Neuroscience | www.frontiersin.org 8 September 2020 | Volume 14 | Article 488652

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Palomar-Garcia and Camara Single Subject Brain Analysis Toolbox

FIGURE 7 | Results derived from the VBM. Decreases in GM are displayed for two individuals with manifest HD (A) and two individuals with pre-manifest HD (B). All
images are displayed with a significance threshold of P < 0.005 (uncorrected). T-scores are indicated by color temperature. The numbers below panels indicate
MNI coordinates.

differences between participants were observed, reflecting that
the pattern of neurodegeneration is complex at this stage and
not always starts or advances following the same trend. To
study whether the individual differences of our data can be
related to the progression of neurodegeneration, we performed
Pearson’s correlation between the number of affected voxels and
disease burden.

To illustrate the potential of SeSBAT as a tool for uncovering
signs of neurodegeneration at the single-subject level, we
identified and binarized the results of comparing each manifest
HD patient T-test with the corresponding control group after
thresholding at p < 0.005 uncorrected. Finally, all the binary
neurodegeneration patterns were added together and normalized
to create a probability overlap map of atrophy. Figure 8A
illustrates the voxels with atrophy that are consistent across
subjects with manifest HD, using two different thresholds (75%
and 90%). The reported pattern mirrored the typical striatal
neurodegenerative pattern in HD (Harris et al., 1999; Aylward
et al., 2004; Paulsen et al., 2008; Hobbs et al., 2010).

The variability in pre-manifest HD groups was larger, and
the results did not overlap between subjects at the selected

thresholds. Following the previous approach, we created a
bilateral mask of the caudate and putamen and computed the
percentage of individuals that showed atrophy within those
regions. In the selected regions, each voxel was separately
analyzed to find the presence or absence of atrophy and then
added together. This approach revealed atrophy in the caudate
and putamen in 57.89% and 84.21% of pre-manifest HD,
respectively, and atrophy in either the caudate or putamen
in 89.47% of cases. For the manifest HD group, those values
increased to 86.96% and 91.30% for atrophy in the caudate
and putamen, respectively (Figure 8B), a biomarker of disease
progression that is computed as: Disease Burden = Age × (CAG
−35.5) (Penney et al., 1997; Garcia-Gorro et al., 2019).
Importantly, the number of voxels with atrophy within the
caudate was found to be positively correlated to the disease
burden, both in the pre-manifest (r = 0.4962, p = 0.031, two-
tailed) and manifest HD groups (r = 0.5379, p = 0.008, two-
tailed), and when all HD patients were considered together
(r = 0.6920, p = 3.86·10–7, two-tailed).

Additionally, we also investigated whether the individual
differences observed in the different symptomatic domains
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FIGURE 8 | Results from analyses evaluating the global power of SeSBAT for identifying signs of neurodegeneration. (A) Overlay of voxels with atrophy that is
consistent across 75% (upper panel) and 90% (lower panel) of manifest HD patients. Reported coordinates are MNI coordinates. (B) Association between the
number of affected voxels within the caudate and disease progression in all HD (left), manifest HD (center), and pre-manifest HD (right) patients. Pearson’s correlation
coefficients (r) were reported.

(motor and cognitive) were associated with the different levels of
atrophy in the basal ganglia by controlling for the disease burden.
Specifically, in the pre-manifest participants, we showed that
those participants with lower performance in the different tasks
associated with the cognitive domain presented significant lower
volume in the basal ganglia (Verbal Fluency: R-caudate: r = 0.70,
p = 0.003; L-caudate: r = 0.56, p = 0.02; R-putamen: r = 0.56,
p = 0.02; L-putamen: r = 0.41, p = 0.11); TMT(B-A): (L-putamen:
r = 0.57, p = 0.02); SMDT: (R-caudate: r = 0.70, p = 0.003;
L-caudate: r = 0.56, p = 0.02; Stroop Interference: R-caudate:
r = 0.69, p = 0.003; L-caudate: r = 0.56, p = 0.02; R-putamen:
r = 0.57, p = 0.02; L-putamen: r = 0.41, p = 0.11). However, in the
manifest patients, the variability in the reduction of the volume
that we found both in the left caudate and left putamen was
only related with higher motor alterations (L-caudate: r = −0.59,
p = 0.011; L-putamen: r = −0.50, p = 0.036). Notice that when all
patients were considered together, those individuals with lower
volume in the caudate and the putamen, bilaterally, presented
significantly higher motor and cognitive alterations.

Moreover, with the follow-up data, we investigated whether
the longitudinal changes in the basal ganglia differed between

groups. We found that the rate of atrophy was larger in the
right putamen in manifest patients (R-putamen: t(28) = −2.3,
p = 0.03, two-tailed), showing a tendency in premanifest patients
(R-putamen: t(37) = −2.8, p = 0.08, two-tailed) compared with
controls. Patients were compared to a control group matched by
age to control for confounding age effects.

The robustness of this toolbox has been confirmed since the
results from the ROI-based and whole-brain analyses replicate
the HD neurodegeneration pattern described by previous studies
(Tabrizi et al., 2009, 2011; Hobbs et al., 2010).

CONCLUSIONS

SeSBAT has proved to provide potential biomarkers of
neurodegeneration at the single-subject level with a more
straightforward, handy, and automatic approach, which could
quantify and complement the task of neuroradiologists in disease
diagnosis and prognosis. Specifically, the proposed toolbox
allowed the quantification of the effects of neurodegeneration
in both pre- and symptomatic stages, which could lead to the
early recruitment of subjects into clinical trials, and aid in
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designing preventive therapies that can reduce the upcoming
cognitive, motor or psychiatric declines. In this article, the
power of SeSBAT was limited to its application in studying HD,
highlighting that the great potential of this toolbox lies in the
possibility of the early detection of subtle changes in the brain
that could be a sign of a brain alteration in the pre-symptomatic
phase. In HD, neuroimaging is not required for diagnosis
because it is provided by genetic testing, so future studies should
address identifying patterns of neurodegeneration in other
neurodegenerative disorders. Given the similarities between HD
and other more common neurodegenerative disorders such as
AD and PD, any finding in HD studies could be relevant for
making further progress in discovering therapeutic solutions for
other neurodegenerative disorders. Moreover, the importance
of performing single-subject studies was noted, as patterns of
neurodegeneration were found to differ among individuals.
This could pave the way towards more personalized treatments
tailored to the specific symptomatic profile of each subject.

Despite its promising results, this study has its limitations.
Firstly, the results obtained by the toolbox should not be
trusted blindly because the segmentation or the normalization
derived from FreeSurfer and SPM for the sample tested could be
inadequate or suboptimal. The segmentation and normalization
result of the automatic algorithm should always be inspected
for quality control. Secondly, larger cohorts of healthy controls
are essential to perform statistical comparisons using reliable
and standardized normative values as a reference. Thirdly, for
cross-validation purposes, it would be interesting to test the
toolbox with larger data sets such as Track HD and PREDICT,
and with other diseases with less individual variability, in which
instantaneous and longitudinal changes could be quantified
more robustly.
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