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The most researched brain region in epilepsy research is the temporal lobe, and more

specifically, the hippocampus. However, numerous other brain regions play a pivotal

role in seizure circuitry and secondary generalization of epileptic activity: The substantia

nigra pars reticulata (SNr) and its direct input structure, the subthalamic nucleus (STN),

are considered seizure gating nuclei. There is ample evidence that direct inhibition

of the SNr is capable of suppressing various seizure types in experimental models.

Similarly, inhibition via its monosynaptic glutamatergic input, the STN, can decrease

seizure susceptibility as well. This review will focus on therapeutic interventions such as

electrical stimulation and targeted drug delivery to SNr and STN in human patients and

experimental animal models of epilepsy, highlighting the opportunities for overcoming

pharmacoresistance in epilepsy by investigating these promising target structures.

Keywords: epilepsy, basal ganglia, subthalamic nucleus (STN), substantia nigra (SN), seizure, propagation, focal

therapy, GABA

INTRODUCTION

Epilepsy has afflicted mankind since the beginning of recorded history and is still one of the most
common disorders of the central nervous system. In 2015 1.2% of the US population reported to
suffer from epilepsy (Zack and Kobau, 2017). The causes of epilepsy are diverse and range from
(1) symptomatic epilepsy, in which an underlying disease such as a brain tumor is causative for
the seizures, to (2) idiopathic epilepsy, in which genetic factors that trigger epilepsy are discussed
or (3) cryptogenic epilepsy if neither a pathological nor genetic cause can be determined (Engel,
2006). Epilepsy is defined by the chronic, spontaneous recurrence of seizures. Acute seizures can
be triggered by various stimuli in healthy humans and animals. A seizure is a temporary phase of
abnormal, excessive or synchronous activity in the brain (Fisher et al., 2005). The severity varies
depending on the localization of the seizure focus in the brain and the local or generalized spread
of seizure activity. A precise classification of the seizure type, the cause, the age of epilepsy onset,
triggering factors and electroencephalographic findings are essential for successful therapy. Focal
seizures are distinguished from generalized seizures (Berg et al., 2010). Focal seizures occur only in
defined brain regions, while in primary generalized seizures the seizure activity spreads over both
brain hemispheres almost immediately. About 60% of newly diagnosed epilepsy is characterized by
focal seizures that originate in the mesial temporal lobe, but these focal seizures often generalize
secondarily (Banerjee and Hauser, 2008).
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CURRENT TREATMENT OPTIONS AND
RESPONSE

Patients with epilepsy experience spontaneous recurrent seizures
that are treated symptomatically with systemic antiseizure
medications; however, up to two thirds of these patients fail to
achieve seizure freedom and are therefore classified as having a
pharmacoresistant disease (Leppik, 1992; Schmidt and Löscher,
2005; Rogawski and Holmes, 2009). Despite approval of several
new antiseizuremedications, this proportion has not significantly
changed over the past decades (Löscher and Schmidt, 2011).
Consequently, there is an urgent need for new therapeutic
strategies to treat this devastating condition.

For pharmacoresistant patients the best therapeutic strategy is
often surgical resection of the epileptic focus, which led to seizure
freedom in a clinical trial in about 60% of patients 1 year post-
surgery, compared to 8% in the pharmacotherapy only group
(Wiebe et al., 2001). In addition, the surgical patients rated their
quality of life significantly higher; however, it is important to note
that patients continued to take their antiseizure medication after
resection surgery. Resection is not suitable for every patient due
to a multifocal origin of the epileptic seizures (Nilsen and Cock,
2004). Other patients decline a surgical treatment because of the
inherent risks associated with invasive brain surgery.

TARGETED STRATEGIES TO BLOCK
INITIATION

A viable approach to treat this pharmacoresistant population
could be to develop interventions that target structures that are
key regulators of seizure generalization. Silencing or stimulating
these defined brain regions may be achieved by pharmacological,
electrical or optogenetic manipulation, ablative approaches
and/or neurotransplantation of inhibitory cells, which will be
discussed in the following sections. Most efforts have focused
on the hippocampus since it is the seizure onset zone for
80% of seizures in mesial temporal epilepsy (mTLE) (Tatum,
2012). Targeted therapies aim to silence the hippocampus, but
it has proven exceedingly challenging to model in animals.
The primary issue is that traditional systemic chemoconvulsant
status epilepticus animal models do not present with clear
hippocampal onset of epilepsy – or they display more widespread
neuropathological changes than observed in a clinical patient
population (Sloviter, 2009).

TARGETED STRATEGIES TO BLOCK
PROPAGATION

If the focus is situated in an area that is not surgically accessible
or if the patient has multiple foci, a targeted approach to
the epileptic focus does not present a viable option. In these
cases, targeting areas of seizure propagation might be a feasible
approach. As such the basal ganglia have been known for more
than 30 years to play a pivotal role in seizure gating (Gale, 1988).
The basal ganglia are a group of subcortical nuclei in the fore-
and midbrain, which include the substantia nigra, the striatum,

the globus pallidus externus, the globus pallidus internus and
the subthalamic nucleus. These regions are anatomically and
functionally connected to each other and to the limbic system.
Changes in this network can lead to complex neuropsychiatric
symptoms, cognitive changes, changes in behavior and hypo-
or hyperkinetic movement disorders, as experienced by patients
suffering from Parkinson’s disease or Huntington’s disease.
Physiologically, the basal ganglia perform a filtering role, the
so-called “Gating” function by selecting for desired movement
patterns and inhibiting undesired activation patterns, including
seizure activity in epilepsy.

EPILEPSY AND THE BASAL GANGLIA

The subcortical nuclei of the basal ganglia and their simplified
interconnections are depicted in Figure 1. Regarding
experimental studies in rodents, the anatomical nomenclature
is slightly different than in humans. The globus pallidus in
rats is known as globus pallidus externus in humans; the
entopeduncular nucleus in rats is equivalent to globus pallidus
internus in humans.

The interconnection of the basal ganglia consists of control
loops running in parallel from the cortex to the brainstem and
thalamus and from the thalamus back to the cortex. The entrance
structure of the basal ganglia is the striatum, which receives input
from associative, sensorimotor and limbic cortices, thalamus
and the substantia nigra pars compacta (DeLong, 2000). Output
structures are the substantia nigra and the entopenduncular
nucleus that propagate activity via the core motor areas of the
thalamus, the rostral colliculus (human: superior colliculus) and
the pedunculopontine nucleus (Bolam et al., 2000).

Regions of specific interest to epilepsy are the basal ganglia
output structures, the substantia nigra (SN), and its direct
monosynaptic glutamatergic input structure, the subthalamic
nucleus (STN). Research of the role of the SN in epilepsy has
been pioneered by Karen Gale (Iadarola and Gale, 1982, cf.
Velíšek, 2019). Compelling evidence for its role in relaying
and spreading epileptic seizure activity is well documented (cf.
Deransart and Depaulis, 2002, see next section). In addition
to modulation of the SN inhibition via its monosynaptic
glutamatergic input, the subthalamic nucleus (STN) can decrease
seizure susceptibility (Robledo and Feger, 1990; Feger and
Robledo, 1991). Consequently, the STN could also be of
specific interest for targeted therapy; it is already an established
neurosurgical target for deep brain stimulation in Parkinson’s
disease and could make translation to patients with epilepsy
more feasible.

NIGRAL INHIBITORY SYSTEM

The SN consists partly of a pars compacta (SNc) with densely
packed, dopaminergic neurons, which are subject to degenerative
processes in Parkinson’s disease. There is some recent evidence
for a role of dopaminergic SNc involvement in epilepsy
(Bouilleret et al., 2008; Hu et al., 2020), however this review
focuses on the inhibitory system involving the pars reticulata. The
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FIGURE 1 | Potential routes of seizure propagation in temporal lobe epilepsy, modified from Löscher et al. (2008). Seizures that arise in the limbic system can be

propagated via the cortex, basal ganglia (yellow), thalamic nuclei and midbrain and brain stem nuclei and generalize across the whole brain. Red, GABAergic

transmission; blue, glutamatergic transmission; black, other chemically composite pathways.

pars reticulata (SNr) has been attributed a seizure gating function
(Gale, 1988; Gale et al., 2008). GABAergic neurons comprise
approximately 90% of the SNr and these neurons receive input
from the striatum via two routes. Inhibition of SNr neurons is
achieved by direct, monosynaptic, mainly GABAergic projection
neurons of the striatum (medium-sized spiny neurons; Hattori
et al., 1973; Fonnum et al., 1978) and activation via an indirect,
polysynaptic input via three nuclei (see Figure 1). The medium
spiny neurons of the striatum project to the globus pallidus
externus, and from there to the globus pallidus internus and
SNr, as well as via a GABAergic projection from globus pallidus
externus to the STN, followed by a glutamatergic projection from
the STN to the SNr (Alexander and Crutcher, 1990; Robledo and
Feger, 1990; Shen and Johnson, 2006; Deniau et al., 2007).

Inhibitory projections to different brain regions run from the
SNr to brainstem and midbrain. In the event of an activation
of this nigral inhibitory system, the downstream regions such
as thalamus, the superior colliculus and the pedunculopontine
nucleus are inhibited and increase the probability for triggering a
seizure by synchronizing their cortical target regions (Redgrave
and Dean, 1985). Synchronous activity is predeterminant of
seizure initiation. Alternatively, inhibiting the SN disinhibits
the downstream regions with the result of desynchronizing
activity in the cortex and consequently increasing the seizure
threshold. Therefore, direct inhibition of the SNr itself, or
indirect inhibition of the SNr by inhibiting its direct source
of innervation, the STN, can result in anticonvulsant effects
(Robledo and Feger, 1990; Feger and Robledo, 1991).

In addition, reciprocal connections run from the SNr to the
limbic system, so that a seizure focus regardless of its exact

localization within the limbic system can be manipulated by
targeting the SNr as well (Depaulis et al., 1994; Paz et al., 2007;
Gale et al., 2008; Löscher et al., 2008).

EXPERIMENTAL EVIDENCE: SUBSTANTIA
NIGRA PARS RETICULATA

Overall, the local administration of a therapeutic agent, in the
form of a substance, a transplant, or electrical stimulation, is
far more specific than the systemic administration of a drug or
compound (Boison, 2007). It was shown almost 40 years ago
that microinjection into the midbrain of a GABA-potentiating
drug, vigabatrin, acted as an anticonvulsant in a rat seizure
model (Iadarola and Gale, 1982). Using the direct GABAA

receptor agonist muscimol, Gale (1985) was able to identify
the SNr as the region mediating the antiseizure effect. During
and before a generalized seizure nigral neurons are increasingly
active (Engel et al., 1978; Nehlig et al., 1998; Dubé et al., 2000),
while anticonvulsant drugs or GABA itself decrease firing of the
GABAergic neurons (Bloms-Funke and Löscher, 1996; Windels
and Kiyatkin, 2004). The SNr is also affected by plastic network
changes in the epileptic brain, as shown in the widely used
electrical kindling animal model for epilepsy (Gernert et al., 2004;
Töllner et al., 2011).

Evidence from several experimental models of seizures and
epilepsy have shown that increased inhibition of nigral neurons,
which was achieved by locally administering GABAergic
drugs into the SNr, was responsible for a reduction or
suppression of experimentally triggered seizures and are
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TABLE 1 | Summary of selected references investigating SNr modulation in experimental seizure models.

Modulation of SNr Model/seizure type Effect on seizures References

GABAergic drug MES Decreased duration of tonic hindlimb extension Gale and Iadarola, 1980; Iadarola and Gale,

1982; Zhang et al., 1991

PTZ low dose i.p. Increased seizure threshold1; decreased spike-and-wave

discharges (no effect on motor seizures with higher dose of PTZ)2

1Zhang et al., 1991; 2Depaulis et al., 1989;

Depaulis, 1992

PTZ i.v. Increased seizure threshold Iadarola and Gale, 1982; Bröer et al., 2012; Gey

et al., 2016

BIC i.v. Decreased seizure duration or severity3 Iadarola and Gale, 1982; Garant and Gale,

1986; 3 Iadarola and Gale, 1982

Pilocarpine i.p. Suppressed seizures, prevented brain damage Turski et al., 1986

Pilocarpine i.hc. Partial protective effect Smolders et al., 1997

γ-butyrolactone i.p. Reduced duration of spike-and-wave discharges Depaulis et al., 1989; Depaulis, 1992

THIP Reduced duration of and increased latency to onset of

spike-and-wave discharges; no effect in higher dose of THIP

Depaulis et al., 1989; Depaulis, 1992

Flurothyl inhalation Increased seizure threshold (vigabatrin and low dose muscimol);

proconvulsant in high dose muscimol and THIP4; proconvulsant in

pups4; anterior SNr anticonvulsant, posterior SNr proconvulsant5

Xu et al., 1991; 4Garant et al., 1995; 5Velíšková

et al., 1996a

Audiogenic Suppressed spike-and-wave discharges; suppressed clonic

audiogenic seizures

Deransart et al., 2001

Kindling Increased afterdischarge threshold (ADT)6,7,8,9; no effect on motor

seizures6; suppressed motor seizures7,9

6Le Gal La Salle et al., 1983; 7McNamara et al.,

1984; 8Nolte et al., 2006; 9Töllner et al., 2011

Absence Suppressed spike-and-wave discharges Depaulis et al., 1988, 1990; Deransart et al.,

2001

GABAergic cell Pilocarpine i.p. in

lesioned animals

Decreased seizure susceptibility, not clearly dependent on cell

transplant

Fine et al., 1990

Kainate i.p. Decreased seizure susceptibility Castillo et al., 2006

PTZ i.v. No effect Backofen-Wehrhahn et al., 2018

Kindling Increased ADT and decreased seizure severity Löscher et al., 1998

Pilocarpine SE Suppressed spontaneous seizures Thompson and Suchomelova, 2004

Kainate SE Suppressed spontaneous seizures, decreased mortality Castillo et al., 2008

Absence No effect Castillo et al., 2010

Stimulation Flurothyl inhalation Anticonvulsant depending on SNr subregion and animal’s age Velísek et al., 2002

Kainate s.c. No effect Usui et al., 2005

Kindling Pre-stimulation retarded kindling process, prolonged latency to or

blocked motor seizures10; suppressed seizures in fully kindled for

up to 4 days11

10Morimoto and Goddard, 1987; 11Shi et al.,

2006

Absence Suppressed seizures, but repeated stimulation was ineffective or

could worsen seizures

Feddersen et al., 2007

Optogenetic

silencing

PTZ i.p. Suppressed seizures (nigrotectal); worsened seizures

(nigrotegmental)

Wicker et al., 2019

BIC (piriform cortex) Suppressed seizures (nigrotectal); no effect (nigrotegmental) Wicker et al., 2019

Audiogenic Suppressed seizures; no effect (nigrotegmental) Wicker et al., 2019

Absence Suppressed seizures (nigrotectal and -tegmental) Wicker et al., 2019

Lesion BIC i.v. Reduced seizures Garant and Gale, 1983

MES Reduced incidence of tonic seizures Garant and Gale, 1983

Kindling Increased severity and duration12; suppressed seizures13 12Zhang et al., 2019; 13McNamara et al., 1984

Kainate (low dose) Increased seizure susceptibility and severity Fan et al., 2000

MES, maximum electroshock; PTZ, pentyleneytetrazole; BIC, bicuculline; THIP, 4,5,6,7-tetrahydroisoxazolopyridin-3-ol; i.p., intraperitoneal; i.v., intravenous; s.c., subcutaneous; i.hc.,

intrahippocampal; SE, status epilepticus. Effect on seizure findings have been summarized, specific findings are linked to the respective reference by the superscript numbers.

summarized in Table 1 (Gale and Iadarola, 1980; Le Gal
La Salle et al., 1983; McNamara et al., 1984; Garant and
Gale, 1986; Turski et al., 1986; Depaulis et al., 1989; Xu
et al., 1991; Zhang et al., 1991; Depaulis, 1992; Garant
et al., 1995; Velíšková et al., 1996a; Smolders et al., 1997;
Deransart et al., 2001; Nolte et al., 2006; Bröer et al., 2012;

Gey et al., 2016). Genetically modified rats that display
spontaneous absences and rats that experience genetically
determined audiogenic seizures upon stimulation could also
be treated successfully with injection of GABAA agonists into
the SNr (Depaulis et al., 1988, 1990; Deransart et al., 2001,
see Table 1).
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High frequency stimulation has also been explored and
showed comparable success in various seizure models. Deep
brain stimulation of the SNr was capable of suppressing
generalized and focal seizures in most models (Morimoto and
Goddard, 1987; Velísek et al., 2002; Shi et al., 2006; Feddersen
et al., 2007), however a study also reported no effect on kainate-
induced seizures (Usui et al., 2005).

One of the disadvantages of focal drug delivery or stimulation
for clinical translation is the necessity of re-administering or
continuously delivering the treatment of choice. Development
of tolerance has been reported for systemic GABAergic drug
administration in experimental models and patients (Löscher and
Frey, 1987; Löscher and Schmidt, 2006) and more recently, in
a subset of animals that received a chronic focal drug delivery
regimen into the basal ganglia (Gey et al., 2016). A strategy
that could overcome this challenge is neurotransplantation of
GABA-releasing cells that functionally integrate into the host
tissue. Transplantations of inhibitory interneurons to restore
the imbalance between excitation and inhibition in the epileptic
network have mostly been located in the hippocampus. Due
to massive anatomical restructuring that occurs in the chronic
epileptic hippocampus, this is a natural target for regenerative
therapies. Several studies have shown strong and long-lasting
anticonvulsant effects after xeno- and allotransplantation of
GABAergic cells into several chronic models of experimental
epilepsy (Baraban et al., 2009; Waldau et al., 2010; Hunt et al.,
2013; Cunningham et al., 2014; Henderson et al., 2014; Casalia
et al., 2017; Bröer et al., 2019). These studies have in common that
cells were targeted at the site of seizure initiation. Transplantation
into the SNr or other seizure propagating structures has not
been as widely investigated. The first studies were performed
in the 1990s: After grafting fetal GABAergic cells into the
SNr, the seizure susceptibility to pilocarpine decreased (Fine
et al., 1990), but the effect could not be confirmed to be
dependent on the release of GABA from the transplanted cells,
as the graft survival was not assessed quantitatively and more
importantly, transplantation of non-GABAergic cells showed a
similar response. More recent studies have only shown transient
anticonvulsant effects of neurotransplantation into the SNr:
Grafting of fetal, striatal cells into the SNr of kindled rats
increased the afterdischarge threshold and decreased severity in
the kindling model (Löscher et al., 1998). In this study, the effect
could be directly attributed to the GABAergic cells, since non-
GABAergic cells or cell medium did not produce a similar effect.
The use of genetically modified cells from cell lines that release
higher amounts of GABA confirmed these results in different
seizure models (Thompson and Suchomelova, 2004; Castillo
et al., 2006, 2008; Nolte et al., 2008), but were without effect in
absence seizures (Castillo et al., 2010, see Table 1). A possible
explanation for a missing or transient anticonvulsant effect could
be the low survival of cells in the SNr (Backofen-Wehrhahn
et al., 2018). The basal ganglia do not experience such significant
anatomical restructuring induced by epilepsy as that which
occurs in the hippocampus. There is some evidence for higher
persistence of grafted cells in areas of brain damage such as the
hippocampus in epilepsy (Zaman et al., 2001; Zaman and Shetty,
2002), however many recent studies have shown promising

long-term survival of inhibitory neurons in healthy brain regions
up to 1 year after transplant, which seems to be independent from
the host tissue (Southwell et al., 2012; Masnaghetti et al., 2019),
justifying the continuation of researching neurotransplantation
into basal ganglia as a treatment option for epilepsy.

Although anticonvulsant effects of lesioning the SNr in
bicuculline-induced seizures and against electroshock seizures
have been reported (Garant and Gale, 1983), it does not seem to
be a viable option for seizure reduction since there is conflicting
evidence on its effect on kindled seizures. Lesioning the SNr
significantly increased severity and duration of kindled seizures
in one report (Zhang et al., 2019), but suppressed seizures in
another study (McNamara et al., 1984). A unilateral dopamine-
induced lesion of the SNr facilitated kainate-induced seizures in
rats (Fan et al., 2000).

There is also conflicting evidence on the SNr’s uniformity in
its seizure modulating properties. Gernert et al. (2004) reported
that kindling resulted in neuronal plasticity within the SNr,
that was subregion specific. Furthermore, a microinjection of
vigabatrin into the posterior SNr resulted in proconvulsive effects
in the Flurothyl model but had an anticonvulsant effect in the
anterior SNr (Velíšková et al., 1996a), while both targetsmediated
an anticonvulsant effect in the pentylenetetrazole model (Bröer
et al., 2012). Possible reasons for these contradicting results could
be differences in expression of receptor types (Velíšková et al.,
1998), sub-region-specific efferences, the animal model used, or
the age and sex of the animals (Shehab et al., 1996; Gernert and
Löscher, 2001). It is believed that different seizure types involve
different output structures (Depaulis et al., 1994), for example
tonic seizures could not be manipulated by nigral inhibition
(Deransart et al., 2001). A recent study byWicker et al. (2019) has
utilized optogenetic silencing in order to clearly dissect the role of
the output pathways of the SNr in four different seizure models.
They found that inhibition of the SNr itself suppressed acute
seizures induced by intraperitoneal pentylenetetrazole injection
or by direct injection of bicucilline into the area tempestas
of the piriform cortex. Furthermore, audiogenic seizures in
Genetically Epilepsy Prone rats (GEPR-3) that respond to loud
noise with convulsions, as well as absence seizures in the
systemic gamma butyrolactone model were suppressed with this
approach. Interestingly, selective inhibition of the projection
from the SNr to the superior colliculus (nigrotectal) achieved
the same effect, whereas selective silencing of the projection
to the pedunculopontine nucleus (nigrotegmental) provided
mixed results (cf. Figure 1), as it reduced absence seizures,
but aggravated pentylenetetrazole-induced seizures, and had no
effect on audiogenic and piriform seizures (Wicker et al., 2019).
Newer research suggests a direct role of the basal ganglia in
absence seizure initiation and proposed the pars compacta as a
novel target for seizure modulation (Hu et al., 2020).

EXPERIMENTAL EVIDENCE:
SUBTHALAMIC NUCLEUS

Compared to the SNr, the role of the STN in epilepsy is
less studied but is a well-characterized clinical target for
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TABLE 2 | Summary of selected references investigating STN modulation in experimental seizure models.

Modulation of STN Model/seizure type Effect on seizures References

GABAergic drug BIC i.v. Protected against seizures (only bilateral muscimol, not unilateral) Dybdal and Gale, 2000

BIC (piriform cortex) Protected against seizures (only bilateral muscimol, not unilateral) Dybdal and Gale, 2000

PTZ i.v. Increased seizure threshold Bröer et al., 2012; Gey et al., 2016

Flurothyl inhalation Reduced seizures (unilateral and bilateral muscimol) Velíšková et al., 1996b

Kindling Reduced motor seizures, no effect on afterdischarges Deransart et al., 1998

Absence Suppressed spike-and-wave discharges Deransart et al., 1996

GABAergic cell PTZ i.v. Transient increase in seizure threshold (unilateral and bilateral)1;

anticonvulsant effect cell-specific2

1Handreck et al., 2014;
2Backofen-Wehrhahn et al., 2018

Stimulation Kainate s.c. Reduced duration of generalized; duration of focal seizures was

prolonged, but severity was decreased

Usui et al., 2005

Absence Suppressed spike-and-wave discharges Vercueil et al., 1998

Lesion Absence Only partially effective, reduced discharge duration in 60% of animals Vercueil et al., 1998

PTZ, pentyleneytetrazole; BIC, bicuculline; i.p., intraperitoneal; i.v., intravenous; s.c., subcutaneous. Effect on seizure findings have been summarized, specific findings are linked to the

respective reference by the superscript numbers.

therapeutic neurostimulation in other neurological diseases such
as Parkinson’s disease or dystonia (Benabid et al., 2001; Benabid,
2007; Al-Otaibi et al., 2011). The surgical accessibility of this
structure could make it a feasible candidate for targeted therapy
in epilepsy as well (see The basal ganglia in clinical epilepsy).
STN targeting might be associated with less side effects compared
to SNr targeting since locomotor activation has been reported
after muscimol injections into SNr, but not into STN (Dybdal
and Gale, 2000). Muscimol injections into the STN lowered the
activity of the SNr (Feger and Robledo, 1991) since the STN
delivers monosynaptic, glutamatergic and thus excitatory input
into the SNr. The first evidence for a role of the STN in promoting
seizure activity was provided by Deransart et al. (1996) and
Vercueil et al. (1998) in a model of genetic absence epilepsy in
the rat, in which bilateral injections of GABA agonists, as well
as high-frequency stimulations, suppressed spontaneous seizure
activity. Similarly, an anticonvulsant effect of GABA agonist
injections was shown in the kindling model (Deransart et al.,
1998), in acute seizure models induced with systemic and focal
application of proconvulsant drugs such as bicuculline (Dybdal
and Gale, 2000) or pentylenetetrazole (Bröer et al., 2012), and
after flurothyl inhalation (Velíšková et al., 1996b, see Table 2).
Delivery of vigabatrin to the STN was more efficacious than
delivery into the adjacent zona incerta, SNr, or striatum and
its effects were comparable to systemic administration, while
significantly fewer adverse events were observed with local
delivery than after systemic treatment (Bröer et al., 2012). In
conclusion, the inhibition of the direct striatonigral and indirect
pathways play a pivotal role in the spread of epileptic seizure
activity (Depaulis et al., 1994; Gale et al., 2008).

Follow-up studies assessed feasibility and efficiency of
continuous microinfusion of vigabatrin into the STN and
found that bilateral infusion of vigabatrin over several weeks
increased GABA in the STN, leading to a significant increase
in pentylenetetrazole seizure threshold. However, some animals
developed tolerance to vigabatrin’s anti-seizure effect (Gey et al.,
2016). Furthermore, it has been described that direct stimulation
of the STN is able to suppress seizures in a variety of experimental

models, such as absence seizures in genetically epileptic rats
(Vercueil et al., 1998), and seizures induced with systemic kainate
injections (Usui et al., 2005). Two studies have focused on
transplantation of GABAergic cells in the STN in an acute
seizure model (Handreck et al., 2014; Backofen-Wehrhahn
et al., 2018) that show transient anticonvulsant effects can be
observed for a few weeks. Remarkably though, even a unilateral
graft into the STN significantly affected the seizure threshold
(Handreck et al., 2014). Contrary to earlier discussed options
lesioning of the entire STN was not as efficient as electrical
stimulation in suppressing seizures (Vercueil et al., 1998) and
could be associated with increased risks, as it was reported
that upon unilateral lesioning of the STN excitatory glutamate
receptors were upregulated in SNr ipsilateral to the lesion,
which could result in an increased susceptibility to seizures
(Price et al., 1993).

THE BASAL GANGLIA IN CLINICAL
EPILEPSY

Clinical data on the involvement and targeting of the SNr and
STN in patients with epilepsy is still sparse (Vercueil and Hirsch,
2002). In 1949, Hayne et al.. reported that subcortical brain
areas such as the basal ganglia can display epileptic activity
simultaneously with cortical areas, but that they can also produce
isolated abnormal electric activity that is independent of the
cortex. A more recent study has also confirmed that generalized
seizures with cortical origin lead to changed basal ganglia activity,
in this case slowing of frequencies (Rektor et al., 2002). Imaging
data reveal that patients with epilepsy can show atrophy of
the SN and differences in blood flow, metabolism, functional
connectivity and neurotransmission in the basal ganglia (cf.
Semah, 2002; Keihaninejad et al., 2012; Rektor et al., 2013;
Výtvarová et al., 2017).

Deep brain stimulation (DBS) of suitable brain regions, such
as the STN, has been used successfully for years in the therapy
of pain and movement disorders (Nguyen et al., 2011; Fasano
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et al., 2012). In Parkinson’s Disease stimulation of the STN or the
Globus pallidus internus are known to reduce motor symptoms
such as tremor, bradykinesia, rigidity, and dyskinesia, but the
mechanism of action of DBS on movement disorders remains
under investigation (Lozano and Eltahawy, 2004). It was also
the first targeted treatment that was evaluated in patients with
epilepsy. Stimulations in patients have been performed in several
studies in the beginning of the 2000s: The first patient was
a 5-year old girl with drug-resistant and inoperable epilepsy,
who received unilateral, chronic, high frequency stimulation
into the STN. Her seizure frequency and severity decreased
by 80% at the 2.5-year follow-up. Improvements in motor
and cognitive performance were also reported (Benabid et al.,
2002). Other studies have examined STN stimulation in small
groups of patients and confirmed the finding that seizures were
significantly reduced by 50% in most cases (Loddenkemper
et al., 2001; Chabardes et al., 2002; Handforth et al., 2006;
Lee et al., 2006). Vesper et al. (2007) stimulated in the STN
and SNr simultaneously and found a seizure reduction in a
patient with myoclonic epilepsy, who was non-responsive to
prior vagus nerve stimulation and drug treatment. In a similar
case report by di Giacopo et al. (2019) stimulation of the SNr
was more effective in reducing seizures than STN stimulation
alone or combinatorial stimulation of both structures in a patient
with myoclonic epilepsy. However, compared to the STN, there
is very little clinical evidence and experience with targeting
the SNr in patients. Anatomically, the SNr seems to be a
less promising target as its borders are not as clearly defined
as the STN’s. Additionally, the SNr’s larger size might make
stimulation of the full structure more challenging and could
result either in only a small part of the SNr being stimulated or in
stimulating surrounding areas, which might lead to an increase
in unwanted effects (Loddenkemper et al., 2001). In general,
stimulation-associated adverse events have been reported in
studies on patients with Parkinson’s disease and mainly include
transient hemiballism and dyskinesias, which can be controlled
by adjusting stimulation parameters. Surgery-related adverse
events include infections, wound dehiscence and intracranial
hematomas (cf. Loddenkemper et al., 2001), but the side effects
of this minimally invasive surgery may outweigh the risk of
mortality from uncontrollable seizures.

Larger, double-blind and randomized clinical trials are
necessary to draw conclusions regarding efficacy and safety of a
treatment. One trial that started in France in 2005, the STIMEP
trial, in which patients with a severe form of genetic epilepsy
were recruited for STN stimulation, was terminated before full
enrollment, but results have not been published at the time of this
writing1. More clinical data is available for DBS of the anterior
thalamic nucleus, which has been shown to significantly reduce
seizures in pharmacoresistant patients in the SANTE trial (Fisher
et al., 2010), however, the reason for seizure reduction in the
temporal lobe when targeting stimulation remotely is unknown.

There are no data on drug infusion into the STN or SNr in
patients with epilepsy; however a clinical trial was conducted

1https://clinicaltrials.gov/ct2/show/results/NCT00228371?term=stimep&draw=

2&rank=1

with muscimol, a GABA agonist, infused into the seizure focus
(cortex or hippocampus) of three patients (Heiss et al., 2019a).
Acutely, muscimol alleviated seizures in one patient, but at the
2-year follow-up, two out of three patients were seizure-free,
and one had less frequent seizures. These results can’t be clearly
attributed to prior muscimol infusion and thus are inconclusive.
Furthermore, muscimol was not labeled and it could not be
confirmed that it only distributed within the target structure.
(Heiss et al., 2019a). No infusion-related adverse effects were
reported. In a subsequent study, the group labeled muscimol
with gadolinium, an MRI tracer, and infused it into the STN
into non-human primate rhesus monkeys (Heiss et al., 2019b).
Muscimol infusion did not lead to neurotoxicity, however there
was a transient, dose-dependent hyperkinesia and somnolence
in high doses. An earlier study had reported dyskinesias and
torticollis upon infusion of muscimol into the posterior SNr, but
not after infusion into the STN in macaques (Dybdal et al., 2013).

CONCLUSION

The STN and SNr play a pivotal role in seizure propagation
as evidenced in various experimental models of epilepsy. Early
studies focused on pharmacological inhibition with GABAergic
substances and provided insights into subregion-specific and
model-specific effects on seizures.

It has been described that abnormal electrophysiological
activity and structural changes like atrophy, blood perfusion
and metabolism as well as functional changes in connectivity
can be recorded from basal ganglia in patients with epilepsy.
Despite these findings in patients and good preclinical evidence
for successfully modulating seizures by drug infusions into basal
ganglia targets, and specifically their output structures SNr and
STN, very little clinical data on intracerebral drug infusion in
epilepsy is available. Although GABAergic drugs have long been
used for epilepsy, most are no longer protected by patents and
are not seeing current development. Other challenges include the
drug delivery device, the drug kinetics including distribution only
within the target area and potential development of tolerance
to the infused substance. On the contrary, stimulation of the
STN has gained increased interest in the treatment of patients
with epilepsy since it has been widely and successfully used
in movement disorders such as Parkinson’s disease. Available
data stem from case reports and small groups of patients
at single clinical sites and a large randomized clinical trial
in France was terminated before complete enrollment. Cell
transplantation with GABAergic cells as a restorative approach
could potentially overcome some of the issues of drug delivery or
stimulation if the cell product is able to persist and functionally
integrate into the target structure. Further investigation is
necessary to evaluate the safety, efficacy and persistence of
cell transplantation into seizure propagation structures such as
the STN and SNr in patients with uncontrollable seizures. All
in all, modulating the basal ganglia could offer a treatment
that allows for more precise targeting of seizure propagation
pathways and potentially less systemic side effects for patients
with epilepsy.
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