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One of the central goals in systems neuroscience is to understand how information is

encoded in the brain, and the standard approach is to identify the relation between a

stimulus and a neural response. However, the feature of a stimulus is typically defined

by the researcher’s hypothesis, which may cause biases in the research conclusion.

To demonstrate potential biases, we simulate four likely scenarios using deep neural

networks trained on the image classification dataset CIFAR-10 and demonstrate the

possibility of selecting suboptimal/irrelevant features or overestimating the network

feature representation/noise correlation. Additionally, we present studies investigating

neural coding principles in biological neural networks to which our points can be

applied. This study aims to not only highlight the importance of careful assumptions and

interpretations regarding the neural response to stimulus features but also suggest that

the comparative study between deep and biological neural networks from the perspective

of machine learning can be an effective strategy for understanding the coding principles

of the brain.

Keywords: deep neural networks, biological neural networks, systems neuroscience, shortcut learning, neural

coding, neural feature

INTRODUCTION

A standard approach to study the neural coding principle in biological neural networks (BNNs)
is to characterize the statistical properties of neural responses and elucidate their association with
sensory or other information (Dayan and Abbott, 2001; Panzeri et al., 2015). For example, one can
use statistical tests to compare neural responses for the feature set or decoding models that predict
the feature labels from neural activity, revealing the information content present in the brain region.

The use of machine learning (ML) in neuroscience has grown rapidly during the last decade
(Glaser et al., 2019). The role of ML in neuroscience ranges from a tool for neural data analysis
(Carlson et al., 2013; Lebedev et al., 2014; Mathis et al., 2018; Pandarinath et al., 2018) to a model
for the brain (Cadieu et al., 2014; Yamins et al., 2014; Kell et al., 2018; Keshishian et al., 2020; Yang
and Wang, 2020). In particular, it has become a popular idea that deep neural networks (DNNs)
can serve as a good model of biological networks considering their near human-level performance
across challenging domains (Marblestone et al., 2016; Cichy and Kaiser, 2019). Although it has
been pointed out that DNNs lack biological plausibility and are not transparent, remarkable
developments have beenmade enabling one to analyze and understand their representation (Samek
et al., 2016; Fong and Vedaldi, 2018; Zhou et al., 2018; Cohen et al., 2019; Zhang et al., 2019), and
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recent studies propose that DNN models can provide insights
for the brain’s computing mechanism based on their similar
response properties (Kriegeskorte, 2015; Güçlü and van Gerven,
2017; Kell and McDermott, 2019). As they share the question
of understanding the representation of the neural networks,
there are opportunities for synergy between the DNN enabling
controllable and tractable simulation and the BNN with
significantly greater experience in the matter (Barrett et al., 2019;
Richards et al., 2019)

In this study, we demonstrate the dangers latent in the
widely used research framework for identifying informational
content from a neural representation. It is noteworthy that
these dangers are related to the problems that have been raised
in DNN research, which has rich experience in dealing with
the so-called black box. In particular, we focus on revealing
misleading points that may arise from the researcher-defined
feature space. By employing the DNN as an in silico model
of the BNN, we simulate four likely scenarios and present
BNN studies to which our points can be applied as follows.
(A) Owing to the inaccessibility of the full feature space, a
researcher can misjudge the neural feature selectivity. (B) The
researcher-defined feature might be a confounding variable
coupled with the ground truth feature and neural response. (C)
Overlooking the inherent assumption for the feature space of the
decoding model may result in an overestimation of the network
feature representation. (D)Misassumptions regarding the feature
complexity or disregarding the internal state coding may result in
an overestimation of the noise correlation. Finally, we discuss the
root cause of constraints in identifying the association between
the predefined feature and the neural response and suggest the
feasibility of a comparative approach between DNNs and BNNs.

RESULTS

The Deep Neural Network Trained on
CIFAR-10 as a Model of BNN
To simulate potential errors in a neural coding study, we mimic
a BNN by using a DNN model trained on an image dataset.
A six-layer feedforward fully connected neural network was
constructed and trained using the CIFAR-10 dataset, which
comprises 60,000 images in 10 classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck) (Figures 1A,B).
After 500 epochs of training using stochastic gradient descent
with a batch size of 512, the model demonstrated a saturated
test set accuracy of ∼53% (chance-level performance = 10%)
(Figure 1C). It is known that convolutional neural networks
(CNNs) perform better for image data. Nonetheless, since we
intended to make DNN serve as a model of BNN at the general
level rather than to confine it as a model for the visual processing
of the brain, we employed the fully connected network, which is
the most fundamental architecture of artificial neural networks.

The input image, image class, andmodel output correspond to
the stimulus presented in the experiment, the feature defined by
the researcher, and the recorded neural activity, respectively. Ten
units (nodes) in the output layer calculate the probability of each
class for the input image. They are regarded as neural units tuned

to each of the 10 classes like neurons in the inferior temporal
cortex that selectively respond to complex visual stimuli such as
faces (Bruce et al., 1981). For convenience, we refer to them as
their preferred class (e.g., the airplane unit). In the case of the
DNN model, the genuine feature space is predefined as labels of
the training data. Using this model, we demonstrate the possible
errors that may occur when a researcher investigates neural
coding principles while presenting a prepared feature set. The
output layer, or the last hidden layer of the model, corresponds
to the recorded brain region in the simulation for scenarios 1, 2,
and 4 and scenario 3 (Figure 1B).

Scenario 1. Suboptimal Feature Selectivity
In the first scenario, we demonstrate a possible error when
determining neural feature selectivity by the differences in the
responses of the neural unit to the presented feature set. To
simulate a situation in which a researcher records a neuron that
is highly tuned on the truck feature and explores the feature
selectivity, we averaged the response of the truck unit to each
class while showing the test set images of all classes. As expected,
this unit exhibited selectivity for the truck feature [the regression
coefficient and explained variance were 0.55 (p < 0.001) and
0.61, respectively] (Figure 2). However, if the researcher had
not included the truck images in the stimulus set, only the
results for classes excluding trucks (red box in Figure 2) would
have been obtained, and from this, the researcher would have
been apt to conclude that the truck unit responds selectively to
the automobile feature [the regression coefficient and explained
variance were 0.21 (p < 0.001) and 0.30, respectively]. In fact,
experimental settings wherein a researcher determines the feature
selectivity based on the neural response to the features presented
in the experiment are common in practice (Miyashita and Chang,
1988; Liu and Richmond, 2000; Tanaka et al., 2001; Stalnaker
et al., 2010).

Indeed, recognition of the limitations inherent in the
experimental settings was also found in previous studies.
Sauerbrei et al. (2015) measured motor-related variables (speed,
acceleration, roll, pitch, and electromyogram) in freely moving
mice to reveal the information represented in the variability of
Purkinje cell activity during locomotion. It was discussed that
the measurable variables in freely moving mice that were not
anesthetized without fixing the head were limited, and hence,
the possibility of primary variables other than the measured
features could not be eliminated (Sauerbrei et al., 2015). Another
investigation demonstrated that the internal state (satiety) was
encoded in global brain regions, and the propagation of the
sensory information was gated according to the animal’s satiety
state. However, the authors recognized the possibility that
variables such as arousal (which is correlated with satiety) may
be more influential than satiety (Allen et al., 2019).

There are studies in which the raised concerns have been
demonstrated more directly. While primary visual cortex
neurons have traditionally been assumed to primarily encode
the local orientation components of high-order patterns, large-
scale two-photon imaging of the primary visual cortex neurons
combined with an extensive set of stimuli in awake macaques
demonstrated that a large portion of neurons in the superficial
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FIGURE 1 | The deep neural network trained on CIFAR-10 as a model of the

biological neural network. (A) The CIFAR-10 dataset consisting of 32 × 32 × 3

(Continued)

FIGURE 1 | images in 10 classes. (B) Deep neural network composed of six

layers with dense connections. The rectified linear activation function was

implemented for the hidden layers and the softmax function for the output

layer. The output layer (in scenarios 1, 2, and 4) or the last hidden layer (in

scenario 3) was regarded as the region of interest in the simulation, and their

activations for the input image vector correspond to recorded neural activity

upon sensory stimuli presentation. (C) After ∼500 epochs of training with a

batch size of 512, the model showed a saturated accuracy on test set data at

∼53% (baseline performance = 10%). The blue and orange lines represent the

model performance for the training set and the test set, respectively.

layer of the primary visual cortex exhibited high selectivity to
various complex patterns, such as curvatures, corners, junctions,
and other higher-order patterns (Tang et al., 2018). Furthermore,
even for neurons selective to a high-level complex pattern, most
of them showed significant tuning for orientation. Hence, they
reported that our understanding of neural selectivity may be
biased and restricted depending on the neurons that can be
sampled and the stimuli that can be evaluated.

Obviously, it is impossible to predefine the entire feature
space of the recording region. Moreover, physically measurable
variables are limited depending on the experimental settings.
Nevertheless, it is necessary to recognize these inevitable
constraints, and both the researcher’s description and the reader’s
interpretation must be carefully addressed. In other words, the
features that are coupled with the neural response cannot be
guaranteed to be the optimal feature, and the definitions of
feature selectivity are premised on the specific experimental
setting. Therefore, careful interpretations of readers considering
the context (i.e., the defined feature space in the experiment) and
a rigorous description by the researchers are required.

Scenario 2. Irrelevant Feature Selectivity
In the second scenario, we simulate a case where the feature
defined by the researcher was a confounding variable coupled
with both the ground truth feature and neuronal responses. To
simulate the case where the stimuli presented by the researcher
contain features that are difficult to recognize, we modified the
data by synthesizing two different veterinary hospital logos in
the images of cats and dogs (Figure 3A). Compared with the
accuracy for the original data in distinguishing between cats
and dogs (38%), the model trained on the dataset containing
cat and dog images with a logo demonstrated a much higher
classification accuracy of 78%. If the researcher judges only the
latter result without recognizing the existence of logos, it may be
easily concluded that the model encodes a discriminative feature
for each class. However, the features that the model encodes
are presumably the logo pattern in this case (Figure 3B). To
confirm this, we reconstructed the receptive field of each class
unit through the weighted summation of the activation values
in every route linking a single input pixel and a class unit (see
the Materials and Methods section). Consequently, it was clearly
shown that the artificially synthesized logos mainly accounted for
the activation of the cat/dog unit (Figure 3A). This indicates that
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FIGURE 2 | Selectivity profile of the truck unit. The average activities of the truck unit for each stimulus feature are presented. Although the truck unit is a population of

neurons tuned to the truck feature, if only the features in the red dotted box are presented, the suboptimal feature (automobile) may appear to be the variable that best

accounts for the unit’s activity.

FIGURE 3 | Irrelevant feature selectivity. (A) Instance images (top) of a dog and cat in the original/modified (logo-synthesized) dataset and reconstructed receptive field

(bottom) for the dog and cat classes from the model trained on either the original or modified dataset. (B) A schematic figure illustrating the situation where the

solution learned by the model (right) is different from the researcher’s intended solution (left).
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the features defined by the researcher (cat and dog) were merely
confounding variables.

Recently, a similar problem has been discussed in the
deep learning field under the name of shortcut learning. In
shortcut learning, a trained model shows a strong discrepancy
between the intended and actual learning strategies, leading
to poor generalization to unseen domains. For instance, in a
classification task, a DNN model can employ the background
context (shortcut feature) as the decision rule to recognize the
primary object. It may seem to be accurate for objects in a
“common” context (e.g., a cow in a pasture) but unexpectedly
fail on objects in an uncommon context (e.g., a cow on the
beach) (Supplementary Figure 1) (Szegedy et al., 2013; Beery
et al., 2018; Zech et al., 2018). This suggests the problem of
understanding the behavior of DNNs based on the researcher’s
intended solution (Geirhos et al., 2020). It may provide an
interesting frame of reference for thinking about shortcut
learning for BNN research. That is, even if the recorded neurons
respond differently to the presented stimuli, the stimulus feature
defined by the researcher is possibly a confounding variable that
differs from the actual feature encoded by the BNN.

Indeed, Kim et al. (2019) demonstrated that characterizing
the feature selectivity of primary sensory cortex neurons can
be misled by describing neurons with a single stimulus feature,
disregarding other aspects of sensory stimuli. In many cases,
neurons in the primary sensory cortex are classified as non-
nociceptive, nociceptive, or convergent neurons, according to
their electrophysiological response to innocuous brush stroke
and noxious forceps pinch stimuli. Contrary to previously
known results, the majority of neurons that appeared to encode
noxiousness showed high selectivity for the texture of the
stimuli and low selectivity for noxiousness. This implies that
the texture is more likely to be the explanatory feature and that
noxiousness only resulted in a different response owing to the
paired texture. Overall, it should be noted that there may be an
alternative cause that can explain the results obtained in the given
experimental paradigm.

Scenario 3. Overestimation of Network
Feature Representation
In the third scenario, we demonstrate a potential error when
studying the feature representation of the network based on
neural decoding. One of the ways to evaluate whether particular
information is present in a brain region is to implement
decoding models, including ML models, and see if the model
can decode features from neural activity with performance above
the chance level (Yan et al., 2014; Kriegeskorte and Douglas,
2019). It is important to note that chance-level performance is
dependent on the number of labels provided to the decoder.
However, it is often overlooked that the entire set of labels
represented in the recording region is unavailable, meaning
that a genuine baseline performance is beyond our reach. In
other words, the decoding performance should be interpreted
with the baseline performance, but since a genuine baseline
performance cannot be known, the experimental results are
prone to being misinterpreted.

Specifically, we simulate a situation of evaluating whether the
cat feature is represented in the recording region using a linear
support vector machine (SVM) as the decoder. It is commonly
believed that linear decodability is considered evidence for the
“explicit” representation in that it can be read by downstream
neurons in a single step (Misaki et al., 2010; Kriegeskorte and
Kievit, 2013; Ritchie et al., 2019). In this simulation, the last
hidden layer of the DNN model was regarded as the region of
interest. Since the model was trained on the data with 10 labels
(classes), the genuine chance-level performance of the task to
classify whether a given stimulus is a cat or not was 10%, and
the classification accuracy of the model for the cat class was 28%.
Even if this result is declared statistically significant (i.e., the
p-value falls below the threshold), its effect size, which provides
some indication of practical meaningfulness (Benjamin et al.,
2018), may not be enough to conclude the linear separability of
the two classes in the neuronal representational space. Now let
us assume that the researcher implements a binary classifier to
investigate whether the cat feature is represented in the recording
region. Since a binary classifier is trained on the data with a
binary label, only two options are available for the unseen data
(i.e., chance-level performance is 50%). When we trained the
linear SVM to classify the cat from other classes, the accuracy for
the cat test set images was 82%, and linear decodability might
be claimed from this result (Figure 4, Table 1). In brief, when
evaluating the feature representation of a neural network based
on the decoding performance, it can be inflated due to the high
chance-level performance of the task defined by the researcher
(e.g., binary classification).

Various decoding methods have been used to decipher neural
coding principles from the neural activity patterns that are
distributed across neurons or cortical regions (Haxby et al., 2014).
In particular, multivoxel pattern analysis, a popular analytical
technique for analyzing fMRI data, is widely used in comparing
how a distributed pattern of activity over multiple voxels differs
between task conditions or stimuli (i.e., multivariate pattern
classification) (Popov et al., 2018). It is common to implement
a linear classifier to the region of interest to decode binary
information and make inferences such as the engagement of
certain brain areas in specific tasks or the relationship between
brain states and informational content. However, as we pointed
out in this scenario, the fact that the genuine dimension of
the label space of the BNN is unavailable makes room for
misinterpretations of the network feature representation. In
other words, even if the decoding performance is statistically
significant, it should be noted that it is the result of the test based
on the chance-level performance assumed by the decoder model.
Both the readers and researchers should be cognizant of the exact
characteristics of the decodermodel and to what extent themodel
can account.

Scenario 4. Overestimation of the Noise
Correlation
Finally, we simulate a situation where the noise correlation of
the network can be overestimated owing to the misassumption in
feature complexity or omission of globally coded features. Noise
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FIGURE 4 | Overestimation of the network feature representation. A schematic figure to explain the difference in the task difficulty depending on the number of

exposed labels during model training. While predicting the label of cat images is a multiclass classification problem with 10 class candidates for the DNN model (only 4

classes are presented in the figure for visualization purposes), it is a binary classification task for the linear SVM.

TABLE 1 | Comparison of the performance of the deep neural network model and

the binary decoder.

Model Accuracy Baseline accuracy

Deep neural network model 0.28 0.1

Linear support vector machine 0.82 0.5

Classification accuracy was used as a rule evaluation measure, and it was evaluated

on the same test data (1,000 cat images) for both models. Baseline accuracy indicates

the probability that the model matches the class of the input image by chance, which is

determined by the number of labels contained in the training data.

correlation is the degree to which the trial-by-trial variability
in responses for an identical stimulus is shared by a pair of
neurons. It is different from the signal correlation measured
from the responses of a neuron pair for different stimuli, which
indicates a similar tuning property (Supplementary Figure 2)
(Cohen and Kohn, 2011). Noise correlation is investigated

mainly in the context of its relationship with population coding,
network architecture, or behavior (Cohen and Maunsell, 2009;
Hofer et al., 2011; Sauerbrei et al., 2015; Ruff and Cohen,
2019). Therefore, a biased estimation of noise correlation can
generate consecutive errors in their roles in sensory processing
or inferences regarding the network connectivity and the
mechanisms that produce them.

Specifically, in this scenario, we want to show that signal
correlation can be incorporated into the noise correlation due
to the researcher’s misassumption of features. The activity of
the units in the output layer of the DNN model is regarded
as the average activity of the homogenous population, and
after training, it is deterministic for the same input. Therefore,
to mimic noise correlation estimation in BNN research,
we constructed a model capable of stochastically generating
individual neural activity (see the Materials and Methods section
for details).
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FIGURE 5 | Continued
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FIGURE 5 | Overestimation of the noise correlation. (A) Schematic figure to illustrate the simulated situation in which the feature of a stimulus defined by the

researcher is the dog class (right, coarse-grained representation) and the recording region actually encodes the feature at the level of individual dog breeds (left,

fine-grained representation). From the perspective of neurons encoding the breeds, dog images of different breeds were recognized as different stimuli, while the

researcher regards them as an identical stimulus. (B) Correlation matrices of individual neural activities randomly sampled from the model assumed to encode either

the dog breed or the dog class (fine-grained/coarse-grained representation model). The enlarged parts are the values from the individual neurons within the dog unit.

(C) Schematic figure illustrating the simulated situation in which a periodic internal state is globally encoded by the neural population and stimuli are presented

alternately in the upcycle and downcycle of the rhythm. (D) Correlation matrices of individual neural activities randomly sampled from the model with/without a

periodic internal rhythm.

Feature Complexity
It is known that neurons along the ventral pathway of the human
brain are tuned to features of different complexity (Riesenhuber
and Poggio, 2002; Güçlü and van Gerven, 2015). Unlike lower
cortical areas, the preferred feature of a neuron in the higher
visual areas is hard to determine (Riesenhuber and Poggio,
2002). Here, we point out that the noise correlation estimation
can be overestimated if the researcher incorrectly assumes the
feature complexity. If the features defined by the researcher
were subdivided into finer features in the region of interest, a
signal correlation may be incorporated into the estimated noise
correlation. This is because even if the researcher repeats the
stimulus that is identical in terms of the coarse feature, neurons

will react differently depending on the tuning property of the
fine features.

As an example of the scenario, we assumed a situation in
which the feature of the stimulus defined by the researcher is
the dog class (coarse-grained representation, high-level feature)
and the recording region is actually coding the feature at
the level of individual dog breeds (fine-grained representation,
low-level feature) (Figure 5A). We tried to compare the
correlation of the response variability from two models with
different feature complexities, each of which accords with the
researcher’s assumption (coarse-grained representation model)
and the actual situation (fine-grained representation model).
By differently assuming within-unit variance, the multivariate
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normal distribution of each model was parameterized, enabling
stochastic sampling (see the Materials and Methods section
for details). From each model, individual neural activities were
randomly sampled by the unit for the images of the dog
class consisting of different breeds, and a pairwise correlation
was calculated therefrom. From the perspective of the fine-
grained representation model, dog images of different breeds
(e.g., Pomeranian and golden retrievers) were recognized as
different stimuli. Hence, a signal correlation may occur between
neurons having a similar preference for the breed. However,
from the point of the researcher’s view that the region of
interest encodes the dog class, dog images are regarded as
the same stimulus regardless of the breed. Subsequently, the
pairwise correlation calculated from the response variability
(which includes signal correlation) is counted solely as noise
correlation. Compared with the case where the researcher’s
hypothesis was correct (coarse-grained representation model),
it can be seen that the noise correlation is overestimated
(Figure 5B, Table 2).

In fact, it is a likely scenario for a researcher to wrongly assume
an appropriate level of feature complexity. The feature defined
by the researcher could be more coarse-grained or fine-grained
than the actual feature, or the tuning property of the feature
can change over time. In recent findings, it has been shown that
the abstraction level of features varies based on the hierarchy
of brain areas, or more abstracted features may emerge after
learning within the same population (Connor et al., 2007; Engel
et al., 2015; Tang et al., 2018). According to the investigation of
Engel et al. (2015) a considerable fraction of lateral intraparietal
cortex neurons showed mixed selectivity for both directions and
categories, and even feature selectivity was altered after training
from pure-directional to pure-category tuning. Therefore, the
tuning property defined within the observation point and setting
may not be generalized, which can lead to confusion between
signal correlation and noise correlation.

Internal Dynamics
It is known that local neural activity depends not only on
the current sensory input but also on the current brain state
(Panzeri et al., 2015), and it has been hypothesized that a
significant fraction of trial-to-trial variability of population

TABLE 2 | Comparison of the estimated noise correlation.

Model Average correlation

Total units Dog unit

Fine-grained model 0.043 0.275

Coarse-grained model 0.029 0.099

Model with internal rhythm 0.215 0.371

Model without internal rhythm 0.028 0.097

Means of the absolute pairwise correlations calculated from the trial-by-trial variability of

neural responses for each conceptual model within scenario 4. The values of the total

units are the average of the correlations obtained from the pairs of the 90 total neurons

(9 neurons per unit), and the values of the dog unit are the average of the correlations

obtained from the pairs between 9 neurons within the dog unit.

activity is accounted for by variations in the brain state (Curto
et al., 2009). Internal subjective features are difficult to control
or directly measure in an experiment, but since they affect
the intercorrelation of neurons, they can produce bias in the
noise correlation estimation. Here, we simulate the case in
which the neglection of the internal state coding leads to the
overestimated noise correlation.Wemimic the situation in which
a periodic internal rhythm is globally represented in the neural
network and stimuli are presented alternately in the upcycle and
downcycle of the rhythm (Figure 5C). Again, we constructed
two different models, either with or without internal rhythm.
In the former, after showing 1,000 test set images of dogs to
the DNN model, we added artificially generated random values
to the outputs of the sampled neurons for half of the instances
and subtracted them for the remaining instances. In the latter,
individual neural activity for the same input was taken without
any manipulation. As expected, compared to the model without
internal rhythm, a high correlation in response variability
occurred since the model included the signal correlation evoked
by jointly coding the internal state (Figure 5D, Table 2). Without
considering the internal state feature, it may be regarded as mere
noise correlation.

Recent studies have revealed global representation throughout
the brain for internal states such as satiety, anxiety, or latent
behavioral states. Allen et al. (2019) showed that in thirsty
mice, a thirst motivational state (satiety) was globally represented
across the brain regions and that the neural responses for the
same task-relevant feature were altered as the thirst became
gradually satisfied during repeated trials. Stringer et al. (2019)
demonstrated representation of behavioral-state information
in the primary sensory cortex, suggesting that previously
reported trial-by-trial variability during stimulus presentations
may depend on it. Another investigation discovered that
single prefrontal cortex neurons contribute to complicated
cognitive tasks by having mixed selectivity and that they encode
internal cognitive processes simultaneously with task-relevant
information (Rigotti et al., 2010). Bányai and Orbán (2019)
reported that in hierarchical models, inferences for task-related
and higher-level perceptual variables were the dual source of
noise correlation. Here, we want to emphasize the possibility that
signal correlation due to undetected features can be incorporated
into the noise correlation.

Reproducing the Scenarios Using a CNN
As mentioned at the beginning, we implemented the fully
connected network to avoid limiting the issues raised for the
visual system. Nonetheless, given that the examples used are all
visual stimuli, we repeated the simulations using a CNN, which is
widely used in the field of image processing. After fine-tuning the
pretrained ResNet18 (He et al., 2016) model on the same cifar-
10 dataset, an accuracy of 94.6% was obtained for the held-out
data, and the simulated results were consistent with the previous
results in all scenarios (Figure 6). In scenario 3, the classification
accuracy of the model for the cat class (85%) and that of linear
SVM (91%) did not show much difference since the performance
of the model was already saturated.
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FIGURE 6 | Simulation results using a convolutional neural network. (A) The average activities of the truck unit for each stimulus feature are presented. As expected,

the unit showed the highest mean activity for the optimal feature (truck), while it also showed considerable activity for a suboptimal feature (automobile). (B) Instance

images (top) of a dog and cat in the original/modified (logo-synthesized) dataset and the visualized class activation maps (bottom) from the model trained on either the

original or modified dataset. The accuracy of the model is 90 and 100% on each dataset, respectively. Note that what the latter model actually sees is the artificially

synthesized logo, not the image label (expected feature). (C) Correlation matrices of individual neural activities randomly sampled from the model assumed to encode

either the dog breed or the dog class (fine-grained/coarse-grained representation model). The enlarged parts are the values from the individual neurons within the dog

unit. The averages of the correlations are 0.044 (fine-grained model)/0.038 (coarse-grained model) for the 90 total neurons and 0.360/0.199 for the 9 neurons within

the dog unit. (D) Correlation matrices of individual neural activities randomly sampled from the model with/without a periodic internal rhythm. The averages of the

correlations are 0.407 (model with internal rhythm)/0.038 (model without internal rhythm) for the 90 total neurons and 0.529/0.195 for the 9 neurons within the dog unit.

DISCUSSION

The primary purpose of this study was to highlight the necessity
of the careful inspection of our research framework that identifies
the relationship between a stimulus and a neural response based
on the predefined feature space. The second aim was to propose
the feasibility of bridging the studies of artificial intelligence (AI)
and neuroscience in various aspects. In this study, we were able
to explicitly demonstrate the misleading points by implementing
the DNN model as a BNN model to mimic specific situations
in each scenario. This research suggests that the comparative
approach between AI and neuroscience can provide new insights
into the same problem and can enable alternative interpretations
based on accumulated experiences in each field.

This study highlights that the interpretation of empirical
results requires care. This is because even if there is an association
(dependency) between variables in the observed data, this does
not necessarily mean a causal relationship. In other words,
associations can arise between variables in the absence of a
causal relationship if they have a common cause (Altman and
Krzywinski, 2015). As shown in scenarios 1, 2, and 4.2, the
oversight of the presence of an unevaluated variable can lead to

erroneous conclusions in diverse aspects. Additionally, scenario
3 underlines that the empirical results should be interpreted
with the context in which the data were obtained, such as a
specific experimental setting and the assumption of the model
used. Primarily, the researchers need to describe the experimental
conditions in detail and be aware of the extent to which they
can infer from the implementation of the techniques (or the
models). Even if the statistical significance or the rigor of
the experiment is satisfied, deriving the implications from the
observation is a different problem. Regarding readers, they tend
to focus on the conclusion, thereby missing the detailed contexts.
Although it is cognitively demanding to understand the details,
a reader’s careful attention is needed as much as the researcher’s
careful reporting.

The 4 scenarios presented in this study basically arise from
the fact that the feature of a stimulus is, in fact, an idea
defined by the researcher. Selective neurons that encode easily
recognizable features, such as orientation, color, and motion,
have been found in many brain areas (Kamitani and Tong,
2005). However, unlike the brain regions receiving the primary
sensory information, it has been revealed that it is difficult to
determine the selective feature in regions performing higher
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cognitive functions (Poldrack, 2006). Moreover, as bottom-up
inputs are integrated, the receptive field may be dynamically
modulated by attention in the downstream, making them
no longer under the researcher’s control (David et al., 2008;
Zirnsak and Hamker, 2010; Ibos and Freedman, 2014, 2016;
Pattadkal et al., 2018; Wutz et al., 2018). In addition, the vast
amount of information that will be addressed at the unconscious
level is not even in an interpretable form (György Buzsáki,
2019). A more fundamental concern is that the identification
of the informational content of a given representation does
not necessarily mean that the representation stands for it
(Brook and Akins, 2005; Morgan and Piccinini, 2018; Gomez-
Marin and Ghazanfar, 2019). Furthermore, Buzsáki referred to
the framework taking invented terms (defined features of the
stimulus) as the to-be-explained independent categories and
looking for brain mechanisms that can explain those ideas as
an “outside-in framework” and claimed that the thing to-be-
explained should be the activities of the brain, not the invented
terms (“inside-out framework”) (György Buzsáki, 2019).

It is noteworthy to mention that this study is inspired by the
failure experiences of DNNs. With many cases where DNNs fail
unexpectedly in real-world scenarios, the need to understand
the representations they learn has come to the forefront under
the name of shortcut learning (Nguyen et al., 2015; Beery
et al., 2018; Geirhos et al., 2020). A shortcut strategy refers to
the learned decision rule of the model that differs from the
researcher’s intended solution. While superficially successful, it
can no longer be generalized if the model confronts unseen
data from different distributions. Shortcut learning in DNNs
demonstrates the risk of assigning underlying abilities to the
models based on the researcher’s assumption (i.e., the expected
solution based on how a human would solve the problem). Given
that our understanding of the internal mechanism of the brain
is still rudimentary, it would be fruitful to learn from mistakes
in DNNs.

Our study is based on the idea that DNNs can serve as
a good model for BNNs. The artificial neural networks were
originally inspired by neural computation and the structure
of the brain (Hassabis et al., 2017). Although much of the
subsequent development has been made in terms of mathematics
and engineering based on efficient optimization rather than
neuroscientific findings, there are still opportunities for synergy
with neuroscience (Marblestone et al., 2016). Since they share
the question of how to analyze the representations of neural
networks, data analysis tools and concepts established in each
field can facilitate the re-examination of the preconceptions
as well as the development of fresh methodologies and
theories (Barrett et al., 2019). Among the “AI to neuroscience”
approaches, there have been successful attempts to adopt DNNs
as an in silico model system for BNNs, suggesting testable
hypotheses for neural computing (Cohen et al., 2019; Lillicrap
and Kording, 2019; Richards et al., 2019; Bellec et al., 2020). This
has provided a significant amount of insight into the elucidation
of information processing in the brain. Here, we demonstrated
that in silico simulation using DNNs may also be particularly
effective in articulating the influences that the assumptions of a
researcher can bring. Compared to the BNNs, the DNNs can be

said to be a more explainable model, at least in that they can
explicitly demonstrate the results of a strategic manipulation of
the assumption or specific factor in a controlled setting, thus
enabling us to detect and remove biases more readily (Koh and
Liang, 2017; Samek et al., 2017). In the study, we used the
fully connected network and the convolutional neural network
model to mimic and display the expected error situations in BNN
research. However, depending on the research subject and target,
researchers may be able to use DNNs with other inductive biases
and customize the analysis, structure, and learning of the model.

Lastly, it is worth noting that the simulated scenarios were
not mutually exclusive and were only described with emphasis
on certain aspects of potential bias. Additionally, the issues
presented herein are only illustrative examples that aim to
highlight topics of concern regarding the currently adopted
research strategy. Although our study did not go so far as
to suggest an alternative paradigm, we tried to demonstrate
possible biases and constraints in the research to understand
neural representation, and we believe that this approach can
contribute to encouraging the discussion and efforts to revisit and
complement them. In conclusion, by incorporating lessons from
the point of contact with the AI field into research experiences in
neuroscience, we will be able to gain insights and devise creative
approaches to investigating the operating principles of the brain.

MATERIALS AND METHODS

The DNN Trained on CIFAR-10 as a Model
of BNN
We constructed the DNN classifier using the open-source
neural network library Keras (Chollet, 2017) while operating
TensorFlow (Abadi et al., 2016) as the backend. The model
comprised six layers with dense connections (rectified linear
activation for five hidden layers with 400, 200, 100, 50, and
20 nodes and softmax activation for the output layer with 10
nodes). A dropout layer with a keep probability of 0.8 and an
l2-regularizer was added on each layer to apply penalties on the
layer activity during optimization. The model was trained with
the CIFAR-10 dataset comprising 60,000 32 × 32 color images
in 10 classes, with 6,000 images per class, and the dataset was
split 75%/8%/17% for the training/validation/test sets. After 500
epochs of training using stochastic gradient descent, the model
demonstrated a saturated test set accuracy of∼53% (chance-level
performance= 10%).

Scenario 1. Suboptimal Feature Selectivity
Each class unit in the output layer of the DNNmodel is treated as
a neural unit tuned to the corresponding class, and they calculate
the probability of the class for the input image. After feeding
each of the 1,000 test set images per class to the trained model,
we obtained the output values of the truck unit and regarded
them as neural activities of the concept neuron tuned to the truck
class. The average outputs per input class were presented as the
selectivity profile of the truck unit. The multiple linear regression
was implemented to model the relationship between the class
features and the responses of the truck unit. We fitted the model
with the activation of the truck unit as response variables, and the
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10 class features (one-hot vectors) as predictors and presented the
coefficients and their p-values for the automobile and the truck
feature. In addition, we calculated the explained variance statistic
of each feature, which can be used as the indicator of statistical
effect size.

Scenario 2. Irrelevant Feature Selectivity
To mimic a situation in which the dataset prepared by the
researcher contains an unrecognized confounding variable, two
veterinary hospital logo images were synthesized at consistent
positions of the cat and dog images (lower right and lower left).
The logos were synthesized with 80% transparency after a down-
resolution to 5 × 5 × 3, considering the dataset resolution.
Subsequently, the accuracy of the trainedmodel in distinguishing
the class between the cat and dog was evaluated for both the
original and modified (logo-synthesized) datasets.

To expose the implicit attention of the trained model on an
image, we tried to visualize the receptive field for each unit in
the output layer. Although an analytical solution for the inverse
of the feedforward connection cannot be obtained, the degree of
contribution to the output unit activation for each input pixel
can be estimated using the learned weight parameters. For every
route linking a single input pixel and a class unit, from back to
front, a one-hot class vector was sequentially multiplied by the
weights of the connections and passed through the inverse of
the rectified linear activation. In this way, the values obtained
from all connecting routes were summed and assigned as the
intensity value of the corresponding input pixel, meaning that
the pixels with high intensity are discriminative image regions.
Then, 3,072-dimensional receptive field vectors were converted
into RGB images (32 × 32 × 3) for visualization. To confirm
the reliability of the method for reconstructing the receptive field
vectors, we asked the trained model to predict the class. The
model had correct predictions for 8 out of 10 classes. Considering
the possibility that the error was attributed to the incomplete
learning (test set accuracy= 53%) of the model, we evaluated the
method for the same model trained on the MNIST data. MNIST
is a database of handwritten digits comprising a training set of
60,000 images for 10 classes and 10,000 test set images. After
training the model (test set accuracy = 92%) and reconstructing
the receptive field vectors of the class units in the same manner,
the model had correct predictions for all 10 classes.

Scenario 3. Overestimation of the Network
Feature Representation
In BNN research, linear SVM is commonly regarded as a
surrogate for a linear read-out neuron, and its decoding
performance is used to estimate the amount of information
represented in the region of interest. We mimicked the situation
in which the researcher evaluates whether the cat feature is
represented in a brain region based on the performance of a linear
decoder trained to discriminate the feature labels for the neural
population activities. The last hidden layer of the DNN model
was regarded as the region of interest, and we obtained the output
vectors of that layer (treated as recorded population activities)
after feeding 1,800 test set images labeled as cat or non-cat. The
non-cat images comprised every 100 images of the other 9 classes.

The linear SVM was trained to classify the class (cat or non-cat)
for those output vectors. Subsequently, the classification accuracy
was evaluated on the remaining 100 test set images of cat for both
the DNNmodel and linear SVM.

Scenario 4. Overestimation of the Noise
Correlation
Feature Complexity
This scenario mimics the situation in which a researcher repeats
multiple trials, recording neural responses to each stimulus
presentation. Specifically, it is assumed that in each of M trials,
a researcher presents a single image from the image set with
different subclasses (fine-grained feature) within the same class
(coarse-grained feature) and records k neurons per each of N
units with each tuned to the respective class. [The number
of trials (M), the number of units (N), and the number of
recorded neurons per unit (k) were set to 1,000, 10, and 9 in the
simulation, respectively].

We model the k-dimensional vector of neurons for each unit
as follows:

xn,m ∼ Nk(µn,m, σn,m
2
I) (1)

where n = 1, . . . , N, m = 1, . . . , M, xn,m =

(x1,n,m, x2,n,m, ..., xk,n,m)
T

∈ R
k denotes the responses of “k

individual neurons” within the nth unit to the mth image, with
mean vector µn,m ∈ R

k and covariance matrix σn,m
2
I ∈ R

k x k.
Here, we set µn,m to µn,m 1, indicating that all k neurons have

the same mean.
Subsequently, the distribution of “unit activity” will also be a

normal distribution with the same mean but variance divided by
sample size (k):

Xn,m ∼ N(µn,m,
σn,m

2

k
) (2)

where Xn,m denotes the nth unit activity to the mth image,
which represents the within-trial sample mean of the individual
neural activities.

However, the values we can observe from the DNN model
are the activations of the units, not the individual neurons
(it can be slightly confusing because it is different from the
general experimental situation). When we feed M images with
different subclasses of the tuned class, the nth unit in the last
layer outputsM values Xn,1, ..., Xn,M , which each corresponds to
the within-trial sample mean of the k recorded neurons. While
the noise correlation is defined as the correlation between the
response variability of neurons during repeated presentations of
identical stimuli, in a trained model, units output a fixed value
for the same input. In other words, they do not exhibit any
response fluctuation when the same stimulus is repeated (i.e.,
deterministic). Hence, the parameters of a probability model of
individual neurons had to be estimated from the unit activities,
enabling stochastic sampling.

In this scenario, we assume two different models with coarse-
and fine-grained representations, each of which encodes the
class and subclass of an image stimulus, respectively. First, for
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the coarse-grained representation model, every M image with
different subclasses is treated as the same stimulus. To generate
xn,m, we estimated the mean vector and the covariance matrix of
xn,m as follows:

µ̂n,m = Xn,m1, σ̂n,m2
= k · SD(Xn,m)

2 (3)

where 1 ∈ R
k is the all-ones vector, σ̂n,m denotes the within-unit

variability of the nth unit in the mth trial, and SD denotes the
sample standard deviation.

This estimation makes the standard deviation of the observed
Xn,ms the standard error of the mean for k individual neurons.

Second, for the fine-grained representation model, every M
image is treated as a distinctive stimulus. The mean vector of xn,m
is derived in the same way as follows:

µ̂n,m = Xn,m1 (4)

where 1 ∈ R
k is the all-ones vector.

On the other hand, the within-unit variability is estimated
by supposing the variance ratio with the coarse-grained
representation model. The variance ratio is set as the theoretical
percentile value of the F-distribution to ensure that their ratio
is significantly incompatible with the null hypothesis that two
independent normal variances are equal:

σ̂n,m
2
=

1

F0.05, k−1,k−1
· k · SD(Xn,m)

2 (5)

where F0.05, k−1, k−1 is the critical value from the F-distribution
with k-1 and k-1 degrees of freedom such that the probability of
erroneously rejecting the null hypothesis is 5%.

This ensures that the within-unit variability of the fine-grained
model is much smaller than that of the coarse-grained model
such that the difference in the responses to the subclasses is
significant for the former and non-significant for the latter.

The actual simulation using the model was conducted in two
stages. First, we conducted 1,000 trials for each unit, presenting
the respective subclass image of the class in which the unit is

tuned. In each trial, the within-unit variability (σ̂n,m2) for both
the coarse- and fine-grained models are obtained for each unit.
Afterward, while presenting 1,000 “dog” images with different
breeds, the activation values were extracted from all 10 class units.
From this, the sample mean of the individual neural responses
to the respective dog image is estimated for each unit (µ̂n,m).
Hereby, the multivariate normal distribution of individual neural
activities for the respective dog image can be estimated from the
obtained sample mean and the within-unit variability. For each
model, the pairwise Pearson correlations were calculated between
the trial-by-trial variability of sampled neurons and represented
in a correlation matrix.

Internal Dynamics
Here, we tried to show that if a periodic internal rhythm is
globally represented in the neural population, the resulting

co-fluctuation of neural excitability can inflate the estimates of
the noise correlation. Simplifying the situation, we assumed that
the phases in which the neural excitability increases or decreases
(referred to as upcycle or downcycle) alternate in each trial.

As a control, we employed the multivariate normal
distribution of the coarse-grained model in scenario 4.1,
and the activities of k neurons per each of N unit were sampled
therefrom. For the model assumed to encode a periodic internal
rhythm, we randomly generated values from the uniform
distribution over (0, 1) and added them to the unit outputs for
odd-numbered trials and subtracted them from the outputs
for even-numbered trials. The within-unit variabilities were
set to be identical to those of the control distribution. After
estimating the parameters of the distribution of k neurons per
unit in the same way as before, the individual neural activities
in 1,000 trials were sampled. For each model, the pairwise
Pearson correlations between the trial-by-trial variability of
the sampled neurons were calculated and represented in a
correlation matrix.

Reproducing the Scenarios Using a CNN
We used the pretrained ResNet18 model provided by the
PyTorch library (Paszke et al., 2019) and fine-tuned the model
for the cifar-10 dataset for 3 epochs with a batch size of
40. All analyses were performed in the same manner as in
the fully connected network model except for the feature
map visualization for scenario 2, where we exploited the class
activation map method (Zhou et al., 2016).
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