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Brain computer interfaces (BCI) provide a direct communication link between the brain

and a computer or other external devices. They offer an extended degree of freedom

either by strengthening or by substituting human peripheral working capacity and

have potential applications in various fields such as rehabilitation, affective computing,

robotics, gaming, and neuroscience. Significant research efforts on a global scale

have delivered common platforms for technology standardization and help tackle

highly complex and non-linear brain dynamics and related feature extraction and

classification challenges. Time-variant psycho-neurophysiological fluctuations and their

impact on brain signals impose another challenge for BCI researchers to transform

the technology from laboratory experiments to plug-and-play daily life. This review

summarizes state-of-the-art progress in the BCI field over the last decades and highlights

critical challenges.

Keywords: brain computer interface, hybrid/multimodal BCI, neuroimaging techniques, neurosensors,

electrical/hemodynamic brain signals, cognitive rehabilitation

1. INTRODUCTION

The brain computer interface (BCI) is a direct and sometimes bidirectional communication tie-up
between the brain and a computer or an external device, which involves no muscular stimulation.
It has shown promise for rehabilitating subjects with motor impairments as well as for augmenting
human working capacity either physically or cognitively (Lebedev and Nicolelis, 2017; Saha and
Baumert, 2020). BCI was historically envisioned as a potential technology for augmenting/replacing
existing neural rehabilitations or serving assistive devices controlled directly by the brain (Vidal,
1973; Birbaumer et al., 1999; Alcaide-Aguirre et al., 2017; Shahriari et al., 2019). The first systematic
attempt to implement an electroencephalogram (EEG)-based BCI was made by J. J. Vidal in 1973,
who recorded the evoked electrical activity of the cerebral cortex from the intact skull using EEG
(Vidal, 1973), a non-invasive technique first studied in humans invented by Berger (1929). Another
early endeavor to establish direct communication between a computer and the brain of people with
severemotor impairments had utilized P300, an event related brain potential (Farwell andDonchin,
1988). As an alternative to conventional therapeutic rehabilitation for motor impairments, BCI
technology helps to artificially augment or re-excite synaptic plasticity in affected neural circuits.
By exploiting undamaged cognitive and emotional functions, BCI aims at re-establishing the
link between the brain and an impaired peripheral site (Vansteensel et al., 2016). However, the
research applications of BCI technology evolved significantly over the years, including brain
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fingerprinting for lie detection (Farwell et al., 2014), detecting
drowsiness for improving human working performances (Aricò
et al., 2016; Wei et al., 2018), estimating reaction time (Wu et al.,
2017b), controlling virtual reality (Vourvopoulos et al., 2019),
quadcopters (LaFleur et al., 2013) and video games (Singh et al.,
2020), and driving humanoid robots (Choi and Jo, 2013; Spataro
et al., 2017). Figure 1 demonstrates the progression of BCI in
various application fields since its conception.

According to the Brain/Neural Computer InteractionHorizon
2020 project, an initiative by the European Commission for
coordinating BCI research, six major application themes, i.e.,
restore (e.g., unlocking the completely locked-in), replace (e.g.,
BCI-controlled neuroprosthesis), enhance (e.g., enhanced user
experience in computer games), supplement (e.g., augmented
reality glasses), improve (e.g., upper limb rehabilitation after
stroke), and research tool (e.g., decoding brain activity with real-
time feedback) have been outlined as feasible and promising fields
(Brunner et al., 2015). This overview encompasses a wide range
of challenges and trends in BCI field. For specialized reviews on
particular BCI topics we refer to the recent literature (McFarland
et al., 2006; Schwartz et al., 2006; Bashashati et al., 2007; Lotte
et al., 2007, 2018; Matthews et al., 2007; Sitaram et al., 2007; Mak
and Wolpaw, 2009; Menon et al., 2009; Nicolelis and Lebedev,
2009; Summerer et al., 2009; Vaadia and Birbaumer, 2009; Milan
and Carmena, 2010; Min et al., 2010; Clausen, 2011; Krusienski
et al., 2011; Liao et al., 2012; Nicolas-Alonso and Gomez-Gil,
2012; Shih et al., 2012; Jebari, 2013; McCullagh et al., 2014; Ahn
and Jun, 2015; Jayaram et al., 2016; Lebedev and Nicolelis, 2017;
Mudgal et al., 2020; Rashid et al., 2020; Saha and Baumert, 2020).

1.1. Characterization of BCI Systems
BCI systems can be categorized by the way they use the brain:
Passive BCI decode unintentional affective/cognitive states of the
brain (Zander et al., 2009), while active BCI directly involve
the user’s voluntary intention-induced brain activity. Reactive
BCI use brain waves generated as response to external stimuli.
Detecting driver’s drowsiness to prevent road accidents is an
example of passive BCI (Lin et al., 2008; Gao et al., 2019).
BCI systems driven by users’ intentional motor imagery (MI)
(Marchesotti et al., 2016; Saha et al., 2019a; Saha and Baumert,
2020) and visually evoked P300 produced by external stimulation
(Farwell et al., 2014) can be considered active BCI and reactive
BCI, respectively.

The modality of signal acquisition has been used to
divide systems into invasive and non-invasive BCI (Min
et al., 2010; Rosenfeld and Wong, 2017). Non-invasive BCI
exploiting EEG are most common, although more recently,
functional near infrared spectroscopy (fNIRS) (Matthews et al.,
2007), magnetoencephalography (MEG) (Fukuma et al., 2016),
functional magnetic resonance imaging (fMRI) (Kaas et al., 2019)
and functional transcranial Doppler ultrasonography (Faress
and Chau, 2013; Lu et al., 2015; Khalaf et al., 2019) have
been exploited. In contrast, invasive intracortical electrodes
(Pandarinath et al., 2017) and electrocorticography (ECoG)
(Kaiju et al., 2017) have been used, providing a superior signal-
to-noise ratio and better localization of brain activity. Table 1

summarizes signal acquisition modalities and their suitability for
BCI applications.

Recent technological advancements allow both the decoding
of neural activities and the delivery of external signals into
targeted brain areas to induce plasticity, i.e., remodeling of
neurosynaptic organization (Lajoie et al., 2017). Plasticity
is an inherent characteristic of the brain and peripheral
nervous system underpinning BCI-based rehabilitation and
other neuroscientific applications.While most of the BCI systems
translate brain signals to computer commands, some systems
utilize external stimulation modalities such as transcranial
magnetic stimulation (Grau et al., 2014; Rao et al., 2014;
Schaworonkow et al., 2019) and transcranial direct current
stimulation (Baxter et al., 2017) to stimulate specific brain
areas. The bidirectional framework of BCI comprises either one
brain with feedback modality or two brains. Transcranial direct
current stimulation directed by MI-related EEG signals alters
the connectivity in sensorimotor networks of healthy individuals
(Baxter et al., 2017). Another possible application of bidirectional
BCI framework is direct brain-to-brain communication (Grau
et al., 2014; Rao et al., 2014). Moreover, some BCI applications
require auxiliary modalities, e.g., proprioceptive feedback and
functional electrical stimulation driven by brain signals as
feedback for augmenting or regaining peripheral motor actions
(Darvishi et al., 2017; Bhattacharyya et al., 2019; Bockbrader et al.,
2019; Murovec et al., 2020).

1.2. Factors Influencing BCI Performance
For medical applications of BCI, three criteria are essential: (1) a
comfortable and convenient signal acquisition device, (2) system
validation and dissemination, and (3) reliability and potentiality
of BCI (Shih et al., 2012). For the restoration of mobility
in patients with motor impairments, invasive intracortical
recordings show better BCI performance (Hochberg, 2013)
than non-invasive methods such as EEG (Milan and Carmena,
2010). The performance determines how efficiently a patient
can perform an impaired motor task or communicate with an
external device. Invasive modalities are also suitable for locked-in
patients, because the benefits (significantly improved quality-of-
life) outweigh the risks associated with implantation (Gilja et al.,
2011). A pilot study found no adverse effects pertaining to surgery
or tissue reaction at 1 year follow-up (Friehs et al., 2006). Invasive
BCI should generally not be considered for neurologically intact
people due to risks associated with surgery. However, invasive
recordings may enable the utilization of localized inner cortex
activities and a better interpretation of surface recordings from
a non-invasive modality (Schalk, 2010; Lina et al., 2012).

Many factors influence BCI performance; taking the
underlying cortical-subcortical networks into consideration is
of crucial importance. For example, MI-induced signals are best
recorded from premotor and motor areas, because premotor
cortex, primary motor cortex and supplementary motor area
along with basal ganglia and thalamus of the subcortical areas are
the mostly activated areas during MI (Marchesotti et al., 2017).
While EEG can capture premotor and motor area activation
(Edelman et al., 2015; Saha et al., 2019a), intracortical electrodes
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FIGURE 1 | The number of publications over the years: The statistics was based on a search on PubMed in which “brain computer interface” was the search

keyword. The publications those were listed until 4th December 2020 have been accounted only. A significant increase in the number of publications in this decade as

compared to the last decade implicates the engagement of a greater community in this field and, thus the importance of BCI technology.

can record signals from basal ganglia and thalamus (Sand et al.,
2017).

Several issues can significantly impede BCI performance.
Maintaining an acceptable signal-to-noise ratio in non-invasive
long-term recordings is critical. Event-induced brain waves
or oscillations are dynamic and affected by unstable resting
state networks (RSNs) (Mantini et al., 2007). Time-variant
psychophysiological (Gonçalves et al., 2006; Zhang et al.,
2015; Acqualagna et al., 2016; Saha and Baumert, 2020),
neuroanatomical (Kasahara et al., 2015) factors and users’
fundamental traits (Ahn and Jun, 2015) cause unreliable
estimates of RSNs, causing short and long-term signal variation
within and across individuals (Saha and Baumert, 2020).
Due to these intrinsic signal variations, BCI systems require
subject-specific training, during which subjects attend a
calibration session that is tedious and often frustrating. To
eliminate subject-specific training, the concept of inter-subject

associativity, demonstrated in previous works in case of
natural vision (Hasson et al., 2004) and natural music listening
(Abrams et al., 2013), could be exploited toward inter-subject
operable BCI. Recent studies suggest that inter-subject operable
sensorimotor rhythm-based BCI might become feasible for
subjects who share common brain dynamics (Saha et al.,
2017, 2018, 2019a; Saha and Baumert, 2020). Inter-subject
BCI holds promise predominantly for healthy people and in
applications such as gaming, drowsiness and lie detection,
because rehabilitative BCI must consider the characteristics and
severity of individual impairment (Park et al., 2016). Transfer
learning can also reduce the effects of session-to-session and
subject-to-subject variabilities, by using systems that were
trained on data from different people exploiting commonalties
and reducing training requirements (Jayaram et al., 2016;
Saha et al., 2017, 2018, 2019a; He and Wu, 2019; Wu et al.,
2020).
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TABLE 1 | A list of neuroimaging techniques and their suitability in brain computer interface (BCI) applications.

Feature EEG MEG ECoG Intracortical

Recording

fMRI fNIRS PET

Activity type Electrical Magnetic Electrical Electrical Metabolic Metabolic Metabolic

Measurement type Direct Direct Direct Direct Indirect Indirect Indirect

Invasiveness Non-invasive Non-invasive Invasive Invasive Non-invasive Non-invasive Invasive

Portability Yes No Yes Yes No Yes No

Temporal resolution ∼ 0.05 s ∼ 0.05 s ∼ 0.003 s ∼ 0.003 s ∼ 1 s ∼ 1 s 1–2 min

Spatial resolution ∼ 10 mm ∼ 5 mm ∼ 1 mm ∼ 0.5 mm (LFP)

∼ 0.1 mm (MUA)

∼ 0.05 mm (SUA)

∼ 1 mm ∼ 5 mm ∼ 4 mm

BCI applicability Acceptable

spatio-temporal

resolution with

high-density

electrodes

Mobility

constraint

Unfavorable

for healthy

BCI users

Unfavorable

for healthy

BCI users

Slow and

mobility

constraint

Slow, but

mobile and

a potential

alternative

to fMRI

Limited

potentiality

EEG, electroencephalography; MEG, magnetoencephalography; ECoG, electrocorticography; fMRI, functional magnetic resonance imaging; fNIRS, functional near infrared

spectroscopy; PET, positron emission tomography.

2. CHALLENGES

2.1. Psychophysiological and Neurological
Challenges
Emotional and mental processes, neurophysiology associated
with cognition and neurological factors, i.e., functions, anatomy,
play crucial roles in BCI performance and give rise to significant
intra- and inter-individual variability (Saha and Baumert, 2020).
Psychological factors such as attention, memory load, fatigue and
competing cognitive processes (Gonçalves et al., 2006; Käthner
et al., 2014; Calhoun and Adali, 2016) as well as users’ basic
characteristics such as lifestyle, gender, and age, (Kasahara et al.,
2015) influence instantaneous brain dynamics. For example,
individuals with lower empathy participate less emotionally in
a P300-BCI paradigm and can produce higher amplitudes of
P300 waves than subjects with greater empathetic involvement
(Kleih and Kübler, 2013). Motivation is also related to P300-BCI
performance (Nijboer et al., 2010).

Besides psychological traits, resting state physiological
parameters, for example, frequency domain features of resting
state heart rate variability are associated with BCI performance
(Kaufmann et al., 2012). In addition, the baselines of RSNs are
dynamic and modify any cortical signature instantaneously
(Mantini et al., 2007). Age alters RSNs and associated cognitive
responses (Wang et al., 2016b). Adapting to such time-variant
RSNs is more demanding when the effects of RSNs mask
event-related cortical responses (Jensen et al., 2011). Moreover,
the inherent complexity and diversity in the formation of
human brains (Sporns, 2013) that influence the functional
neural networks (Honey et al., 2010), construct highly volatile
neuronal connectivity over time and across subjects (Honey
et al., 2009). An efficient BCI system must be robust to such
inherent physiological fluctuations over time to enable more
generalized systems (Saha and Baumert, 2020).

Experiments correlating BCI performance with
neuroanatomical, neurophysiological and psychological
parameters have provided fascinating results: gray matter

volume in sensorimotor cortical areas is associated with BCI
success (Kasahara et al., 2015). Sensorimotor rhythm-based BCI
has implicated that physiological predictors such as spectral
entropy and power spectral density, derived from resting state
EEG recordings are correlated with BCI performance (Zhang
et al., 2015; Acqualagna et al., 2016). Psychological predictors
such as attention and motivation, are also associated with
sensorimotor rhythm-based BCI performance (Hammer et al.,
2012). Corticospinal excitability could be used as another reliable
marker for BCI performance (Vasilyev et al., 2017). Taking
head anatomy into consideration augments BCI performance
(Wronkiewicz et al., 2015; Saha et al., 2019a).

Around 15–30% of individuals are inherently not able
to produce brain signals robust enough to operate a BCI
(Blankertz et al., 2009; Halder et al., 2019; Cecotti, 2020).
Considering neurophysiological phenomena may reduce BCI
illiteracy. An adaptive machine learning approach incorporating
neurophysiological and psychological traits has been proposed
to reduce BCI illiteracy (Vidaurre and Blankertz, 2010). The
causes of BCI illiteracy do not exclusively rely on users’ ability to
produce signals. Sometimes technological limitations may hinder
essential features extraction for a successful BCI operation for
an individual. For example, measurements of scalp EEG/MEG
may not show good task-specific signals due to the folding of the
cortex or scalp-to-cortex distance for that individual (Andersen
et al., 2020).

Other case-specific investigations on neuro-psycho-
physiological parameters contributing to BCI performance
are essential. For the rehabilitation of stroke survivors, affected
neural circuits, i.e., lesions are to be identified carefully, because
brain responses fluctuate according to the spatial location of the
stroke lesion (Park et al., 2016). Although current neuroimaging
methods are effective in capturing stroke lesion sites, a case-
specific BCI design that incorporates residual brain function is
required for rehabilitative interventions. Highly individualized
design impedes wide dissemination of BCI-driven rehabilitation
of neurological conditions.
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2.2. Technological Challenges
Event related potential (ERP) (McCane et al., 2015), steady-
state visual evoked potential (SSVEP) (Chen et al., 2015; Abu-
Alqumsan and Peer, 2016), auditory evoked potential (AEP)
(Schreuder et al., 2010), steady-state somatosensory evoked
potential (SSSEP) (Muller-Putz et al., 2006; Oxley et al., 2017),
and motor imagery (MI) (Marchesotti et al., 2016; Saha et al.,
2019a; Saha and Baumert, 2020), have been proposed to detect
cognitive signatures although none of the approaches performs
well for all BCI applications. For example, ERPs and SSVEPs
are target-specific and elicited by external stimuli; however,
if ERPs depend on visual stimuli, they cannot be used for
communication by locked-in patients with impaired visual
processing. In that case, auditory-based ERP (e.g., AEP) could be
used if auditory processing remains intact. The SSVEP method
provides the highest information transfer rate of a non-invasive
EEG-based BCI (Chen et al., 2015; Abu-Alqumsan and Peer,
2016). Limitations of the SSVEP technique include visual fatigue
caused by looking at a flickering display for a long time.
When using this technique, the control signal could be arbitrary
and counter-intuitive, although it might depend mostly on the
experimental context. For example, when using a BCI speller
based on SSVEP, an individual looks at the letter “A”, which
flickers at 10 Hz. It is generally not given importance to any
inherent relationship between “A” and 10 Hz, instead the control
signal is arbitrary mapped to interface with a computer. An
advantage of an MI-based BCI is the use of explicit mapping
of task-related brain signals to operate (Saha and Baumert,
2020). However, MI seems too slow for action control, thus
they are not suitable for controlling virtual reality environments
or videogames (Lécuyer et al., 2008). Recently proposed hybrid
BCIs which utilize more than one signature, i.e., SSVEP/ERP
(Combaz and Van Hulle, 2015; Yin et al., 2015) and SSVEP/MI
(Pfurtscheller et al., 2010; Horki et al., 2011), seem to offer more
robust features. Considering asynchronous BCI where the user
decides to activate a command when necessary, the performance
is still unsatisfactory (Han et al., 2020).

The intrinsic neurophysiological instability of brain dynamics
poses critical challenges for making BCI systems efficient. The
major components of a BCI system are signal acquisition, signal
processing and effector device (Schwartz et al., 2006). Various
neuroimaging techniques have been used to explore cortical
activities through either electrical or hemodynamic signatures
(Min et al., 2010), but none of the methods shows any advantage
for a lucrative BCI design meeting the four important criteria:
cost efficiency, portability, easy maintenance, and little or no
involvement of surgery. EEG-based BCI are relatively more
compliant with the abovementioned criteria as compared to
other signal acquisition modalities. Tables 2, 3 list a diverse range
of BCI applications exploiting EEG. Both invasive and non-
invasive signal acquisitions have recently shown that reliable
long-term (i.e., for at least several months) use of BCI systems
is quite feasible (Saeedi et al., 2016; Sauter-Starce et al., 2019;
Shahriari et al., 2019; Oxley et al., 2020).

EEG provides relatively poor spatial resolution due to non-
invasive scalp recordings compared to fMRI, but finer temporal

resolution (Lystad and Pollard, 2009; Min et al., 2010; He
et al., 2011; Nicolas-Alonso and Gomez-Gil, 2012). Employing
high density EEG mapping increases spatial resolution but
results in high computational cost and efforts to maintain
a reasonable signal-to-noise ratio across all channels (Chen
et al., 2015). Since EEG captures only the electrical field
associated cognitive processes, concomitant assessment of blood-
oxygen level-dependent (BOLD) activity may improve BCI
performance. BOLD activity is typically captured with fMRI
(Sitaram et al., 2007), which is not feasible for most BCI
applications, due to unmanageable size and cost of the device.
fNIRS provides a safe, non-invasive, relatively inexpensive
and portable neuroimaging alternative for recording BOLD
activity (Matthews et al., 2007). Integrating fNIRS with EEG
can significantly enhance classification performances regardless
of low information transfer rate caused by inherent delays
in hemodynamics (Fazli et al., 2012). A recent study has
suggested that fNIRS is unable to adequately offer acceptable
performances on its own, but can be combined with EEG to
boost the performances (Ge et al., 2017). However, continuous
technological advances could promote fNIRS as an exclusive tool
for neuroscience research, including the development of BCI
(Scholkmann et al., 2014; Naseer and Hong, 2015).

Probing sources in cortico-subcortical networks is another
important limitation of scalp-based sensors such as EEG.
Reconstructing task-induced networks while resolving the so-
called inverse problem imposes a significant challenge. A two-
equivalent-dipole model was applied on EEG data to discern
the anatomical nature of the MI induced sources and to aid
the classification performances (Kamousi et al., 2005). Saha
et al. proposed a wavelet-based source localization approach
to investigate MI-related sources and their impact on BCI
performance (Saha et al., 2019a). The neuronal potentials
attenuate through several tissue layers of complex geometry and
diverse electrical properties; however, the magnetic permeability
in the cerebrospinal fluid, skull, and skin, is consistent (da Silva,
2013). Thus, MEG can capture signal with less distortion than
EEG. Although MEG provides better spatiotemporal resolution
as compared to EEG, the magnetic field created by the brain
is very small, requiring costly, stationary recording equipment
(Mellinger et al., 2007; Corsi et al., 2019).

The BCI classifier design has to address two issues (Bashashati
et al., 2007; Lotte et al., 2007, 2018). First, the dimensionality
of the features set used for estimating the model parameters
should be chosen for optimal performance based on the
nature of the classifier. Second, the trade-off between bias and
variance has to be considered and may involve regularizing the
parameter estimation.

Covariate shift occurs when the features extracted from
the training differ from those of test data impacting the
classification performance (Krusienski et al., 2011). Covariate
shift is an important issue requiring the application of adaptive
methods for compensating feature space transitions (Jayaram
et al., 2016; Saha and Baumert, 2020). The unsupervised
subspace learningmethod enables session-to-session and subject-
to-subject information transfers, augmenting BCI performance
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TABLE 2 | A summary of sensorimotor rhythms and electroencephalography-based brain computer interface (BCI) studies.

References Modality Wave/Task Data analysis Context Application

Romero-Laiseca et al., 2020 EEG MI Riemannian geometry,

LDA

Motor learning &

plasticity induction

Lower limb

rehabilitation

Song and Kim, 2019 EEG MI Spectral averaging Visuo-Tactile

stimulation

MI enhancement

Saha et al., 2019a EEG MI wMEM Transfer learning Inter-subject BCI

Toriyama et al., 2018 EEG MI, ME LDA MI & ME resemblance Corticospinal excitability

Yu et al., 2018 EEG MI CSP, LDA Assistive technology Wheelchair navigation

Darvishi et al., 2017 EEG MI LF Motor training by

proprioceptive feedback

Upper limb rehabilitation

Park et al., 2016 EEG MI, ME ICA, CAR Variable lesion

characteristics

Stroke rehabilitation

Kasahara et al., 2015 EEG MI LF, AR Neuroanatomical predictor Motor rehabilitation

Edelman et al., 2015 EEG MI WMNE Decoding complex MI Higher degrees

of freedom

Leamy et al., 2014 EEG ME, MI Filter bank CSP Plasticity induction Stroke rehabilitation

Ramos-Murguialday et al., 2013 EEG ME, MI AR Stroke rehabilitation,

assitive technology

Hand orthosis control

LaFleur et al., 2013 EEG MI AR Assistive technology,

robotics

Quadcopter control

EEG, electroencephalography; ME, motor execution; MI, motor imagery; wMEM, wavelet-based maximum entropy on the mean; LF, Laplacian filter; AR, autoregressive model; CSP,

common spatial pattern; ICA, independent component analysis; CAR, common average reference; WMNE, weighted minimum norm estimate; LDA, linear discriminant analysis.

TABLE 3 | A summary of non-sensorimotor rhythms and electroencephalography-based brain computer interface (BCI) studies.

References Modality Wave\Task Data analysis Context Application

Jin et al., 2020 EEG P300 LDA Vibrotactile stimuli Spinal cord injury

rehabilitation

Cecotti, 2020 EEG SSVEP CCA Generalized framework BCI literacy

Halder et al., 2019 EEG P300 LDA Auditory stimuli BCI literacy

Wei et al., 2018 EEG Continuous

(alert vs.

drowsy)

PCA, LDA,

SVM

Driving scenario in

virtual reality

Drowsiness detection

Guy et al., 2018 EEG P300 LDA Amyotrophic lateral

sclerosis

Visual P300 speller

Alcaide-Aguirre et al., 2017 EEG P300 LDA Cerebral palsy Cognitive assessment

Waytowich et al., 2016 EEG P300 Information

geometry

Transfer learning Inter-subject BCI

Norton et al., 2015 EEG SSVEP,

P300

Averaging Soft, curved

electrode systems

Text speller

Botrel et al., 2015 EEG P300 LDA Amyotrophic lateral

sclerosis

Brain painting

Farwell et al., 2014 EEG P300 Bootstrapping Brain fingerprinting Lie detection

Petrov et al., 2014 EEG VEP Naive Bayes High-density

EEG systems

Epilepsy or other

BCI applications

Chi et al., 2011 EEG SSVEP CCA Dry and non-contact

sensors

Typical BCI application

Iturrate et al., 2009 EEG P300 LDA Assistive Technology Wheelchair control

EEG, electroencephalography; P300, an event-related potential; SSVEP, steady-state visual evoked potential; VEP, visual evoked potential; LDA, linear discriminant analysis; CCA,

canonical correlation analysis; PCA, principal component analysis; SVM, support vector machine.

(Samek et al., 2013; Jayaram et al., 2016; Saha et al., 2018).
The common spatial pattern, a supervised method, has been
extensively used in EEG-based online and offline BCI settings
(Ramoser et al., 2000; Wu et al., 2017a). A common problem

with such a data-driven technique is over-fitting of the
model parameters based on training sets, causing unreliable
prediction on the test data (Sannelli et al., 2016). Recent studies
integrated diverse methods into potential transfer learning
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TABLE 4 | A summary of multimodal and hybrid brain computer interface (BCI) studies.

References Modality Wave\Task Data analysis Context Application

Zuo et al., 2020 EEG MI+P300 CSP, LDA Hybrid BCI Post-stroke rehabilitation

Rezazadeh Sereshkeh et al., 2019 EEG+fNIRS Imagined speech WT, LDA Multimodal BCI Robotic control

Corsi et al., 2019 EEG+MEG MI LDA Multimodal BCI Motor rehabilitation

Chiarelli et al., 2018 EEG+fNIRS MI Deep learning Multimodal BCI Motor rehabilitation

Ge et al., 2017 EEG+fNIRS MI CSP, SVM Multimodal BCI Motor rehabilitation

Zhao et al., 2016 EEG+FES SSVEP CSP Motor plasticity Paretic limb rehabilitation

Combaz and Van Hulle, 2015 EEG P300+SSVEP SVM Hybrid BCI Assistive control

Rao et al., 2014 EEG+TMS Visuomotor LF Hyperinteraction Brain-to-brain interface

Grau et al., 2014 EEG+TMS MI Spatial filter,

re-referencing

Hyperinteraction Brain-to-brain interface

Choi and Jo, 2013 EEG P300+SSVEP+MI CSP, CCA Hybrid BCI-based

assistive

technology

Humanoid robot control

EEG SSVEP+MI LDA Hybrid BCI Motor rehabilitation,

assistive technology

Kauhanen et al., 2006 EEG+MEG ME Particle filters Multimodal BCI Spinal cord injury

EEG, electroencephalography; fNIRS, functional near infrared spectroscopy; MEG, magnetoencephelography; FES, functional electrical stimulation; TMS, transcranial magnetic

stimulation; P300, an event-related potential; SSVEP, steady-state visual evoked potential; MI, motor imagery; ME, motor execution; WT, wavelet transform; CSP, common spatial

pattern; CCA, canonical correlation analysis; SVM, support vector machine; LDA, linear discriminant analysis; LF, Laplacian filter.

TABLE 5 | A summary of brain computer interface (BCI) studies involving invasive procedures.

References Modality Wave\Task Data analysis Context Application

Oxley et al., 2020

Oxley et al., 2017

Oxley et al., 2016

Stentrode SSSEP Spectral analysis Catheter angiography-

guided implantation

Minimally invasive BCI:

human clinical trial in

progress

Sauter-Starce et al., 2019

Mestais et al., 2014

ECoG SSEP Spectral analysis WIMAGINE (Wireless

Implantable Multi-channel

Acquisition system for

Generic Interface

with Neurons)

Intracranial BCI: validation

on in vivo sheep model

Sand et al., 2017 EEG DBS response Averaging Parkinson’s disease Motor rehabilitation

Kaiju et al., 2017 ECoG SEP Wavelet transform Finger stimulation Motor learning/ rehabilitation

Vansteensel et al., 2016 iMEA Visuomotor Autoregression

filter

Late-stage amyotrophic

lateral sclerosis

Motor rehabilitation

Downey et al., 2016 iMEA ME Firing rate

estimator

Vision-guided

assistive technology

Robotic prosthetics control

Pahwa et al., 2015 ECoG Sleep-Wake Welch’s

periodogram,

logistic regression

Assistive technology Neuroprosthetic control

Yin et al., 2014 iMEA ME, Visuomotor,

Sleep-Wake

PCA Full-spectrum

electrophysiological

recording

BCI, diagnostics,

therapeutic treatments

Keefer et al., 2008 iMEA Video watching Spectrogram Carbon nanotube-

coated electrodes

Neural decoding

and stimulation

Friehs et al., 2006 iMEA MI Not specified Assistive technology/

clinical use of BCI

Cursor control/

epilepsy monitoring

ECoG, electrocorticography; iMEA, intracortical microelectrode array; Stentrode, stent-electrode recording array; EEG, electroencephelography; ME, motor execution; SEP,

somatosensory evoked potential; MI, motor imagery; SSSEP, steady-state somatosensory evoked potential; DBS, deep brain stimulation; PCA, principal component analysis.

frameworks for BCI including spatial filters (e.g., common
spatial pattern), Riemannian geometry, Euclidean alignment
and subspace adaptation and deep learning-based techniques
(Barachant et al., 2011; Congedo et al., 2013, 2017; Marathe
et al., 2015; Wu et al., 2016, 2017b; Wu et al., 2020; He
and Wu, 2019, 2020; Kwon et al., 2019; Zhang and Wu,
2020).

3. NEUROPLASTICITY, SENSORS, SIGNAL
PROCESSING, MODELING, AND
APPLICATIONS

Exploiting neuroplasticity, designing hi-fidelity and customized
neural sensors, applying advanced signal processing, and
machine learning techniques are the key aspects of an effective
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BCI design. Tables 2–5 highlight diverse characteristics of
BCI components and applications including signal acquisition
modality, experimental paradigm, data analysis and pattern
recognition, application field, and significance. Notably, there are
no specific selection criteria for studies in Tables 2–5 due to the
broad spectrum of topics covered in this review; however, they
are summarized such that critical advances over the last several
years can be appreciated.

3.1. Neuroplasticity and Cognitive
Rehabilitation
The time-variant behavior of synapses within complex neural
networks underpins the plastic characteristics of the brain and
was first illustrated by Donald O. Hebb in 1949 (Brown and
Milner, 2003). Neuroplasticity not only helps to assist cognitive
and perceptual learning but also is the main ingredient for
neurorehabilitation. How plastic a particular brain area is,
may define the effectiveness of a neurofeedback strategy to
induce specific activity patterns. Studies have shown visual
cortices are plastic enough to produce robust neural signals
for post-neurofeedback perceptual learning (Shibata et al.,
2011; Amano et al., 2016). Another study has demonstrated
if right/left hemispheric differences in neurofeedback-induced
alpha activities are associated with visual information processing
and motor behaviors, and, thus, control spatial attention
(Jones and Sliva, 2020). fMRI-based neurofeedback training
sessions induce the plasticity of attention-related behavior.
Implications suggest that neurofeedback can offer rehabilitation
of attentional deficit (Megan et al., 2015). A recent study has used
neurofeedback to generate robust somatosensory oscillations
associated with human perception (Brickwedde et al., 2019).

Closed-loop BCI with neurofeedback is assumed to contribute
to the reorganization of cortical-subcortical neural networks
and assist subjects in self-regulating specific brain rhythms;
notwithstanding, the underlying mechanisms that alter neural
substrates are still not fully-understood (Sitaram et al., 2017).
For example, BCI-based covert visuomotor training modulates
associated neural substrates, where the effects of modulated
neural substrates are observed while performing that particular
movement-related task (Vyas et al., 2018). Substantial changes
in overt movement-related task following BCI-driven training
induced learning suggest a critical role of BCI in enhanced
motor learning for proficiently controlling neuroprosthetics
(Orsborn et al., 2014), i.e., devices that can enhance or repair
the output of the nervous system. For example, intracortical
electrodes may be used to stimulate specific brain regions to
regain motor control (Oxley et al., 2016; Sand et al., 2017).
BCI may augment training-induced plasticity during therapeutic
motor rehabilitation and, thus, re-excite corresponding neural
substrates to regain control by means of neuroprosthetics or
upper limb functions (Dobkin, 2007). Other examples include
BCI-driven exoskeletons to enhance human working capacity
(Benabid et al., 2019).

The extent of BCI-induced plasticity entails several factors,
including (1) the selection of the signal acquisition modality,
which plays an important role in diagnosing neural states, (2) the

design of feedback modality that has explicit association with the
neural signal classification performance, (3) the consideration of
application-specific feedback delays, and (4) the utilization of a
suitable feedback modality (Grosse-Wentrup et al., 2011). Neural
ensemble recordings using signal acquisition modalities such as
EEG, MEG, fNIRS, and fMRI have become dominant over single
unit recordings. Behavioral activities are likely to be distributed
across three-dimensional cortical-subcortical networks and that
cannot be captured within single unit recordings (Nicolelis and
Lebedev, 2009).

Rehabilitative BCI can be designed either by attaching neural
prostheses to the impaired body parts or by re-stimulating
the damaged synaptic networks; in any of the cases, the
idea is to exploit and promote neuroplasticity (Wang et al.,
2010; Ramos-Murguialday et al., 2013; Park et al., 2016;
Darvishi et al., 2017; Toriyama et al., 2018; Song and Kim,
2019; Romero-Laiseca et al., 2020). In stroke patients with
paretic muscles without residual finger movement, increased
electromyographic activity post rehabilitation by BCI-driven
orthoses exhibits increased neuromuscular coherence that is
essential for restoring movement control (Pfurtscheller et al.,
2000; Ramos-Murguialday et al., 2013). Explicit application
of functional electrical stimulation regulated by EEG-based
movement-related signatures further suggests a role of BCI in
rehabilitation (Zhao et al., 2016). Increased electromyographic
activity in paretic muscles is indicative of plasticity induced by
electrical stimulation (De Marchis et al., 2016). For BCI-based
rehabilitation in a real-life environment, differentiating between
task-induced activities and resting state activities is a key factor
for controlling the prosthesis or stimulation modality (Pahwa
et al., 2015).

Externally stimulating the affected brain areas by electric
or magnetic fields holds promise for stroke rehabilitation. A
recent study demonstrated the induction of neuroplasticity in
white matter and cortical functions in chronic stroke patients
by motor imagery-based BCI and transcranial direct current
stimulation applied to targeted brain areas (Hong et al., 2017).
Magnetic stimulation of brain areas driven by BCI increases
cortical activation in stroke patients (Johnson et al., 2018).
The level of neuroplasticity achieved post-rehabilitation varies
across subjects and, thus, an individual-specific training session
is necessary (Leamy et al., 2014). The use of BCI-based motor
rehabilitation for locked-in patients is limited because they are
unable to fully interact with the system (Birbaumer and Cohen,
2007). Other examples of BCI-driven rehabilitations include
optimizing the parameters for deep brain stimulation applied
into the subthalamic nucleus in patients with Parkinson’s disease
(Sand et al., 2017) and treating major depressive disorder by
BCI-driven transcranial magnetic stimulation (Ray et al., 2015).

Either by providing direct control of assistive technologies or
by direct neurostimulation, BCI can help patients whomay suffer
from amyotrophic lateral sclerosis, cerebral palsy, brainstem
stroke, spinal cord injuries, muscular dystrophies, or chronic
peripheral neuropathies (Kauhanen et al., 2006; Iturrate et al.,
2009; Mak and Wolpaw, 2009; Allison et al., 2010; Ramos-
Murguialday et al., 2013; Leamy et al., 2014; Botrel et al., 2015;
Combaz and Van Hulle, 2015; Edelman et al., 2015; Park et al.,
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2016; Zhao et al., 2016; Alcaide-Aguirre et al., 2017; Ge et al.,
2017; Chiarelli et al., 2018; Guy et al., 2018; Yu et al., 2018;
Rezazadeh Sereshkeh et al., 2019; Jin et al., 2020; Zuo et al., 2020).
Providing auxiliary degrees of freedom improves the quality of
life of people with disabilities significantly. Brain signals can be
translated to drive wheelchairs (Galán et al., 2008; Iturrate et al.,
2009; Perdikis et al., 2017; Tonin and Millán, 2020). Integration
of BCI with a vision-guided autonomous system was shown
to effectively perform the grasping task using a prosthetic arm
in a tetraplegic patient (Downey et al., 2016). An implanted
microelectrode array has been proposed to operate a three-
dimensional neuroprosthetic device (Taylor et al., 2002).

3.2. Signal Acquisition, Signal Processing,
and Modeling
A significant number of studies are now involved in combining
multimodal signal acquisition modalities to augment current
BCI systems. For example, simultaneous EEG and fMRI
yield complementary features by exploiting good temporal
resolution of EEG and good spatial resolution of fMRI
(Debener et al., 2006). Enhanced multiclass sensorimotor
tasks classification performance using hybrid EEG and fNIRS
signals implicates the importance of features extracted from
both hemodynamic and electrical activities (Buccino et al.,
2016). MEG is another potential tool to combine with EEG,
as it captures radially/tangentially dipole sources in cortical-
subcortical networks and adds complementary information to
EEG signals (Kauhanen et al., 2006). Skepticism might still
present about the detection of brain activities originated from
subcortical areas; however, an increasing number of studies
argue that EEG and MEG could capture subcortical activities
(Andersen et al., 2019; Min et al., 2020; Piastra et al., 2020).
A recent trend is to combine different signal acquisition
modalities together to improve BCI efficiency. Table 4 highlights
multimodal and hybrid BCI applications.

The combination of signal processing and machine learning
approaches plays critical role in translating any brain signal
to a command for a computer or other external devices.
Tables 2–5 highlight different signal processing and machine
learning techniques. Representing signals in the time-frequency-
space is necessary to obtain physiological correlates of BCI
outcomes (McFarland et al., 2006; Bashashati et al., 2007).
Fourier transform (FT) and autoregressive models are examples
of time domain representations of brain signals while short
time FT and wavelet transform are examples of time-frequency
representations (McFarland et al., 2006; Bashashati et al., 2007).
In case of spatial filtering, the most popular filtering approaches
are common spatial pattern, independent component analysis
and the Laplacian filter. A diverse range of inverse models allow
to discern the actual sources projected on three-dimensional
cortical-subcortical networks (Wronkiewicz et al., 2015; Saha
et al., 2019a). Extracted features can be translated using various
linear and non-linear classification algorithms. Examples of
linear and non-linear classifier models are linear discriminant
analysis and non-linear kernel-based support vector machines
(Lotte et al., 2007, 2018).

Since the first publication in 2000, common spatial pattern is
still one of the most popular methods to represent multichannel
EEG signals by corresponding spatial contents (Ramoser et al.,
2000). As a data-driven method, it requires a significant
number of training samples to model the filtering parameters.
In case of small training trials, regularizing the covariance
estimation works better than the traditional algorithm (Lotte
and Guan, 2010). Other modifications in spatial filtering
include projecting EEG by using sparse representation and filter
bank spectral division of raw signals (Arvaneh et al., 2014).
Generally, spatial filtering is applicable in subject-specific BCI
development although recent studies have proposed estimating
the filter coefficients from a subject and applied that filter to
another subject, which contributed no training sample (Saha
et al., 2017, 2018, 2019a). Other popular data-driven methods
include linear discriminant analysis, support vector machine and
principal component analysis (Lotte et al., 2007, 2018). With
the exceptional advancements in computational facilities in the
last decade, deep learning-based BCI paradigms by allowing the
evaluation of large datasets could soon become a trend in the
community (Chiarelli et al., 2018; Kwon et al., 2019; Nagel and
Spüler, 2019).

On the other hand, independent component analysis is a blind
source separation method requiring no training. The estimation
of independent components is based on statistical properties of
the signals (Bell and Sejnowski, 1995). However, modeling the
actual cortical sources as dipoles in the complex brain anatomy
from the scalp EEG recordings seeks to solve the so-called inverse
problem (Qin et al., 2004; Kamousi et al., 2005; Wronkiewicz
et al., 2015; Saha et al., 2019a). More recent source localization
methods such as wavelet-based maximum entropy on the mean
represent EEG/MEG signals as relevant time-frequency contents
and finally transform them into spatial representations (Lina
et al., 2012; Saha et al., 2019a). Notably, different inverse
methods and toolboxes demonstrate considerable variability in
localized sources (Mahjoory et al., 2017). Even it is not very
straightforward to know the exact sources, which are to be
modeled using EEG/MEG. For example, the ground truth defined
by implanted electrodes might not be 100% reliable because of
sparse (spatial) sampling. In the case of fMRI, the measurement
of neural activity is indirect. Notwithstanding, inverse methods
have shown promise for designing various BCImodels (Qin et al.,
2004; Kamousi et al., 2005; Wronkiewicz et al., 2015; Saha et al.,
2019a).

3.3. Neurosensors: The-State-of-the-Art
Deeper regions of the brain, e.g., subcortical and cerebellar
regions, contribute to various neuronal activities (Müller et al.,
2002; Wardman et al., 2014). Interpreting the genesis of
cortical sources from cellular to scalp levels and RSNs spanned
throughout the three-dimensional brain space can guide BCI
development (Donoghue, 2008). Sensors with customized design
are developed to advance brain signal acquisition modalities.
Neurosensors can be constructed in different forms like electrical,
optical, chemical and biological (Deisseroth and Schnitzer,
2013). Dry EEG electrodes are convenient, but assumed to
provide lower signal-to-noise ratio compared to conventional
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wet electrodes. Wet electrodes may cause inconvenience to
users as they use conductive gel and require proper skin
preparation for minimizing the skin-electrode impedance (Liao
et al., 2012). However, a study on dry electrodes-based BCI
suggested that dry electrode could be used to collect good
quality signals by designing the circuits carefully (Chi et al.,
2011). Further studies support dry electrodes with wireless
systems that could offer comparable signal quality as of wet
electrodes, but with more convenience (Di Flumeri et al., 2019;
Marini et al., 2019; Hinrichs et al., 2020). While utilizing the
advantages of both dry and wet electrodes, quasi-dry electrodes
exploiting the mechanical properties of polymer can capture
signals as comparable to commercial Ag/AgCl electrodes (Mota
et al., 2013). To increase the spatial resolution of EEG, Petrov
et al. have proposed an ultra-dense sensor array of 700–800
electrodes (Petrov et al., 2014). The signal-to-noise ratio was
twice as high as for high-density EEG that has up to 256
gold-coated electrodes. An auricle electrode with stretchable
connector was proposed that not only can increase portability
but also can offer a comfortable alternative for long term
recordings (Norton et al., 2015). The electrode is flexible
with the alterations of electrical and mechanical properties
of skin.

Invasive sensors must be biocompatible. A novel organic
electrochemical transistor-based sensor enables to collect neural
signals directly from the brain surface (Khodagholy et al.,
2013). This sensor is biocompatible and mechanically flexible,
and the transistor-based design amplifies captured signals
locally, thus providing much better signal-to-noise ratio than
conventional ECoG. To enhance the signal quality, carbon
nanotube coating can decrease the electrode impedance and,
thus, increase the charge transfer (Keefer et al., 2008). Another
invasive biocompatible sensor, designed for recording previously
inaccessible spectra of large neuron populations, includes data
transmission for use in natural environments (Yin et al.,
2014). With the outstanding progress of nanotechnology,
nanowire Field Effect Transistor and other p/n junction devices
have potential for neuro-sensing modalities for intracellular
recordings, even in the deep brain regions (Kruskal et al., 2015).
Oxley et al. have proposed stent-electrode array (stentrode)
that involves minimal invasiveness (Oxley et al., 2016, 2017).
Using computer-guided catheter angiography, the stentrode can
be placed within arteries or veins located inside the brain
anatomy. Capturing high-fidelity cortical signals, this technology
will significantly reduce the risk factors of craniotomy. A follow-
up study has recently demonstrated successful implantation
of the strentrode in humans for long-term neural signal
recording (Oxley et al., 2020). The information transfer rate for
strentrode-based BCI was comparable to the landmark study by
Vansteensel et al. with implanted electrodes (Vansteensel et al.,
2016). Another implanted ECoG recorder called as WIMAGINE
(Wireless Implantable Multi-channel Acquisition system for
Generic Interface with Neurons) allows wireless neural data
access (Mestais et al., 2014). The WIMAGINE has recently been
tested for long-term reliability of data acquisition and any risk
associated with craniotomy (Kruskal et al., 2015; Sauter-Starce
et al., 2019).

Besides large-scale recording modalities like EEG and MEG,
very small-scale recordings of neuronal activities are crucial
for understanding brain circuits’ functions and intra- and
inter-neuron interactions. Representation of any cognitive task
as functions of both small-scale and large-scale neuronal
interactions is crucial for the advancement of neuroengineering
and BCI. In this regard, a high-density neurosensor array made
from silicon probes combined with optogenetics enables single
unit recordings (Buzsáki et al., 2015). Yang et al. proposed
a novel multi-plane two-photon microscope that can be used
to capture multi-layer neuronal structure and mechanism with
cellular resolution (Yang et al., 2016). Other potential imaging
methods for investigating cell signaling include calcium imaging
(Grienberger and Konnerth, 2012) and advanced microscope
with chronically implanted lenses (Resendez et al., 2016).
Designer receptor exclusively activated by designer drugs,
provides a chemogenetic tool to understand cell-signaling
including electrical activities in molecularly clustered cell groups
(Sternson and Roth, 2014; Roth, 2016). A new ultrasonic-based
wireless system, called neural dust, enables the recording of
electromyogram and electroneurogram on the millimeter scale
(Seo et al., 2016).

3.4. Affective Computing, Gaming,
Robotics, and Miscellaneous Applications
Future computers are assumed to have emotional and perceptual
capabilities, which could extend the use not only to assisting
humans but also to making decisions (Picard, 2000). Computers
might able to recognize and interpret underlying affective states
based on physiological and behavioral variables. Recent studies
demonstrated BCI is a potential tool to investigate affective states,
expanding the applications into psychology (Piho and Tjahjadi,
2018; Song et al., 2018; Huang et al., 2019). Huang et al. have
proposed an EEG-based BCI to detect positive and negative
emotions induced by video stimulus (Huang et al., 2019).

Integration of arts into BCI is referred to as artistic BCI
(Andujar et al., 2015). In the late 1960s, David Rosenboom
began experimenting with ways to link brain functions with
musical production, perception of musical forms and musical
proprioception (Rosenboom, 2014). Other examples of artistic
BCI include affective states detection, playing video games and
controlling virtual/augmented reality environment. Studies have
demonstrated that a user can fully operate video games by
SSVEP-BCI (van Vliet et al., 2012; Filiz and Arslan, 2020).
Other studies have proposed how multiple users can participate
in a collaborative game, in which joint decision making is
required to control the gaming environment (Nijholt and Poel,
2016; Sekhavat, 2020). Another study previously suggested
the aggregation of information from two intelligence analysts’
brain signals may lead to better decision making than one’s
brain signals (Stoica, 2012). The underlying cause could be
explained by inter-individual differences in human cognitive
and perceptual skills (Kleinschmidt et al., 2012). Collaboration
between users might assist an individual’s decision making by
diversity inclusion. A modified setup could investigate how
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people interact in different social contexts, extending BCI
applications in sociology (Amaral et al., 2017).

Virtual/augmented reality (V/AR) technologies together with
BCI could offer immersive experiences and have many potential
applications including arts and neurofeedback (Andujar et al.,
2015; Tremmel et al., 2019; Putze et al., 2020). Brain painting
allows a user to draw lines in a virtual canvas by brain signals,
which gives an alternative communication channel for people
with paretic motor functions (Botrel et al., 2015). McClinton
et al. have developed a brain painting application using VR
environment (McClinton et al., 2019). Another work has evinced
VR-BCI to measure cognitive workload that can contribute to
neuroergonomics (Tremmel et al., 2019). Studies have also used
immersive VR as a better neurofeedback option as compared
to the computer screen leading to increased BCI accuracy (Luu
et al., 2016; Škola et al., 2019; Vourvopoulos et al., 2019; Juliano
et al., 2020). Vourvopoulos et al. have integrated the principles
of VR and BCI into a platform called REINVENT for motor
rehabilitation (Vourvopoulos et al., 2019). Likewise, BCI with AR
can be used to remotely control a robot for rehabilitating children
with attention-deficit/hyperactivity disorder (Arpaia et al., 2020).

While BCI-driven robotic controllers can offer advanced
assistive technology for people with mobility constraint, it
may also augment human ergonomic performance for healthy
subjects (Millan et al., 2004; Gandhi et al., 2014; Tidoni et al.,
2016; Perdikis et al., 2017; Spataro et al., 2017; Yuan and Li, 2018;
Deng et al., 2019; Tonin et al., 2019; Tonin and Millán, 2020).
EEG-based BCI-driven controller of mobile robot or wheelchair
has demonstrated the possibility of this technology in robotics
industry (Millan et al., 2004; Tidoni et al., 2016; Perdikis et al.,
2017; Yuan and Li, 2018; Deng et al., 2019; Tonin et al., 2019). BCI
can also be used for controlling humanoid robots remotely using
EEG (Spataro et al., 2017), suitable in hazardous environments,
for example by sending a robot in a coal mine for executing
a task that is potentially unsafe for a human. In space, BCI
can be used to monitor astronauts’ working capacity and to
drive an exoskeleton (Menon et al., 2009; de Negueruela et al.,
2011). In the absence of gravity, working becomes tedious and
inconvenient. Furthermore, astronauts’ working time is precious.
BCI-driven systems could be practical for improving astronauts’
functionality, efficiency and safety (Summerer et al., 2009; Farwell
et al., 2014; Botrel et al., 2015; Ortiz et al., 2016; Wang et al.,
2016a; Vourvopoulos et al., 2019; Singh et al., 2020).

Recently, brain-to-brain interface (BBI) experiments that
involve decoding sender’s cognitive intentions, translate them
into commands for stimulating receiver’s brain, have been
explored (Pais-Vieira et al., 2013; Rao et al., 2014; Jiang
et al., 2019). In 2013, researchers implemented a direct BBI
system in which one rat was able to share sensorimotor
information to another rat (Pais-Vieira et al., 2013). Intracortical
microstimulation was used to stimulate the receiver’s target brain
areas. An early attempt to develop sensorimotor rhythm-based
BBI between two human subjects used non-invasive EEG and
transcranial magnetic stimulation has been proposed by Rao et al.
(2014). Other total non-invasive BBI experiments have proposed
sharing pseudo-random binary streams encoded words between
human subjects (Grau et al., 2014) and playing collaborative

games (Stocco et al., 2015). Figure 2 illustrates a timeline for
current advances of BCI in diverse applications.

4. ETHICAL CONCERNS AND
SOCIOECONOMIC CONTEXTS

Irrespective of the scientific breakthroughs in BCI field, there are
key factors pertaining to safety, ethics, privacy protection and
data confidentiality, community acceptance and socioeconomic
aspects that should be considered with adequate precautions
to maximize users’ benefits and social impacts (Illes and Bird,
2006; Bostrom and Sandberg, 2009; Jebari, 2013; McCullagh
et al., 2014). Obtaining an ethically sound informed consent
from a BCI worn patient may be challenging for BCI researchers
due to difficulty in communicating and the lack of alternatives.
However, more awareness and attention to ethics policies
are recommended to improve the chance for patients to get
adequate information.

Physical and mental safety of BCI users is important. Invasive
procedures such as deep brain stimulation and intracortical
microelectrode array may cause postoperative psychological and
neurological side effects (Jotterand and Giordano, 2011; Gilbert,
2015; Maslen et al., 2015). Additionally, bleeding and infections
are infrequent but do occur and may require removal or further
maintenance of the implanted electrodes. Guidelines are required
to safely advance neurotechnologies (Goering and Yuste, 2016),
because BCI devices can alter behavior and, thus, introduce
potential threats to one’s emotions, personality and memories;
more generally one’s mind. For human brain-to-brain interface
applications (Rao et al., 2014; Stocco et al., 2015), one may define
an upper bound for research depths keeping inmind the necessity
of ethical utilization of this technology. Because both sender
and receiver play complicated roles, more specifically, sender’s
intentional manipulative control over neural signals might alter
the anticipated outcome. Altering human cognitive and possibly
moral capacity raise a serious ethical question and it is not
predictable if the cognitive changes reversible and efficacious
(Nakazawa et al., 2016).

A user’s expectations of achieving extended or auxiliary
degree of freedom may not be fulfilled, and even the unfamiliar
risk factors can diminish the accomplished advantage of using
BCI (Clausen, 2011; Schicktanz et al., 2015). Creating broad
awareness of BCI technology and its pros and cons would educate
people, who fear unnecessary technological dependency (Hobson
et al., 2017). However, successful clinical trials of sophisticated
devices such as strentrode or WIMAGINE are essential to
demonstrate potential advantages, especially for people suffering
from any form of cognitive disability (Sauter-Starce et al., 2019;
Oxley et al., 2020). In the case of healthy users, it should not
be too difficult to create acceptance to a broader community
when dry electrodes could offer the long-term operation of a BCI
application with little maintenance effort (Di Flumeri et al., 2019;
Marini et al., 2019; Hinrichs et al., 2020).

It is critical to introduce a suitable act for lawful utilization
of BCI and preservation of privacy and confidentiality of
stored data. Recent studies have demonstrated decoding of
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FIGURE 2 | A schematic illustration of the evolution of the brain computer interface (BCI) applications: Cognitive & Perceptual Learning/Rehabilitation (McMillan et al.,

1995); Orthosis Control (Pfurtscheller et al., 2000); Music BCI (Rosenboom, 2014); Robotics (Millan et al., 2004); Wheelchair Control (Iturrate et al., 2009); Drowsiness

Detection (Lin et al., 2008); Affective Computing (Zander et al., 2009); Brain Racers (Perdikis et al., 2017); Multiplayer Gaming (Nijholt and Poel, 2016); Brain-to-Brain

Interface (Rao et al., 2014).

password or recognizing faces utilizing consumer-grade BCI
successfully, prompting a potential concern of any illegitimate
access to users’ raw data and their further exploitation (Martin
et al., 2016; Alomari et al., 2019). For example, affective states
define users’ moral judgment and emotional traits. Thus, it
is critical to limit the applications of affective BCI while
preserving sensitive information (Steinert and Friedrich, 2020).
Necessary precursor initiatives should propose application-
specific BCI frameworks, which can restrict unauthorized access
to stored data or the system (Ienca and Haselager, 2016).
For example, illicit access to a wireless BCI-driven limb and
manipulative reprogramming of a computer-guided neuro-
stimulation have demonstrated the importance of establishing
resilient safeguards to BCI use (Denning et al., 2009). Agarwal
et al. have proposed cryptographic protocols as integrated
parts of BCI to preserve the privacy of a user by keeping
confidential information obscure to others (Agarwal et al., 2019).
Without evaluating socioeconomic, ethical and policy issues, the
commercialization of BCI would hinder the progress in this
field (Eaton and Illes, 2007).

By creating a common networking platform for BCI
researchers worldwide, the immediate proposition of a
comprehensive list of universal guidelines is key to sustainable
advancements of the field (Vaadia and Birbaumer, 2009). Various
alliance-based projects are running as common platforms for

advancing the knowledge of neuroscience, for example, by
strengthening efforts to fund neuroscience research projects
(Grillner et al., 2016). The European Union along with its
partner universities have initiated the Human Brain Project.
In addition, the Brain Initiative has been announced by the
White House. In our opinion, advanced understanding of basic
neuroscientific phenomena will determine the structure, efficacy
and applications of futuristic BCI.

5. CONCLUSION

Numerous groundbreaking advances in neurosensors and
computational tools herald great promise for more sophisticated
and user friendly BCI systems requiring no or little maintenance.
In addition to hi-fidelity signal acquisition, significant
progress in signal processing and machine learning tools,
their complementary roles, and high computation power and
increased mobility of computers have significantly contributed
in the emergence of BCI technologies. The future of BCI
technology will rely greatly on addressing the following
key aspects:

• Elucidating the underlying psychophysiological
and neurological factors that potentially influence
BCI performance.
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• Designing less invasive sensors with reliable signal
acquisition and resolution, while considering portability,
easy maintenance, and affordability.

• Modeling session-to-session and subject-to-subject
information transfer for the proposition of more generalized
BCI models with insignificant or no calibration requirement.

• Establishing broad consensus on ethical issues and beneficial
socioeconomic application of this technology.
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