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Slow oscillations are a pattern of synchronized network activity generated by the cerebral
cortex. They consist of Up and Down states, which are periods of activity interspersed
with periods of silence, respectively. However, even when this is a unique dynamic regime
of transitions between Up and Down states, this pattern is not constant: there is a range
of oscillatory frequencies (0.1–4 Hz), and the duration of Up vs. Down states during the
cycles is variable. This opens many questions. Is there a constant relationship between
the duration of Up and Down states? How much do they vary across conditions and
oscillatory frequencies? Are there different sub regimes within the slow oscillations? To
answer these questions, we aimed to explore a concrete aspect of slow oscillations, Up
and Down state durations, across three conditions: deep anesthesia, light anesthesia,
and slow-wave sleep (SWS), in the same chronically implanted rats. We found that light
anesthesia and SWS have rather similar properties, occupying a small area of the Up
and Down state duration space. Deeper levels of anesthesia occupy a larger region of
this space, revealing that a large variety of Up and Down state durations can emerge
within the slow oscillatory regime. In a network model, we investigated the network
parameters that can explain the different points within our bifurcation diagram in which
slow oscillations are expressed.

Keywords: Up states, Down states, slow oscillations, sleep, anesthesia, cerebral cortex, cortical model, slow-
wave sleep

INTRODUCTION

Slow oscillations are an emergent pattern of the cortical network that also recruit subcortical
nuclei and, in particular, the cortico-thalamocortical loop. Slow oscillations are the hallmark
of slow-wave sleep (SWS), and much research has been carried out to try to understand
their role in sleep-induced plasticity and memory consolidation (Diekelmann and Born,
2010; Klinzing et al., 2019). However, this emergent pattern of activity consistent in slow
oscillations is generated by the cerebral cortex not only during SWS but also in a variety
of pharmacologically induced states (e.g., following administration of propofol, ketamine,
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urethane, or isoflurane; for a review, see Brown et al., 2010)
and also in pathological conditions such as stroke or traumatic
brain injury (Sarasso et al., 2019; Cassidy et al., 2020). For this
reason, it is important to understand the genesis and dynamics
of slow waves (Sanchez-Vives, 2020), as well as the brain state
transitions that lead the cerebral cortex in and out of these
dynamic regimes.

In this study, we investigated the characteristics of
Up and Down states in SWS, deep anesthesia, and
lighter anesthesia, in an attempt to generate a ‘‘map’’
of the slow oscillatory space which acts as a common
framework for the slow oscillations that are generated under
different physiological, pathological, pharmacological, or
experimental conditions.

MATERIALS AND METHODS

Surgery and Chronic Implants
All experiments were carried out following Spanish regulatory
laws (BOE-A-2013-1337), which comply with European Union
guidelines and were supervised and approved by the Animal
Experimentation Ethics Committee of the Universitat de
Barcelona (287/17 P3).

To obtain local field potential (LFP) long-term recordings
in the freely moving rat (Lister-Hooded, 6–10 months old), we
carried out chronic implants of electrodes that were inserted
600 microns deep in the cerebral cortex using a stereotaxic
apparatus (Kopf Instruments, Tujunga, CA, USA). The recording
electrodes were handmade by twisting stainless steel Teflon-
insulated wires of 100 µm diameter (California Fine Wire Co.,
CA, USA). For the recording of the EMG from the neck muscle, a
single electrode was made with a 125µm tungsten-insulated wire
(Advent Research Materials Limited, Oxford, UK). The EMG
was connected to one of the channels of the preamplifier (Multi
Channel Systems, Germany) and acquired at 500 Hz. All signals
were amplified×1000.

The surgery to chronically implant the electrodes was
performed with the animal deeply anesthetized with isoflurane
(2%). Five to six anchoring stainless steel screws were placed in
the skull. A screw located over the cerebellum and connected
using a soldered wire was used as ground. The craniotomy was
made following the stereotaxic coordinates for the primary visual
cortex (V1;−7.3mmAP, 2.2mmML,−0.6mmDV; Paxinos and
Watson, 2007).

After the placement of the electrodes, these were fixed to the
skull with an initial application of glue (Loctite 406, Henkel,
Germany) and then a second layer of glass ionomer luting cement
(Medicaline, Geestland, Germany). Once fixed, the electrodes
were welded to the contacts of the case blank connector with
crimping contacts (Molex, IL, USA) and in the final step of the
surgery, the case was attached to the skull with glass ionomer
luting cement. Buprenorphine (0.06 mg/kg) and enrofloxacin
(25 mg/kg) were administered for a minimum of 5 days after
surgery for analgesia and the prevention and treatment of
possible infections. After the post-surgical treatment period,
5 days of handling and habituation to the recording chamber

were performed before the initiation of brain recordings, to
minimize stress and abrupt movements of the animal during the
experimental sessions.

Recording Protocols
LFPs were recorded from the primary visual cortex of the
chronically implanted rats during different anesthesia levels and
their natural sleep-wake cycle. For this purpose, the subject was
first connected to the headstage preamplifier (Multi Channel
Systems, Germany) using a custom-made adapter (IMB-CNM,
CSIC) to the implanted case. Then, the animal was placed in a
plastic recording cage (57× 39× 42 cm), while being videotaped
and recorded. The animals were free during all the recordings
(not in a stereotaxic). Recordings were acquired, digitized at
5 kHz using a data acquisition interface and Spike 2 software
(Cambridge Electronic Design, Cambridge, UK).

Slow-Wave Sleep Recordings
After the post-surgical recovery period, the animals (n = 2) were
recorded daily for several hours during their natural sleep-wake
cycle of sleep for a minimum of 3 days. SWS periods were
classified based on LFP, EMG, and video following the scale for
sleep scoring by Iber et al. (2007). Only periods of SWS were
included in the current study.

Anesthesia Recordings
First, a baseline recording was obtained with the awake
animal for a minimum of 30 min. Afterward, a mixture of
ketamine (Ketolar 50 mg/ml) and medetomidine (Domtor
1mg/ml) was administered intraperitoneally. The administration
of a single subcutaneous injection of atropine immediately
after the anesthetic induction (0.05 mg/kg) was part of the
anesthetic routine, to reduce bronchial secretions (Sanchez-Vives
et al., 2000; Bettinardi et al., 2015; Tort-Colet et al., 2019;
Redinbaugh et al., 2020) preventing respiratory obstructions in
the deepest phase of the anesthesia. A dose of 0.6 ml of saline
was subcutaneously injected every 2 h during the anesthesia
for hydration. The rectal temperature was monitored during
anesthesia and maintained at 37◦C during the recording using
a probe and an electric blanket. Two different doses of anesthesia
were administered: ‘‘light’’ anesthesia in three animals (20 mg/kg
of ketamine and 0.15 mg/kg of medetomidine), and ‘‘deep
anesthesia’’ in four animals (40 mg/kg of ketamine and 0.3 mg/kg
of medetomidine). Notice that the animals were free during all
the recordings (not in a stereotaxic), therefore the anesthesia
doses were given only to study the cortical effects and without
the need to reach a surgical state of anesthesia. Cortical activity
was recorded beginning at injection (induction), throughout the
slow oscillatory period of anesthesia until the complete fade-out
of the anesthetic effect, all the way to wakefulness.

Data Analysis
Raw signals were first downsampled to 3 kHz for computational
time reduction purposes. For each recording belonging to
an anesthetic condition, the first 10–20 min after a regular
establishment of the slow oscillation were selected to compute
the Up and Down state duration in the SO cycles. SWS periods
in sleep recordings were selected along the entire experiment.
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FIGURE 1 | Slow oscillations in different anesthesia levels and slow-wave
sleep (SWS). (A) Up (red trace) and Down (blue trace) detection shown in
local field potential (LFP) and MUA in three different conditions: deep
anesthesia, light anesthesia, and SWS. (B) Univariate (1D) kernel density
estimation (KDE) for the frequency of Up and Down cycles in three different
conditions: deep anesthesia, light anesthesia, and SWS.

Periods of approximately 4 min of SO cycles were extracted per
recording. To quantify the durations of Up and Down states, we
used the same method as described in Dasilva et al. (2021). Three
different characteristics were extracted from the raw signal (LFP)
to perform the detection of the Up and Down states (MUKO
method, see Figure 1A): the Slow Oscillation deflection (SO),
the gamma rhythm, and the firing of the local network (MUA).
These characteristics were obtained as time-series: the decimated
raw signal, the envelope of the variance of the gamma-filtered
signal (Mukovski et al., 2007) and the estimation of the MUA
signal from the power of the frequencies in the band between
200 and 1,500 Hz computed in 5 ms windows (Mattia et al.,
2010; Reig et al., 2010; Sanchez-Vives et al., 2010; Ruiz-Mejias
et al., 2011). To compensate for the high fluctuations in the firing
of neurons that are close to the electrode, MUA signal values
were logarithmically scaled, thus obtaining the LogMUA signal
(Ruiz-Mejias et al., 2011).

The multivariate time series composed by the three above
signals individually z-score normalized were processed relying
on a principal component analysis (PCA). Projections on the
first principal component resulted in a bimodal distribution, such
that the two peaks of the distribution corresponded to samples of
network activity belonging to either Up (higher activity) or Down
(lower activity) states. Such segregation allowed us to choose a
threshold that best separated the Up states from the Down states

(Figure 2). To avoid the detection of random fluctuations of
the signal that could be detected as the Up States, a minimum
duration for the Up and Down durations of 80 ms was set. This
threshold was heuristically set after visual inspection of the signal.

For eachUp andDown cycle, the duration for both theUp and
Down states was computed (Figure 2). Once extracted, they were
scattered one against the other to construct the 2D space of points
coloring by the condition. Kernel density estimation (KDE) was
used to obtain and construct univariate (1D histogram estimate)
and bivariate (2D histogram estimate) plots of the Up and Down
state durations.

Simulations
Networks of leaky integrate-and-fire (LIF) neurons
(6,880 excitatory and 2,580 inhibitory, E and I, respectively)
were simulated relying on an event-based numerical integration
(Mattia and Del Giudice, 2000). The network parameters were
chosen to model a self-consistent network of Layer 5 neurons
each having an average number of pre-synaptic connections
computed considering the connection probabilities described
in Markram et al. (2015), the cellular densities reported in
Beaulieu (1993) and the exponential decay of the cortico-cortical
connectivity across layers reported in Schnepel et al. (2015) and
in Kätzel et al. (2011) for excitatory and inhibitory pre-synaptic
sources, respectively. As result, excitatory neurons received
on average 2,910 (129) synaptic contact from E (I) neurons,
while the inhibitory ones received 746 (45) connections from
E (I) pre-synaptic cells. To model a 1 mm2-patch of the cortex
only 2% of excitatory connections were considered to be
recurrent. Synaptic efficacies were set to have—under mean-field
approximation—a fixed point with a firing rate of 0.75 Hz and
4.375 Hz for excitatory and inhibitory neurons (Watson et al.,
2016), respectively.

More specifically, for all neurons, the emission threshold
was 20 mV and the reset potential was 15 mV, reached by the
membrane potential after a refractory period of 2 (1) ms for
E (I) neurons following the emission of each spike. Membrane
capacitance Cm was arbitrarily set to 1 leading to express currents
in units of mV/s. Decay constant τm of the membrane potential
was 20 and 10 ms for E and I neurons, respectively. Each neuron
received as background synaptic noise a Poisson spike train with
frequency vext (2,296 Hz and 586.4 Hz for E and I neurons,
respectively) transduced in current by instantaneous synaptic
transmission with efficacies Jext of 0.48 mV and 2.2 mV. The
mean external synaptic current was Iext = Jext vext. The probability
cαβ of having a synapse between pre- and post-synaptic neurons
α and β ∈ {E, I}, respectively, was {cEE, cE1, c1E, c11} = {0.6, 5, 0.2,
1.7}%. Synaptic transmission was instantaneous with efficacies
{JEE, JE1, J1E, J11} = {1.9, −1.1, 2.2, −1.1} mV. Spikes from
E(I) neurons were delivered with a randomly chosen axonal
delay sampled from an exponential distribution with a mean
of 22.6 ms (5.7 ms), respectively. All synaptic efficacies were
randomly sampled from a Gaussian distribution with mean
Jaβ and a relative standard deviation of 25%. In addition to
synaptic currents, each excitatory neuron received an additional
potassium current−gaa (t) modeling spike-frequency adaptation
with strength ga and adaptation level ȧ = − a

τa
+

∑
k δ(t − tk)
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FIGURE 2 | Raster plots of Up and Down states in different anesthesia levels and SWS. Raster plots for all Up and Down states in three different conditions: deep
anesthesia, light anesthesia, and SWS. Up and Down states are ordered by duration. For each row in the raster plot, a color-based visualization of the normalized
activity (see “Materials and Methods” section) is shown. A 5.5 s (−1 to 4.5 s) window is displayed, with Up or Down states starting at t = 0 s.

(Gigante et al., 2007; Mattia and Sanchez-Vives, 2012) having
unitary jumps at each spike emission time tk of the neuron
and decaying with the characteristic time τa = 0.15 s. For each
parameter set (Iext, ga) we simulated five networks with randomly
extracted synaptic coupling for a time span of 100 s.

RESULTS

To investigate the detailed dynamics of cortical slow oscillations,
we studied Up and Down state durations during the slow
oscillatory regime in vivo. The recordings were obtained from
the visual cortex of chronically implanted rats under three
conditions: SWS, deep anesthesia, and light anesthesia. The
data included here comprises six recording periods in SWS
(n = 2 rats), five recording periods in deep anesthesia (n = 5 rats),
and four recording periods in light anesthesia (n = 2 rats). In
total, 9,271 cycles were analyzed.

The population firing rate was obtained from the recordings
of the local field potential (LFP; see ‘‘Materials and Methods’’
section). In Figure 1A, we illustrate traces corresponding to deep
anesthesia (top), light anesthesia (middle), and SWS (bottom).
The detection of Up and Down states were automatically
performed and based on the Slow Oscillation deflection (SO), the
gamma rhythm, and the firing of the local network (MUA; see
‘‘Materials and Methods’’ section; MUKO method, Figure 1A);
Up and Down states were identified by the red and blue traces,
respectively). The frequency of the slow oscillations ranged
between 0.1 and 4 Hz, and Figure 1B represents the distribution

of frequencies in the three studied conditions. In deep anesthesia,
the frequency of oscillation ranged between 0.1 and 2 Hz, but
the peak was at 0.45 Hz. In lighter anesthesia, the range of
oscillatory frequency was displaced towards higher frequency
values, as we have previously described (Tort-Colet et al.,
2019; Dasilva et al., 2021). The range of frequencies for light
anesthesia was 0.5–3.5 Hz, with a peak at 1.5 Hz. The frequency
of slow oscillations in SWS largely overlapped with those in
light anesthesia, although expanded towards lower frequencies,
ranging between 0.2 and 3.5 Hz, and peaking at 1.3 Hz.

Therefore, including the three experimental conditions, the
whole range of frequencies described for slow oscillations
(0.1–4 Hz) was covered, opening the door to the investigation
of the relationships between Up and Down state durations. The
raster plots of the Up and Down states for all the cycles included
in this study: 3,205 for deep anesthesia, 4,073 for light anesthesia,
and 1,993 for SWS, are displayed in Figure 2. As can be seen
in the figure, while the duration of Up (left) and Down (right)
states was similar for light anesthesia and SWS, in deep anesthesia
both Up and Down states were longer (see exact values next). In
particular, Down states could last up to 4 s, and in a few cycles
even 9 s (not displayed, see panel Figure 3C). In light anesthesia,
the duration of Up andDown states overlapped (Figure 3A), with
an average value of 0.31 ± 0.18 s for Up states and 0.31 ± 0.13 s
for Down states, therefore the network spent a similar time in
the firing periods (Up) and in silence (Down states). However,
when anesthesia became deeper, the silent periods became
longer, exceeding the periods of firing. The average duration
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FIGURE 3 | Up and Down state durations in different anesthesia levels and SWS. (A) Univariate (1D) KDE (Kernel Density Estimation) for Up and Down state
durations in three different conditions: deep anesthesia, light anesthesia, and SWS. (B) Scatter plot showing the space of durations for Up and Down cycles. Each
point represents the duration of an Up vs. the duration of the subsequent Down. They are colored by conditions: Deep and Light anesthesia or SWS. Irregular
ellipses stand for the bivariate (2D) KDE for both Up and Down durations in each of these conditions. (C) Scatter plot of Up vs. Down durations in the three
conditions (deep and light anesthesia and SWS) represented with a logarithmic scale.

of Up states in deep anesthesia was 0.51 ± 0.33 s, while that
of Down states was 1.37 ± 0.83 s (Figure 3A). SWS had
similar durations to those in light anesthesia, with an average of
0.45 ± 0.28 s for Up states and 0.28 ± 0.16 s for Down states,
with a slight tendency towards longer Down states (Figure 3A).
For a statistical evaluation, a Mann-Whitney test comparing
Up and Down state durations in the different conditions was
performed. A comparison between Light (n = 4,073) and Deep

(n = 3,205) anesthesia showed significantly different Up and
Down durations, with a p = 0 (given the high number of
samples). The same was the case for a comparison between SWS
(n = 1,993) and Deep (n = 3,205) anesthesia, with a p-value
that was effectively 0 for Up state durations (p = 8.8 10−29)
and p = 0 for Down state durations. A comparison between Up
and Down durations in Light anesthesia (n = 4,073) and SWS
(n = 1,993) also revealed a significant difference with a p-value
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effectively 0 (p = 0 and p = 2.6 10−37, respectively). Even though
the formal statistical test showed that the center of location
of each distribution was different—particularly given the large
number of samples—the distribution of SWS and light anesthesia
presented a large overlap (Figures 3A–C), suggesting that the
dynamics in light anesthesia and SWS are fairly similar and
different from deeper anesthesia. But what are the characteristics
of those dynamics? What is the relationship between Up states
and the subsequent Down states?

To explore the relationship between Up and Down states, we
represented every cycle with their Up state and subsequent Down
state (Figure 3B) to obtain cartography of the space covered by
each condition. Deep anesthesia, in blue, covers a large area of
the space of relation between Up states and Down states, while
the area occupied by light anesthesia and SWS is more restricted,
mainly in the sense of never displaying Down states longer
than 0.80 s (99th percentile). This data reveals that in these two
specific conditions, one physiological (SWS) and one pharmaco-
induced (light anesthesia), there was a relatively tight relationship
between Up state and Down state duration. However, this is
not always the case, and the regime of slow oscillations can be
expressed in a larger variety of Up and Down state durations.
In Figure 3C, the same data as in Figure 3B is represented
using a logarithmic scale, which allows better visualization of the
distribution of cycles for SWS and light anesthesia.

What mechanisms can support such a variety of Up and
Down state durations? To answer this question, we resorted
to the cortical network model similar to Mattia and Sanchez-
Vives (2012); (Figure 4A), by varying two parameters: (i) the
cortico-cortical synaptic input (∆Iext) associated with changes
of glutamatergic synaptic transmission; and (ii) the strength
of spike-frequency adaptation (ga) related to activity-dependent
hyperpolarizing K+ currents. These two key features shape
the dynamical regime of the model networks giving rise to
four different phases (Figure 4B). Two of them are single-
attractor asynchronous states, one with high firing (similar to
wakefulness) and the other with low firing (e.g., barbiturates,
burst suppression-like). In the third bistable regime the network
displayed simultaneously two possible stable asynchronous Up-
(on) and Down-like (off) states, while in the fourth one, slow
oscillations were spontaneously generated. In the parameter
subspace where such oscillations were produced, the Up and
Down state durations widely varied as shown in Figure 4C,
where only the synaptic input changed. This in principle can
highlight anticorrelations in the Up and Down state durations
(Mattia and Sanchez-Vives, 2012; Levenstein et al., 2019; Nghiem
et al., 2020) giving rise to ‘‘banana’’-shaped distributions at
fixed ∆Iext or ga (Figures 4E,F). Hence, the slow oscillation
phase of the cortical network is not an invariant regime;
rather, it expresses a wide spectrum of timescales (Mattia
and Sanchez-Vives, 2012), which in turn allows us to infer
the effective values ∆Iext and ga needed to reproduce the
state duration statistics we measured in different experimental
conditions (Figure 4D, as in Figure 3C but averaging chunks
of 10 Up-Down cycles). As result, deep anesthesia statistics
were produced by networks in the slow oscillation phase
close to the boundary with the burst suppression-like regime

(Figure 4B, blue diamond): here the Down state was more
preferable and as such had longer durations. Light anesthesia
and natural SWS (red and green diamonds, respectively) had
similar Up/Down duration statistics (Figure 4D) resulting
in cortical networks with increased adaptation and cortico-
cortical synaptic input. Under this condition the model network
was closer to the other boundary separating the SO phase
from the awake-like asynchronous state (green and yellow
regions, respectively).

DISCUSSION

In this article, we described slow oscillations as a single dynamic
regime that comprises a range of frequencies and a range of
Up and Down state durations. Therefore, the regime of slow
oscillations is a wide region, which here we investigated with
two levels of anesthesia—deep and light—and a physiological
condition—SWS. We found that light anesthesia and SWS
display similar dynamical features occupying a relatively narrow
range of the Up and Down state duration space. Deep anesthesia
instead occupies a region of this space displaying a much wider
range of possible Up and Down state durations.

All these features can be reproduced in models of cortical
networks composed of integrate-and-fire neurons (Gigante et al.,
2007; Mattia and Sanchez-Vives, 2012; Jercog et al., 2017).
Mean-field approximation and simulations allow us to work out
a relatively rich bifurcation diagram for these models relying
on two key ‘‘forces’’: cortico-cortical synaptic strength and
adaptation. By varying these two parameters, four spontaneous
activity regimes emerge; slow oscillatory regime, bistability,
asynchronous state (awake-like), and silent state (coma or
barbiturate-like state). In this bifurcation diagram, our light
anesthesia and SWS data lie relatively close to the border
separating slow oscillations from the awake-like regime. This is
a dynamical condition in which microarousals start to emerge
(Tort-Colet et al., 2019), interspersed with the periods of
coherent slow oscillations on the way to wakefulness. Therefore,
light anesthesia, with a tight balance between Up and Down
states durations, is a more excitable state which is, therefore,
closer to wakefulness. Longer Down states are the expression
of a less excitable network, corresponding therefore to a deeper
state, further away from wakefulness. This is the case in deep
anesthesia, which lies near the border of the state of silence. And
in between, a subspace in which different combinations of Up
and Down state durations, and thus different frequencies, can
be expressed.

Why investigate the parameter space of the slow oscillatory
regime? We consider this to be fundamental to understand
the multiscale mechanisms that generate these patterns, how
the multiple variables in the network move the emergent
pattern in different directions or eventually induce a transition
towards other global states. Like creating a cartographical
map of cortical dynamics, in which we can place the
different states induced by physiological (SWS) and pathological
states (disorders of consciousness, lesions) or drugs (various
anesthetics and doses) that result in slow oscillations, this
allows a comparison of results from different studies under
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FIGURE 4 | Exploring the Up and Down state durations in in silico cortical networks. (A) Spontaneous slow oscillations in a network of excitatory and inhibitory
leaky integrate-and-fire (LIF) model neurons with spike-frequency adaptation (see “Materials and Methods” section for details). Adaptation is implemented only in
excitatory neurons with the strength of self-inhibition ga (see top sketch). Middle: emitted spikes by a subset of excitatory (red) and inhibitory (blue) neurons. From the
firing rate vE(t) of the excitatory neurons is extracted the multi-unit activity shown at the bottom [log(MUA = log(vE + 1) + offset, offset is set to have a lower peak of
the distribution on the right at 0]. Up and Down states are detected by thresholding log(MUA; dashed line). (B) Bifurcation diagram of the dynamical regimes
expressed by the network model, as in Mattia and Sanchez-Vives (2012). For each point (∆Iext, ga), 100 s of simulations in five independent networks (randomly
selected synaptic matrix). ∆Iext is the relative change in mean current received by excitatory neurons obtained by changing the external spike rate vext. Low-v and
high-v AS (asynchronous state), neuronal spiking is irregular and vE(t) fluctuates around a fixed value at relatively low and high firing rate, respectively. Bistable, the
coexistence of both low-v and high-v AS. SO, the quasi-periodic slow alternation between Up and Down metastable states. Colored diamonds, networks with Up
and Down state statistics as in deep and light anesthesia, and sleep experiments (see panel D). (C) Average Up and Down state durations (red and blue,
respectively) computed in five independent networks with parameter changes depicted by the a-b dotted line in panel (B). (D) Distributions of average Up and Down
durations from experiments under deep (blue) and light (red) anesthesia, and during natural NREM sleep (SWS, green). Colored diamonds, grand-averages
(centroids) of the state durations for these three distributions. Black lines, standard deviations of the state durations. (E,F) Distribution of average Up and Down state
durations from simulated networks (circles) used to work out the diagram in panel (B). Symbol colors represent ∆Iext and ga in panels (E,F), respectively. Contour
lines, isolevel curves of ∆Iext and ga obtained by fitting with a smoothed surface the mean state durations from simulations. Diamonds as in panel (D). Fitted surfaces
were used to infer the effective (∆Iext, ga) needed to reproduce experimental state duration statistics in simulations (diamonds in panel B).

the same framework. Furthermore, it is important to interpret
the results from different experimental manipulations of slow
oscillations (Deco et al., 2009; Sancristóbal et al., 2016;
D’Andola et al., 2018) or different species, in a comprehensive
dynamical framework.

Our study is not the first to compare SWS and anesthesia. A
systematic comparison of intracellular and extracellular patterns
during SWS vs. anesthesia was carried out by Chauvette et al.
(2011). In this study, it was reported that silent (Down) states
were longer under anesthesia than during SWS. These findings
are compatible with the data included here since anesthesia
induces longer Down states when it is deep, but we also find
that light anesthesia induces Down states as short as SWS.
Therefore, we find that it is not the anesthesia per se that creates
different dynamics, but the level of anesthesia, which can result
in emergent patterns very similar to SWS.

Interestingly, Nghiem et al. (2020) investigated Up and
Down state durations in different species and conditions (SWS,
anesthesia) and found a positive correlation between Up and
Down state durations while in anesthesia. While in SWS
however, Jercog et al. (2017) reported a negative correlation
between Up and Down state durations. Our results also show
a positive correlation between Up and Down state duration in
anesthesia, but we also find a positive correlation in SWS. We
previously found a negative correlation between the duration
of Up and Down states in cortical slices (Mattia and Sanchez-
Vives, 2012), in particular in networks in which inhibition is
decreased and spike firing adaptation acquires a prominent role
in the emergent dynamics (Sanchez-Vives et al., 2010). This is
an interesting illustration of the fact that different mechanisms
shape this emergent activity simultaneously, some of which
have radically different effects. We propose here that a slight
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change towards the dominance of short range or long range
connections (Bettinardi et al., 2015; Dasilva et al., 2021), or
in neuromodulators affecting spike firing adaptation (Barbero-
Castillo et al., 2019; Nghiem et al., 2020) can tilt the ongoing
slow oscillations in such a way that direct or inverse correlations
between Up and Down state durations can be expressed. Indeed,
in our network model we find simultaneously a direct correlation
due to the simultaneous change of the two key parameters, while
within each level an inverse correlation between Up and Down
states is embedded (Figures 4E,F).

Slow oscillations have been thoroughly studied for the last
quarter of the century [for a review, see Neske (2016), since the
characterization made by Steriade et al. (1993)] of an activity
known since the first days of EEG. It has been proposed to be
the default activity model of the cortical circuit (Sanchez-Vives
and Mattia, 2014), that acts as an attractor whenever the cortex
becomes structurally or functionally disconnected (Sanchez-
Vives et al., 2017) and plays an important role in the functional
disruption caused by brain lesions (Sarasso et al., 2019). Still,
this apparently simple highly synchronized pattern is difficult to
understand in detail and leaves many questions regarding how
local and global dynamics in the brain are generated, some of
which we have highlighted in this study.
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