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Elucidating the multi-scale detailed differences between the human brain and other
brains will help shed light on what makes us unique as a species. Computational models
help link biochemical and anatomical properties to cognitive functions and predict key
properties of the cortex. Here, we present a detailed human neocortex network, with
all human neuron parameters derived from the newest Allen Brain human brain cell
database. Compared with that of rodents, the human neural network maintains more
complete and accurate information under the same graphic input. Unique membrane
properties in human neocortical neurons enhance the human brain’s capacity for
signal processing.
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INTRODUCTION

The neocortex processes higher-level cognitive function, including working memory, attention,
and perception (Miller, 2000; Koechlin et al., 2003; Nieder and Miller, 2003; Wood and Grafman,
2003; Bishop et al., 2004). In addition, deep introspection and abstract reasoning are thought to
be human-specific (Kandel et al., 2000; Eyal et al., 2016). Different levels of the cortical system are
accessible by different methods. As a result of developments in neuroimaging and neurophysiology,
we can explore the human neocortex from the macro connectome level (Klein et al., 2010; Ford and
Kensinger, 2014; Samara et al., 2017) and the micro cellular level (Beaulieu-Laroche et al., 2018;
Colangelo et al., 2019; Gidon et al., 2020). These technologies also allow us to compare features
across species, in terms of their function and structure. Determining the differences between human
neurons and other species appears to be particularly important because they are considered to play
a key role in human high-level cognition and evolution (Golgi, 1906; Cajal et al., 1995; Defelipe,
2011; Mohan et al., 2015).
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In this study, we modified the model of a detailed data-
driven single prefrontal cortex (PFC) proposed by Hass et al.
(2016) (Accession:189160)1 and used a different adaptive
exponential integrate-and-fire (aEIF) neuron model. The
sixth layer has been added to our column model. Sources
of anatomical structure include ferret, rodent, and primate
PFC experiments (Gao et al., 2003; González-Burgos
et al., 2005; Otsuka and Kawaguchi, 2009). Therefore, this
model is a neocortical network based entirely on biological
experimental data. We used the rodent network for the
information maintenance accuracy test, which is reflected by the
persistent activity.

Next, we replaced the rodent neuron model with the
human neuron model. We analyzed the effect of neuron
membrane parameters that differed significantly from
rodent brains on network performance, which is the result
of integrating many neuron parameters. A single change
in the parameters did not yield satisfactory results. By
introducing salt and pepper noise into the task, the anti-
noise performance of the human neural network exceeds that
of the rodent network. We hope to provide a computational
framework for predictive modeling to study human-specific
cognitive functions.

MATERIALS AND METHODS

Neuron Model
For the adaptive exponential integrate-and-fire (aEIF) model, the
voltage V and the adaptation variable w were expressed using the
following two-dimensional differential equations:

C
dV
dt
= −gL (V−EL)+ gLexp

(
V−Vth

1T

)
+ I−w (1)

τW
dw
dt
= a (V−EL)−w (2)

If V > Vth, V→ Vr, w→ w+ bwhere C is the membrane
capacitance, gL is the leak conductance, EL is the leak reversal
potential, Vr is the reset potential, Vth is the spike threshold,
1T is the slope factor, I is the background currents, τw is the
adaptation time constant, a is the subthreshold adaptation, and
b is the spike-triggered adaptation.

The rodent neuron parameters in this network were derived
from the experimental literature related to PFC and other areas
of the neocortex (Markram et al., 2004; Jiang et al., 2015;
Mohan et al., 2015; Hass et al., 2016). The human neuron model
parameters can be retrieved from the database by following its
instruction.2

Neuron parameters are presented in Supplementary
Tables 1, 2.

1http://senselab.med.yale.edu/ModelDB/
2http://alleninstitute.github.io/AllenSDK/cell_types.html

Synaptic Properties
Neurons were connected through three types of synapses (AMPA,
GABAA, and NMDA):

IX = gmax
X s (V)

∑
tsp

a
(
tsp
) (

e
−

t−tsp−τD
τX

off −e
−

t−tsp−τD
τX
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)
(V−EX

rev)

(3)

with s (V) =

{
1.08(1+ 0.19exp(−0.064V))−1 for X = NMDA

1 otherwise
(4)

X ∈ {AMPA,GABAA, NMDA}

Erev is the reversal potential, τoff and τon are the onset and
offset time constants, gmax is the peak conductance, and τD is
the transmission delay. The synapse parameters are presented in
Supplementary Tables 4, 5.

Synapses were also equipped with short-term synaptic
plasticity (STP) dynamics implemented in the Tsodyks and
Markram model (Markram et al., 1998).

an = unRn (5)

un+1 = unexp
(
−1t
τfacil

)
+ U

(
1−unexp

(
−1t
τfacil

))
(6)

Rn+1 = Rn (1−un+1) exp
(
−1t
τrec

)
+ 1−1exp

(
−1t
τrec

)
(7)

R1 = 1−U (8)

where an is the relative efficiency, un is the utilization of synaptic
efficacy, with initial condition s u1 = U and R1 = 1. τrec is
the recovery from depression over time, τfacil is the facilitation
dominant on time. The value of U was 0.25; τfacil and τrec were
500 and 300 ms, respectively.

Neural Network Model
The 2,000 neurons were assumed to be organized in a single
column and divided into supragranular layers 2/3 (L2/3) and
infragranular layer 5 (L5) and layer 6 (L6) (see Figure 1A). The
neurons were divided into five subtypes, including: pyramidal
cells (PCs) and local-layer connection interneurons (LL-INs)
with projections within the same layer. Cross-layer connection
interneurons (CL-INs) include bipolar cells (BPCs), which have
vertically extended axonal clusters largely within a column (Jiang
et al., 2015), and long-range connection interneurons (LR-INs),
including large basket cells (LBCs) as LR-IN-a and Martinotti
cells (MC) as LR-IN-b (Markram et al., 2004). These LBCs and
MCs have large clusters of axons that extend not only across
the layers but also across multiple columns. The LBCs have
electrophysiological properties similar to those of PCs, meaning
that their neuronal parameters are the same as those of PCs in the
respective layers (Chrysanthidis et al., 2019).
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FIGURE 1 | Anatomical and stimulation diagram. (A) Laminar connection of a single column. Triangles indicate excitatory synaptic projection and dots indicate
inhibitory synaptic projection. The red lines indicate local layer connections, and the blue lines indicate the cross-layer connections (PC, pyramid cell; LL-IN,
local-layer connection interneuron; CL-IN, cross-layer connection interneuron; LR-IN, long-range connection interneuron; ChC, chandelier cell; BPC, bipolar cell;
LBC, large basket cell; MC, Martinotti cell). (B) Parameters of different types of neurons are proportionally distributed across layers. (C) Network stimulation diagram.
Red arrow shows that different pictures stimulate the L2/3 pyramidal cell. The shades of light red indicate the information maintenance.

Neurons were distributed over the five cell types in each
layer based on estimates from the literature (Markram et al.,
2004). The PCs and interneurons were proportionally distributed
(Figure 1B; Beaulieu, 1993; Defelipe, 2011) and randomly
connected to different connection probabilities for each pair of
cell types based on previous studies (Gibson et al., 1999; Gao
et al., 2003; Hass et al., 2016; Supplementary Table 5). All
neurons received background currents, which represent synaptic
connections from outside the network, both within and outside
the column. The excitatory neuron background current was
250 pA, and the interneuron background current was 200 pA.

Stimulation Paradigm
We converted the binary input image into a 30 × 30 matrix
of 0 and 1 s, where 0 represents no spike input and 1
represents the presence of pulse current input. This matrix
corresponded to 900 PCs in L2/3. At 201 ms, the corresponding
50 Hz Poisson distributed current pulses were applied to the
L2/3 PCs. In the next 99 ms, the 900 L2/3 PCs spiking was
recorded (Figure 1C). Zero represented no spiking activity.
When spiking occurred, it is represented by 1. The firing of
the No: 1-900 PC was transformed into a 1 × 900 (0, 1)
vector. Next, this vector is converted into a 30 × 30 matrix.
Finally, the (0, 1) matrix was converted into a binary image
(0 means white, 1 means black) for output. Noise interference
was achieved by adding salt and pepper noise to the input
image, as shown in Figure 7A. Every experiment was repeated
a total of nine times.

The spike density of the network in the specified time interval
was calculated using the following equation:

Dspike =
Nspike

Ttime interval
(spikes/ms) (9)

where Nspike is the number of spikes in the entire network during
the specified time interval, and Ttimeinterval = 100 ms.

The ratio of excited neurons was calculated using the following
equation:

Rexcited neuron =
Nexcited neuron

Nstimulate neuron
× 100% (10)

where Nexcited neuron is the number of neurons in excited state. An
excited neuron is defined as a 50% increase in spike density after
the neuron receives a current stimulation Nstimulate neuron is the
number of neurons receiving current stimulation.

The signal transfer accuracy was calculated using the following
equation:

paccuracy =
Ninput = output(L2/3PC)

NL2/3PC
× 100% (11)

where Ninput = output(L2/3PC) is the number of neurons in the L2/3
PC layer in which the input and output are consistent: (1) the
neuron receives pulse current (201 ms), and the neuron emits
action potentials (202-300 ms). (2) In the stimulation phase, the
neuron does not receive pulse current (201 ms), and the neuron
does not emit an action potential (202-300 ms). NL2/3PC is the
number of L2/3 PCs.
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FIGURE 2 | The comparison between rodent (A) and human neural network (B) under the same image input. The red arrow indicates that in 201 ms, input pattern
stimulates the layer 2/3 pyramidal cell. The shades of light red indicate the persistent activity. The horizontal blue line is the dividing line between the layers.
(C) Statistics representing the network spikes density in the two stages, at baseline and persistent activity (PA). (D) The ratio of excited neurons between rodent and
human neural network. The error bars represent the standard error of the mean of nine independent experiments, *P < 0.05, **P < 0.01, ***P < 0.0001.

Statistical Information
The analysis of variance (ANOVA) was used to assess statistical
differences. P > 0.05 were considered not significant (ns);
∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.0001 were considered
statistically significant.

Simulation Details
All simulations were performed in MATLAB. The time step of
the neuron models, spikes, synaptic, external events, and network
have a maximum time step of 0.05 ms. The resolution displayed
by the experimental results is 1 ms. Neurons were initialized with
Vi(0) = Ei

L, wi(0) = 0 for all neurons.

RESULTS

Key Features of Human Neuron Model
Parameters
The rodent neuron model key parameters [membrane capacity
(C), leak conductance (gL), leak reversal potential (EL), reset
potential (Vr), and threshold potential (Vth)] were estimated
from the experimental literature (Koester and Johnston, 2005;
Hass et al., 2016). Previous researchers obtained neuron
parameters for a large number of in vitro recordings from

different cell types from the PFC of rats and mice. The human
neuron model parameters (C, gL, EL, and Vth) were derived
from the latest Allen Brain human brain cell database [Allen
Cell Types Database (2015)]3 (Hawrylycz et al., 2012), which is
open access. The first slew of human data includes the electrical
properties of 300 different types of neurons from 36 people.
According to dendrite type, these are only divided into spiny,
aspiny, and sparse spiny types. Excitatory neurons have spines,
and inhibitory neurons are typical none or very sparsely spiny
(White, 1989; Juorio, 1998; Markram et al., 2004). Therefore, our
human neuron model used spiny neurons as PCs and aspiny
neurons as LL-INs. To clearly reflect these differences, we used
the parameters of the human neuron to subtract the parameters
of the rodent neuron and listed the percentage differences in
Supplementary Table 3 and Supplementary Figure 1. There
were other membrane parameters that had distinctive values,
especially in C (L5 PC and L6 PC) and Vth (L2/3 LL-IN, L5 LL-
IN, and L6 LL-IN). The C of human L5 and 6 PCs was nearly half
that of rodent neurons. We and Eyal et al. (2016) both found that
the membrane capacitance of certain types of human PCs in the
neocortex was significantly lower than that of rodents. A lower C
enhances both synaptic charge-transfer from dendrites to soma

3http://celltypes.brain-map.org/
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FIGURE 3 | Comparison of accuracy and completeness in rodent and human neural network. (A) Network persistent activity performance, (B) rodent and human
network input (gray) and output (dark) comparison. The error bars represent the standard error of the mean of nine independent experiments, **P < 0.01,
***P < 0.0001.

and spike propagation along the axon. In addition, both Vr and
Vth were higher in human neurons than in rodent neurons.

At the single neuron level, we used the aEIF model (Brette
and Gerstner, 2005), which has been shown to reproduce
rich firing patterns (Naud et al., 2008). The different voltage
responses of the aEIF model to a short square current are
shown in Supplementary Figures 2A–F. Different types of
neurons exhibited their own regular spiking waveforms under
the same stimulus. Two thousand neurons were layered to form a
functional column (Figure 1A, see the “Materials and Methods”
sections for the neural network model). The connections between
neurons were very diverse, including feedforward, feedback,
and self-connections. Excitatory neurons and interneurons were
connected by conductance-based synapses (AMPA, GABAA, and
NMDA) with different connection probabilities according to
a previous study (Gibson et al., 1999; Markram et al., 2004;
Koester and Johnston, 2005; Frick et al., 2008; Otsuka and
Kawaguchi, 2009; Fino and Yuste, 2011; Potjans and Diesmann,
2014) (see section “Materials and Methods” and Supplementary
Tables 4, 5 for synapse model). The “Materials and Methods”
section provides details on image input and output extraction
from the network (Figure 1C).

The baseline (100–200 ms) network spike density of the
human and rodent were 169.8 ± 2.8 vs. 255.5 ± 6.0 (spikes/ms)
(∗P < 0.05). The persistent activity period (200–300 ms) network
spike density of the human and rodent were 884.7 ± 22.8 vs.
629.3 ± 37.6 (spikes/ms) (∗∗∗P < 0.0001) (Figure 2, see section
“Materials and Methods” for the stimulation paradigm and the
calculation of the network spike density Eq. 9). At baseline, the
spike density of the human neural network was lower than that
of the rodent. However, the human network was more active
than the rodent network under the same stimulus (Figure 2C).

We compared the spiking rate before and after the stimulus (for
a 100 ms period) to decide if the neuron really continues to be
activated. The ratio of the neurons in an excited state (since the
neuron fire rate is more than 50 percent faster after receiving
the input, Eq. 10) in the human network was obviously higher
than rodent network (33.4 ± 4.4% vs. 18.3 ± 5.5%, ∗∗P < 0.01)
(Figure 2D). The distinctive biophysical properties of neurons in
humans resulted in more efficient signal transfer. Human neural
networks are less active in their basal state than rodent networks,
but firing is easier to maintain after being stimulated.

Human Neural Network Signal Transfer
First, the rodent neuron network L2/3 PC was stimulated by
applying four full-field input patterns (star, circle, square, and
triangle) within 1 ms. In the next 99 ms, we extracted the
output and calculated the accuracy of the signal transfer, as
shown in the method representing the stimulation paradigm. The
mean accuracy of these four patterns (star, circle, square, and
triangle) during the retention of information was 82.6 ± 0.5%,
85.3 ± 0.7%, 74.4 ± 0.4%, and 79.4 ± 0.4%, respectively
(Figure 3A, Eq. 11). To determine how neurons affect network
performance, we maintained the network structure and other
parameters the equally and replaced rodent neuron models
with human neuron models, after which we repeated the
above experimental paradigm. The mean accuracy of the four
patterns (star, circle, square, and triangle) reached 88.6 ± 0.4%,
88.2 ± 0.4%, 82.4 ± 0.6%, and 85.4 ± 0.5%. Compared with
the rodent, the human neural network significantly improved
the accuracy of output (Figure 3A, ∗∗P < 0.005) for four
different patterns. The accuracy increased by 6.0, 2.9, 8.0,
and 6.0%, respectively, and the correct rate of the square
image was the highest increase. Notable Figure 3B shows
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FIGURE 4 | Network signal transfer accuracy after adjusting different parameters individually. (A) The performance of rodent neural network after adjusting different
parameters. (B) The performance of human neural network after adjusting different parameters. (C) The rodent neural network performance after adjusting
background input. (D) The human neural network performance after adjusting background input. The error bars represent the standard error of the mean of nine
independent experiments, P > 0.05 were considered not significant (ns); *P < 0.05, **P < 0.01, ***P < 0.0001.

FIGURE 5 | The neuron parameters multiple non-linear regression fitting results. (A–E) The effect of VthL2/3LL- IN, VthL5LL- IN, VthL6LL- IN, CL5PC, and CL6PC on the
accuracy during [0,1] (light blue shading). Red arrows indicate the direction of the parameters transition from rodent to human. (F) The network input (light blue
shading) and output (black) after further increase Vth.
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the better performance of the human network in terms of
output completeness.

In order to further assess the effect of neuron parameters
on signal transfer, we adjusted only one parameter from
rodent to human, with others remaining invariant at any
given time. Supplementary Table 3 shows that for the same
parameter, different types of human neurons are not always
higher than those of rodents (such as gL and C). The most
interesting aspect of this graph is that from a computational
perspective, not every parameter adjustment contributes to the
improvement in accuracy (Figure 4A). For instance, when
we individually regulated the gL, the performance of the
network decreased (triangle: 79.4 ± 0.4% vs. 78.2 ± 0.2%,
∗P < 0.05). Decreasing Vth had a positive impact on the
network performance (square and triangle: 74.4 ± 0.6% vs.
79.8 ± 0.5% and 79.4 ± 0.4% vs. 85.3 ± 0.3%, ∗∗∗P < 0.0001).
Furthermore, we chose the parameters that have a negative
(gL) and positive impact (Vth) on performance in four input
images (star, circle, square, and triangle), and adjusted only
one parameter from human to rodent at a time in order
to keep the other parameters unchanged. Taking the triangle
as an example, regulating gL had a positive effect on the
network (85.5 ± 0.5% vs. 87.4 ± 0.4%, ∗P < 0.05), and
increasing Vth greatly reduced the performance of the network
(85.5 ± 0.5% vs. 77.94 ± 0.6%, ∗∗∗P < 0.0001) (Figure 4B).
It can be inferred as such that the influence of adjusting a
single parameter on the network remains unknown, yielding
both positive and negative effects. Since adjusting Vth can
improve the accuracy of the rodent network, we tried to
increase (PC 300 mA, IN 250 mA) or decrease (PC 200 mA,
IN 150 mA) the background current of the rodent network.
Interestingly, neither can optimize the performance of the
network (Figure 4C). We then adjusted the background current
on the human network, and the effect was not significant
(Figure 4D, ns P > 0.05). The effect achieved by changing global
variables was not ideal.

Effect of Neuron Parameters on the
Accuracy
To better analyze the impact of neuron parameters on the
network performance in maintaining signals, we performed a
non-linear regression fitting on the five types of parameters
that were significantly different from rodents (CL5PC, CL6PC,
VthL2/3LL−IN , VthL5LL−IN , and VthL6LL−IN). The coefficients of
the first and quadratic terms were estimated using iterative least-
squares estimation, and the initial value was set to 1. These
parameters are all normalized between 0 and 1, and the fitting
result was:

Paccuracy = 71.8+ 3.3CL5PC + 0.1CL6PC + 1.5VthL2/3LL_IN +

1.4VthL5LL−IN + 1.7VthL6LL−IN− 0.8C2
L5PC

−1.9C2
L6PC + 2.0Vth2

L2/3LL−IN + 1.7Vth2
L5LL−IN +

2.2Vth2
L6LL−IN (12)

The right side of the equation was combined with similar terms,
as follows:

Paccuracy = 74.3+ 2.0
(

Vth2
L2/3LL−IN + 0.8VthL2/3LL_IN + 1.1

)
+1.7

(
Vth2

L5LL−IN + 0.8VthL6LL−IN + 0.2
)
+

2.2(Vth2
L6LL−IN + 0.8VthL6LL−IN + 0.2)−

0.8
(
C2

L5PC−4.1CL5PC + 1.1
)
−1.9(C2

L6PC−0.1CL6PC

+0.1) (13)

By transformation, we obtained the following equation:

Paccuracy = 74.3+ 2.0
(

VthL2/3LL−IN +
1.5
4.0

)2
+

1.7
(

VthL5LL−IN +
1.4
3.4

)2
+

2.2
(

VthL6LL−IN +
1.7
4.4

)2
−0.8

(
CL5PC−

3.3
1.6

)2
−

1.9
(

CL6PC−
0.1
3.8

)2
(14)

According to Eq. 14, the binomial containing each parameter
corresponds to a parabola. Based on the fitting results, the
increase in VthL2/3LL−IN , VthL5LL−IN , VthL6LL−IN (Figures 5A–
C) and the decrease in CL6PC (Figure 5E) in [0,1] (red arrows
indicate the direction of the parameters transition from rodent
to human) all improved the accuracy, except for the decrease in
CL5PC (Figure 5D). The result of this fitting was consistent with
the trend of actually adjusting Vth of the network (Figures 4A,B).
The coefficient of CL5PC was smaller than that of other terms, so
the impact on the correct rate is offset. With Vth as an example,
the single change of this parameter had an upper limit to the
improvement of the effect. Even if we further increase the Vth by
25% on human neurons, the correct rate was not improved from
a computational point of view, and the output image had a lot of
noise (Figure 5F).

Effect of Synaptic Faster Recovery Time
on Accuracy and Anti-noise Performance
Synaptic transmission and the plasticity thereof form the building
blocks for the processing and storage of information in the
brain. Whether human synapses are more efficient at transferring
signals between neurons remains to be demonstrated. We
added the human short-term synaptic depression (STD) recovery
feature to the existing network, which was reflected in the
time of recovery from short-term synaptic depression (τrec
:144 ± 13 ms with fast STD recovery vs. 536 ± 40 ms
without fast STD recovery). The results showed that when
we added the characteristics of human STD recovery based
on human network, the mean accuracy of the four patterns
(star, circle, square, and triangle) reached 89.4 ± 0.2%,
89.0 ± 0.3%, 82.7 ± 0.2%, and 86.1 ± 0.4%, respectively
(∗P < 0.05) (Figure 6A). We then changed and tested the
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FIGURE 6 | (A) Human neural network signal transfer accuracy after adding fast STD recovery. (B) The effect of STD recovery time on accuracy, STD: short-term
synaptic depression. The error bars represent the standard error of the mean of nine independent experiments, *P < 0.05, ***P < 0.0001.

FIGURE 7 | (A) The input image with different proportions of salt and pepper noise. (B) The influence of salt and pepper noise on accuracy. The error bars represent
the standard error of the mean of nine independent experiments, *P < 0.05, **P < 0.01, ***P < 0.0001.

impact of different recovery times on the network (taking
the square as an example) (Figure 6B), and we found that
there was a non-linear change in performance with changes in
STD recovery time.

Finally, we examined the network’s ability to filter out noise, a
characteristic of robustness in the face of interference. Taking the
square as an example, we added different proportions of salt and
pepper noise (10, 20, and 30%) to the input image (Figure 7A).
As the noise increased, the accuracy of the output of the two
networks decreased. Even if the noise increased to 30%, the
human network still overall outperformed that of the rodents
(Figure 7B), indicating the rodent network is less sensitive to
noise than the human network.

DISCUSSION

Evolution has shaped our brains on multiple levels, from neurons
to network connections. Previous work has shown that from
the physiological structure the cortex of the human brain is

thick, and that human cortical neurons have large and complex
dendrites (Mohan et al., 2015; Deitcher et al., 2017), decorated
with countless dendritic spines (DeFelipe et al., 2002). From the
perspective of electrophysiology, human cortical neurons have
unique membrane capacitance and dendrite action potentials
(Testa-Silva et al., 2014; Eyal et al., 2016; Gidon et al., 2020).
The structure determines the electrical properties, which in turn
affects transformations of the synaptic in puts to axonal action
potentials as the output. Thus, neurons constitute a key element
of the network’s computational power. It is difficult to directly
compare the cognitive behaviors of different species based on
biological experiments. In contrast, computational modeling
presents several clear advantages. This study innovatively seeks
to use biologically realistic computational models to compare
the performance of brain networks in different species during
the same cognitive task. Our simulation results demonstrate
the effect of human neurons on improving signal transmission
accuracy. Our findings provide insights into the physiological
building blocks that constitute the cellular function, which
ultimately give rise to the cortical network behavior.
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There are many parameters in the neuron. We selected the
most important membrane parameters related to the neuron
model for analysis and found that the C of human L5 and L6
PC was nearly half that of rodent neurons, but that the C of
human LL-IN was twice that of rodent neurons (Supplementary
Table 3 and Supplementary Figure 2). Such low C of PC
and high C of LL-IN increase the network excitability and
facilitate signal transfer (both synaptic and action potential-
encoded information). The firing thresholds of human neurons
and rodent neurons are different, such that under the same
background current, there are differences in baseline activity.
The following results confirm our conclusion that the human
neocortex shows greater network activity than rodents under the
same stimulus, a trend that is completely opposite at baseline
(Figure 2C). These results show that the characteristics of
human brain neurons make it more conducive to the effective
transmission of action potential without changing the network
connection. As such, we tried to adjust a single parameter to
optimize the performance of the network, but the impact of
parameter adjustment on the network was not always positive,
such as in the case of gL (Figure 4A). The threshold voltage has
an obvious improvement effect on the network, so we tried to
adjust the excitability of the entire network. However, the effect
was not ideal (Figures 4C,D). Then we illustrate the influence of
membrane capacitance and threshold voltage on the accuracy of
network output by using multiple nonlinear regression models.
From the perspective of predicting the direction of evolution, we
found that further increasing the threshold has a limited effect
on optimizing the network, and more noise will follow. The
above results show that human neurons have selected the best
combination of parameters, making them more suitable for tasks
related to information storage than rodent neurons.

In this model, we used many types of interneurons, across
which the division of labor in information maintenance differed
(Zhang et al., 2020). The network is composed of numerous
neurons, so changing the parameters of neurons will break
the original homeostasis of the network (Wu et al., 2020).
Although connectivity information is critical to the performance
of the network, data on the detailed biological connections of
the prefrontal lobe of the human brain remain very limited.
At the same time, considering the validity of the comparison,
we did not change the connections of the network but only
replaced the neuron model. We believe that the characteristics
of human neurons also play a leading role in signal transfer
and completeness.

Our work has several limitations. One important
simplification limiting this study consists in the reduction to layer

4, and the fact that the structure of layer 6 is the same as that of
layer 5, which is based on the previous motor cortex study (Weiler
et al., 2008). Due to the lack of human PFC column structure
connection data, we used rodent PFC connectivity instead. In
our study, we did not analyze the synapse model parameters
but adopted a unified STP model. We restricted our attention
to the neuron membrane parameters. The influence of synaptic
parameters of different species on the network is also important
and valuable. Without having enough parameters to support, we
cannot carry out a comprehensive simulation and comparison.
With further research, the human cortex connection data will be
increasingly refined. Thereafter, we may have even a deeper and
more comprehensive comparison for assessing the uniqueness of
the human brain from an evolutionary perspective.
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