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The existing computational models used to estimate motion sickness are incapable of
describing the fact that the predictability of motion patterns affects motion sickness.
Therefore, the present study proposes a computational model to describe the effect of
the predictability of dynamics or the pattern of motion stimuli on motion sickness. In
the proposed model, a submodel – in which a recursive Gaussian process regression
is used to represent human features of online learning and future prediction of motion
dynamics – is combined with a conventional model of motion sickness based on an
observer theory. A simulation experiment was conducted in which the proposed model
predicted motion sickness caused by a 900 s horizontal movement. The movement
was composed of a 9 m repetitive back-and-forth movement pattern with a pause.
Regarding the motion condition, the direction and timing of the motion were varied
as follows: (a) Predictable motion (M_P): the direction of the motion and duration of
the pause were set to 8 s; (b) Motion with unpredicted direction (M_dU): the pause
duration was fixed as in (M_P), but the motion direction was randomly determined; (c)
Motion with unpredicted timing (M_tU): the motion direction was fixed as in (M_P), but
the pause duration was randomly selected from 4 to 12 s. The results obtained using the
proposed model demonstrated that the predicted motion sickness incidence for (M_P)
was smaller than those for (M_dU) and (M_tU) and no considerable difference was found
between M_dU and M_tU. This tendency agrees with the sickness patterns observed in
a previous experimental study in which the human participants were subject to motion
conditions similar to those used in our simulations. Moreover, no significant differences
were found in the predicted motion sickness incidences at different conditions when the
conventional model was used.

Keywords: motion sickness, computational model, prediction, learning, motion dynamics, motion pattern,
subjective vertical conflict theory, sensory conflict theory

INTRODUCTION

Motion sickness is caused by various types of body movements and visual information and can be
experienced in our daily lives, such as in cars, ships, airplanes, and virtual environments. Owing to
the recent advancements in vehicular control and mobile computing technology, the motion and
visual stimuli received by humans have diversified, increasing concerns about motion sickness.
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There are multiple hypotheses on the mechanism of motion
sickness (Shupak and Gordon, 2006). The sensory conflict
or neural mismatch theories that postulate that discrepancies
existing among the multiple sources of sensory signals or
between the sensory information and anticipatory information
generated by the central nervous system (CNS) lead to motion
sickness (Reason, 1978). Oman (1991) stated that the anticipatory
signal may arise from the internal model that is thought to be
built within our CNS. In the subjective vertical conflict (SVC)
theory, which is a branch of the sensory conflict theory, it is
postulated that conflicts between the vertical direction of the
body given by the sensory signals and those estimated by our
CNS or by the internal model lead to motion sickness (Bles
et al., 1998). In addition, there exist several types of possible
hypotheses for the etiological mechanisms of motion sickness.
Riccio et al. (1991) postulated that motion sickness can be
explained as instability of body posture control. Ebenholtz et al.
(1994) hypothesized that motion sickness can be understood
as a result of the eye movements controlled by the vestibular
nuclei. For other hypotheses, please refer to the review article by
Shupak and Gordon (2006).

Computational or quantitative understanding of the sensory
conflict theory and the SVC theory is progressing. Pioneering
work was conducted by Oman, who proposed a computational
model of the sensory conflict theory in which the internal model
in our CNS is modeled using the observer framework of the
modern control theory (Oman, 1982). Following the publication
of Bos and Bles (1998), several computational models have
been developed based on the SVC hypothesis. The pioneering
work on the computational model of the SVC hypothesis
calculated the motion sickness incidence (MSI) defined as the
percentage of the people who would vomit with given motion
stimuli for the vertical motion acceleration of the head. Kamiji
et al. (2007) and Wada et al. (2018) expanded this to six
degree-of-freedom (DOF) motion of the head, with 3DOF
translational head acceleration and 3DOF head angular velocity
based on the introduction of the dynamics of the otolith–canal
interaction. Both of them estimated the MSI from vestibular
or physical head motion patterns. Computational models of
the SVC hypothesis that can deal with visual motion stimulus
have been developed, including a 1DOF model (Braccesi and
Cianetti, 2011) as the expansion of that proposed by Bos
and Bles (1998), and a 6DOF model (Wada et al., 2020)
as the expansion of those proposed by Kamiji et al. (2007)
and Wada et al. (2018).

Various publications have demonstrated that the simplicity
or predictability of the motion stimulus affects the severity
of motion sickness. For example, it has been suggested that
the severity of the sickness differs depending on whether the
motion stimulus is a simple sine wave or a combination of
multiple sine waves (Guignard and McCauley, 1982). More
recently, an experiment in which the participants rode in
an experimental cart without an external view and moved
in the horizontal direction demonstrated that the sickness
was significantly less profound when the motion pattern was
predictable compared with the case in which the motion
direction and timing were random (Kuiper et al., 2019). An

experiment that used the same apparatus and similar motion
patterns showed that even when the direction and timing of the
motion were randomly determined, the presentation of audio
cues that determined the direction and timing of the motion
reduced motion sickness (Kuiper et al., 2020). Furthermore,
it was demonstrated that a human machine interface that
tells car occupants when and which way to turn reduced
motion sickness (Karjanto et al., 2018). However, no model
has been proposed that can qualitatively and quantitatively
explain the effects of such future motion prediction on
motion sickness.

The purpose of the present study is to propose a
computational model that can predict the effect of the
predictability of the dynamics or the pattern of the motion
stimulus on motion sickness by expanding the conventional
model of motion sickness. The validity of the model is examined
by comparing the computational results with experimental
results obtained when participants were subjected to similar
patterns of motion stimuli.

MODELING EFFECTS OF MOTION
PREDICTION BASED ON SENSORY
CONFLICT THEORY

Model of Sensory Conflict Theory Based
on Observer Framework
Reason (1978) emphasized that the sources of conflict in the
sensory conflict theory or neural mismatch theory are thought to
be associated with the discrepancy between the sensory afferent
signal and the expected signal calculated by the CNS rather
than with simple comparison between sensory modalities, such
as visual and vestibular sensations. The key component used to
calculate the expected afferent is a “neural store,” which retains
the exposure history.

Reason (1978) stated that the neural store

[A] Retains the history of the combinations of efferent and
the resultant sensory afferent signals in the case of self-
produced movement and calculates the expected afferent
signal from a given efferent signal and

[B] Is involved with the generation of the expected afferent
signal even for passive movements when the motion
disturbances can be predicted.

In pioneering work, Oman (1982, 1991) successfully built
a computational model of the neural mismatch theory from
the viewpoint of [A] with the introduction of the observer
approach (Figure 1). In this model, the expected sensory
afferents were calculated from the efferent copy and other
signals with the use of internal models of the body and
sensory dynamics that are thought to be built in the CNS. The
difference between the expected and actual sensory afferents is
considered to be the sensory conflict that leads to symptoms
of motion sickness. The sensory conflict is fed back to the
internal model to improve the accuracy of the estimated
motion, which is used for motion control. This process is
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FIGURE 1 | Schematic block diagram of sensory conflict theory based on internal model hypothesis.

expected to reduce sensory conflict. When the conflict cannot
be eliminated by the presence of exogenous motion disturbance,
which is defined as a motion caused by external forces,
the sickness is exacerbated. Several computational models of
sensory conflict or neural mismatch theories proposed thus far
can be interpreted based on this idea (Bos and Bles, 1998;
Kamiji et al., 2007).

Effect of Motion Prediction on Motion
Sickness
Prior publications demonstrated that motion prediction reduces
motion sickness. From the findings thus far, predictions that
facilitate the reduction of motion sickness are believed to be
obtained from

[A] Efference copy in active motion (Oman, 1991; Rolnick
and Lubow, 1991; Wada et al., 2018) and

[B] Knowledge or information about the exogenous motion
disturbances that can be obtained by

(i) Learning the dynamics when the movement is periodic
(Kuiper et al., 2019),

(ii) Visual information (Turner and Griffin, 1999; Griffin
and Newman, 2004; Wada and Yoshida, 2016), and

(iii) Other cues, such as artificial signals (Karjanto et al.,
2018; Kuiper et al., 2020).

The efference copy [A] is shown in Figure 1. The knowledge or
information about the exogenous motion disturbances [B] is also
believed to be used to increase the accuracy of the self-motion
perception. Thus, we hypothesized that the effect of knowledge
about exogenous motion [B] can be described in a similar way
as the efference copy (Figure 2). To the best of the author’s
knowledge, to date, there are no computational or conceptual
models that deal systematically with the effects of the knowledge
of exogenous motion disturbances.

COMPUTATIONAL MODEL OF SVC
THEORY OF MOTION SICKNESS
INCLUDING THE EFFECTS OF MOTION
DYNAMICS LEARNING AND MOTION
ANTICIPATION

The present study proposes a concrete computational model of
motion sickness that can describe the effect of the predictability
of the exogenous motion for (i) periodic motions.

The function of learning and predicting the dynamics of
exogenous disturbances for (i) periodic motion is incorporated
into a motion sickness model built based on human motion
perception and the observer approach, as shown in Figure 2.
For simplicity, when a concrete quantitative model is built, only
situations in which the body motion is caused by external forces,
i.e., passive motion, is considered.

Formulation of the Learning Dynamics of
Exogenous Disturbance and Motion
Prediction
For simplicity, let us consider one-dimensional translational
human motion. Assume an environment exposed to acceleration,
meaning that the exogenous motion that should be learnt and
predicted is the body acceleration caused by external force. The
motion from the past and the motion at the next time step are
expressed by a non-linear autoregressive (NAR) model described
by Eq. (1):

yi = fi(xi)+ wi, (1)

where yi := αi+1 ∈ R, xi := [αi, αi−1, αi−2, · · · , αi−d−1]
T
∈ Rd

and wi denotes noise. In the case that a certain pattern can be
found in the motion, that is, when Eq. (1) is rewritten in the form
of Eq. (2), it is considered that a human can learn this pattern f (·)
sequentially and can then use it to predict the subsequent motion.

yi = f (xi)+ wi (2)
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FIGURE 2 | Schematic block diagram of sensory conflict theory capable of capturing the effect of human prediction of exogenous motion disturbance.

A recursive Gaussian process regression model (Huber,
2014), one of the Bayesian, non-linear, non-parametric
regression models, was used in the present study to model
the process of sequential learning for various motion patterns
[see Eq. (2)] and to predict the subsequent motion in the
presence of uncertainty.

Recursive Gaussian Process Regression
Model for Sequential Learning
Let us consider constructing a non-linear regression model using
the function in Eq. (2) with the Gaussian process regression
(GPR) method (Williams and Rasmussen, 1996) and its family
that can learn non-linear functions non-parametrically. The
noise wi ∈ R1 in Eq. (2) is assumed to be normally distributed
p(wi) = N(0, σ2

w). In the GPR, the function f (·) of Eq. (2) is
modeled from the location vectors X := [x1, x2, . . . , xm] ∈ Rd×m

according to the following Gaussian distribution:

p(f |X) = N(f |0,K(X,X)), (3)

where the covariance matrix is defined as follows:

K(X,X) := [k(xi, xj)]i,j ∈ Rm×m. (4)

For a kernel function k(xi, xj), the squared exponential kernel is
used as follows:

k(xi, xj) := α2 exp
{
−

1
2
(xi − xj)

T3−1(xi − xj)

}
∈ R1, (5)

where various types of symmetric positive definite matrices can
be used as the kernel. Parameters α, 3 = diag[λi] ∈ Rd×d in
Eq. (5), and σw in Eq. (2), are called hyperparameters.

In the GPR (Williams and Rasmussen, 1996), the training
dataset D := {(x1, y1), (x2, y2), . . . , (xn, yn)}, denoting pairs of
the input and output of Eq. (2) is provided at one time
instant, and model learning is performed only once. In contrast,
a recursive Gaussian process regression (RGPR) method was
proposed by Huber (2014), wherein when the input xt is given at
each time t, the mean µ

p
t and variance Cp

t of the corresponding
output are predicted, and the model is updated based on the

observed data yt of the obtained output given that it is suitable
for the modeling of the function of sequential learning and the
prediction of the motion. In the RGPR, a matrix composed of
n location vectors X := [x1, x2, . . . , xn] ∈ Rd×n is provided in
advance instead of dataset D.

The following is the algorithm of the RGPR model (Huber,
2014) used in the present study.
[Initialization]

Prepare location vectors X := [x1, x2, . . . , xm] (∈ Rd×m). In
this study, X was determined to select m vectors from exogenous
motion vector data based on the publication by Snelson and
Ghahramani (2006).
At t = 0, calculate µ

f
0 = 0, Cf

0 = K(X,X).
[Inference step]

At time step t = t, given the input data xt ,
(i) Calculate the gain matrix Ji according to Eq. (6):

Jt := k(xt,X)K(X,X)−1 (∈ R1×m). (6)

(ii) Calculate the mean µ
p
t with Eq. (7) and covariance matrix Cp

t
using Eq. (8):

µ
p
t := Jtµ

f
t−1 (∈ R1) (7)

Cp
t := k(xt, xt)− Jt{k(X, xt)− Cf

t−1JT
t } (∈ R1). (8)

[Update step]
Given observation data yt which corresponds to the input xt ,

(iii) Calculate the gain matrix G̃t with Eq. (9):

G̃t := Cf
t−1JT

t (C
p
t + σ2)−1 (∈ Rm×1). (9)

(iv) Update the mean µ
f
t and covariance matrix Cf

t of the
regression function with Eqs. (10) and (11), respectively,

µ
f
t := µ

f
t−1 + G̃t(yt − µ

p
t ) (∈ Rm×1) (10)

Cf
t := Cf

t−1 − G̃tJtC
f
t−1 = (I − G̃tJt)C

f
t−1 (∈ Rm×m). (11)
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The kernel functions and their associated matrices and vectors
that appear above are defined below.

k(xi, xj) := α2 exp
{
−

1
2
(xi − xj)

T3−1(xi − xj)

}
(∈ R1) (12)

K(X,X) := [k(xi, xj)]i,j (∈ Rm×m) (13)

k(X, xt) := col[k(xi, xt))]i (∈ Rm×1) (14)

k(xt,X) := row[k(xt, xi))]i = kT(X, xt) (∈ R1×m) (15)

Computational Model of Motion
Sickness With Effects of Learning and
Prediction of Exogenous Disturbance
We focus herein on the SVC hypothesis (Bles et al., 1998), which
constitutes the most computationally modeled hypothesis among
all the motion sickness hypotheses. Let us consider adding the
effects of learning the dynamics of exogenous disturbances and
predicting the next motion introduced in the previous section.
Bos and Bles (1998) developed a computational model of the SVC
hypothesis (hereafter referred to as 1DOF-SVC) for translational
motion in the vertical direction with 1DOF. This model has
been expanded into a computational model of 6DOF motion
with rotational motion (hereafter referred to as the 6DOF-SVC
model) and a block related to the effect of the accuracy of self-
motion perception and efference copy has been introduced to
describe the difference in motion sickness between active and
passive motion (Kamiji et al., 2007; Wada et al., 2018). By
inputting zero into the angular velocity vector of the 6DOF-
SVC model, an expansion of the 1DOF-SVC model of Bos and
Bles (1998) into a three-dimensional translational model with
an efference copy block (hereafter referred to as the 3DOF-SVC
model) was obtained.

The present study proposes a computational model of motion
sickness by adding the parts related to the effects of learning and
prediction of the exogenous motion patterns. This model is based
on the method described in the previous section on the 3DOF-
SVC model (Figure 3).

The inputs to the model are the gravito-inertial acceleration
(GIA) α(∈ R3), which is defined as

α := a+ g, (16)

where g is the acceleration due to gravity and a is the inertial
acceleration. The vector α is input to the otolith, which is
represented by the block marked OTO in Figure 3. The transfer
function of the OTO is given by a unit matrix. The sensed vertical
direction in the head-fixed frame v is estimated by block LP that
is defined as the following lowpass filter:

dv
dt
=

1
τ
(α− v), (17)

where the time constant is τ = 2 s (Correia Grácio et al., 2013). In
the figure, the lower part of the block diagram shows an internal

model that is believed to exist in the CNS. Blocks OTO denote
the internal models of OTO. The transfer function of OTO is
given by a unit matrix. The internal model of LP is illustrated
as LP and is assumed to be identical to LP. The internal model
outputs the expected afferent signal v̂. The vector 1v denotes
the error between the sensory afferent and the expected one.
The error is used to calculate the predicted MSI through the
Hill function (||1v||/b)2/{1+ (||1v||/b)2}, which models the
non-linear relationship between the MSI and the magnitude of
the vertical conflict and the second-order lag with a large time
constant P/(τIs+ 1)2, as depicted in Figure 3 (Bos and Bles,
1998). This error 1v is fed back to the internal model through
integration and gain K to decrease the error.

The exogenous motion learning and prediction part on the left
side is newly added in the present study. The input into the online
learning and prediction part is

α̂ := α+ n, (18)

where n denotes noise that is assumed to be normally
distributed N(0. 1× 10−4). The input variable vector for the
non-linear autoregressive model of Eq. (1) is defined as xt :=

[α̂t−1, α̂t−2, · · · , α̂t−d−1]
T
∈ Rd, where d := Tw/1t, the time

window is Tw = 10[s], and the sampling time is 1t = 0.01[s].
The GIA mean µ

p
t and variance Cp

t in the next time step t can
be predicted by the RGPR model. The RGPR model is updated
sequentially using the observed data α̂t based on the algorithm
introduced in the previous section.

The predicted exogenous motion at time t, α̃t is determined
by Eq. (19)

α̃t := kprµ
p
t , (19)

where the weight kpr is determined by Eq. (20)

kpr := c1 exp(−c2Cp
t ), (20)

based on an assumption that the weight decreases when the
confidence of the prediction is low according to the analogy
with the multisensory integration (Ernst and Bülthoff, 2004). The
coefficients are determined as c1 = 0.8, c2 = 3 by trial and error.
The predicted exogenous motion α̃ together with the feedback
signal from the vertical conflict is input into the internal model.
The accurate prediction with high confidence is expected to
reduce the conflict and resultant MSI.

The model explained above can be formally expressed by the
following discrete-time state and output equations:

ξt+1 = F(ξt)+ G(αt, α̃t) (21)

mt = cTξt, (22)

where the inputs are the GIA vector αt (∈ R3) and its estimate
α̃t (∈ R3) according to the learning and prediction parts, and
ξt := [vT

t , v̂T
t , ᾱ

T
t , ṁt,mt]

T (∈ R11) is a state vector. Scalar mt
denotes the predicted MSI as the output of the model, and c :=
[01× 10, 1]T .

Parameters used in the model are listed in Table 1.
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FIGURE 3 | Block diagram of sensory conflict theory based on the internal model hypothesis.

SIMULATION EXPERIMENTS

Motion Profile Condition
In experiments conducted by Kuiper et al. (2019), participants on
a cart (in which external vision and airflow cues were blocked)
were moved back and forth for 900 s. In the experiments, the
effects of predictability of the motion patterns on motion sickness
were investigated. In the present study, we adopted almost
the same motion pattern conditions as those in the study by
Kuiper et al. (2019).

The following three levels were set as the motion pattern
factor. All three motion profiles were constructed as repetitive,
single forward and backward motions, while the predictability
of the motion direction and time interval of the repetition were
changed in different conditions.

(1) Predictable (M_P) condition
The direction of motion and the time interval (8 s)
were both constant.

(2) Unpredictable direction (M_dU) condition
The direction of motion was randomly selected to be either
the same or opposite to the M_P condition. The time
interval was constant for 8 s, as in the M_P condition.

(3) Unpredictable timing (M_tU) condition
The time interval was randomly selected from a uniform
distribution from 4 to 12 s. The direction of motion was
constant, as it was in the case of the M_P condition.

Figure 4 shows the longitudinal displacement used in these
calculations. Every displacement lasted for 8 s with the peak
acceleration set to 2.5 m/s2. The resultant amplitude was
approximately 9.0 m. Note that the root-mean-square values of
the accelerations among different conditions were identical.

TABLE 1 | Model parameters.

τ[s] τI [s] K b [m/s2] P [%]

2.0 720 5.0 0.5 85.0

Calculation Condition
The following two levels were set as the calculation conditions to
confirm the validity of the method.

(I) Control (C_Control) condition
In this condition, motion pattern prediction was not used. We

used α̃t := kprαt instead of α̃t := kprµ
p
t , and kpr = 0.5 was used

according to Wada et al. (2018).
(II) Learning and prediction based on GPR (C_GPR)

condition
The proposed methods described in section “Computational

Model of Motion Sickness With Effects of Learning and
Prediction of Exogenous Disturbance,” including leaning and
predicting motion patterns using GPR and gain tuning according
to Cp

t , were employed.
Since only horizontal movement was dealt with, α̂t =

[α̂t, 0, 0]T and α̃t = [α̃t, 0, 0]T were used for the calculation.

RESULTS

Calculated Results Based on the
Proposed Model
First, Figure 5 shows the calculated results of MSI subject to the
C_GPR condition according to the proposed method. In the M_P
condition of the motion profile, which was the periodic motion
profile, high-prediction accuracy was achieved, as evidenced by
the small error between the mean acceleration predicted by the
motion learning and prediction part, and the actual acceleration.
The variance predicted by the motion learning and prediction
part converged to value of <0.3 within 10 s. As a result, the gain
kpr assumed a large value, which was approximately equal to 0.6
except when the variance decreased, leading to an increase in the
accuracy of self-motion perception and smaller predicted MSI
compared with those in the other two motion profile conditions.
In the M_dU and M_tU conditions, the error between the mean
acceleration predicted by the motion learning and prediction
part and the actual motion profile increased on a sporadic basis.
The variance increased sporadically in the M_dU and M_tU
conditions and resulted in a smaller gain kpr than that achieved in
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FIGURE 4 | (A–C) Motion profiles for three types of motion in the first 120 s.

the M_P condition. These led to a larger predicted MSI than that
in the M_P condition. As a result, motion learning and prediction
did not facilitate an increase in the accuracy of self-motion

perception in the M_dU and M_tU conditions. Consequently, the
predicted MSI was the smallest for the M_P condition, and no
considerable difference was found between M_dU and M_tU.
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FIGURE 5 | Temporal histories of representative variables with the proposed model for every motion profile condition: (A) M_P, (B) M_dU, and (C) M_tU. The scalars
µ

p
t and Cp

t denote the mean and variance of acceleration predicted by the proposed method, respectively. The error depicted on the second row was calculated as
µ

p
t − αt: the discrepancy between the predicted mean and the given acceleration of the exogenous disturbance. The gain kpr was determined by Eq. (20) according

to Cp
t . The predicted MSI by the proposed model is shown as the output of the model.
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FIGURE 6 | Predicted motion sickness incidence under different conditions.

Comparison of the Predicted MSIs in
Different Conditions
Figure 6 shows the predicted MSI at t = 900 s at the
end of the exogenous motion. Under the C_Control
condition, no significant differences in the predicted
MSIs were observed among motion profile conditions
M_P, M_dU, and M_tU. Under the C_GPR condition,
the MSI at the M_P condition was significantly smaller
than those at the M_dU and M_tU conditions. No
significant difference was found between the M_dU and
M_tU conditions.

DISCUSSION

Interpretation of Simulation Results by
Comparing With Experiments Involving
Human Participants
The fact that there were no significant differences in the MSIs
among the three tested motion profiles under the C_Control
condition indicates that the motion strengths of the profiles
were so similar to each other that the MSI differences could
not be described by the conventional method. Under the
C_GPR condition, in which our proposed method was used, a
significantly smaller MSI was found under the M_P condition
that yielded a more predictable motion profile compared with
the other conditions, where in no significant difference was
found. These tendencies agree with those observed in the
human experiments conducted by Kuiper et al. (2019), in
which almost the same motion profiles were used as those
in the present study. This finding demonstrates that our
proposed method with learning and prediction of motion
dynamics can describe the effects of the predictability on
the motion sickness subject to the condition that the motion

strengths of the profiles were similar to each other, and
the differences in the MSIs cannot be explained by the
conventional method. Kuiper et al. (2019) were the first
to investigate the effects of prediction on motion sickness
systematically based on the separation of the predictability
in motion direction and time. Few other systematic studies
exist on this topic. A deeper understanding of the effects of
predictions on the sickness based on additional experiments
is essential to improve the accuracy of computational models.
To the best of the author’s knowledge, the present research is
the first study that has quantitatively and systematically dealt
with the effect of the predictability of exogenous motion on
motion sickness.

Comparison With Existing Modeling
Research
Past experiences associated with the given motion stimulus
and/or predictions of the future motion reduce sickness
(Reason, 1978; Rolnick and Lubow, 1991). For the active
participation to the body motion, the effect of motion prediction
by the efference copy has progressed (Oman, 1982; Wada
et al., 2018). However, the effects of the other types of
prediction, such as the periodicity of motion patterns and
visual information, have not been computationally understood
at all. In fact, not only the models based on sensory
conflict theory but also all the existing mathematical models,
including fitting models, such as MSI (O’Hanlon and McCauley,
1974) and MSDV (ISO2631-1, 1997), have been unable
to treat these effects. Hence, to the best of the author’s
knowledge, the present research was the first in which a
conceptual model of the effects of knowledge of the exogenous
motion on motion sickness has been built. The proposed
model was consistently integrated with the conventional
model describing the internal model hypothesis and effects
to reduce the motion sickness caused by the efference
copy (Figure 2).

The second contribution of the present research is the
development of a computational model to describe the effects
of learning and prediction of the periodicity of motion on
motion sickness. As a result, the present study demonstrates
that the proposed single model can describe the tendency of
sickness owing to the unpredictability of the motion direction
and motion timing observed in the experiments conducted by
Kuiper et al. (2019). Karjanto et al. (2018) and Kuiper et al.
(2020) experimentally showed that the addition of artificial
auditory and visual cues regarding the direction and/or timing
of the motion in the future reduces motion sickness. The
effects of such artificial cues are thought to be expressed
by adding them as inputs to the proposed model. Further,
the presence of forward vision reduces car sickness (Griffin
and Newman, 2004; Wada and Yoshida, 2016). Forward
vision has two effects: perception of current self-motion and
prediction of future motion. For the former, computational
models dealing with the visual–vestibular sensory interactions
have been developed (Bos et al., 2007; Wada et al., 2020).
The latter, which deals with future motion predictions, can
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be explained within the framework of Figure 2, despite its
differences from the perspective of motion dynamics learning
as has been proposed in the present study (Figure 3). Building
a computational model to account for this effect is an
important future task.

Relationship Between the Results and
Neural Mismatch Theory
Neural mismatch theory (Reason, 1978) postulates that the
sensory afferent is compared with the estimated signal obtained
by the “neural store,” in which history of the motion patterns
is accumulated. This aspect has been modeled by the internal
model hypothesis or the observer approach with the efference
copy inputs (Oman, 1982; Wada et al., 2018). Neural mismatch
theory (Reason, 1978) also states that “. . . the only strategy
available to the neural store is to bias selection in favor of recently
stored trace combinations,” which constitute representations of
another function or form of the neural store to decrease sickness
by predicting exogenous motion when moved passively. The
present study provides a computational implementation of this
aspect of exogenous motion prediction. Note that although the
proposed computational model is specialized for the SVC theory,
the motion prediction block in the model can also be connected
to the any other types of model that is based on observer
theory such as sensory conflict theory (Oman, 1982) as shown
in Figure 2.

Relationship With Strong and Weak
Anticipation
It has been shown that complex systems exist in which there
is synchronization of motions between multiple agents, and
that the predictive motion can be achieved without having
models of each other. This type of behavior is called strong
anticipation (Dubois, 2003; Stepp and Turvey, 2010; Delignières
and Marmelat, 2014). The concept of the strong anticipation
implies that in human postural control systems, the dynamics of
a closed-loop system of perception-action, including interactions
with the environment, could have or include a function of motion
prediction (Dubois, 2003). In contrast, explicit prediction of the
future state of the target system based on its model is called
weak anticipation. The prediction of future body state by the
internal model dealt with in the present study can be regarded
as weak anticipation. Furthermore, the block of exogenous
motion prediction, which is expressed by RGPR, as proposed
in this study can be also regarded as weak anticipation. The
effect of the exogenous motion prediction in the context of the
postural instability theory (Riccio et al., 1991), which considers
that motion sickness develops owing to inadequate postural
control that occurs in the interaction between environment
and body movement, could be understood using the strong
anticipation concept as follows. Namely, if strong anticipation
works effectively in the closed-loop dynamics of perception-
action, including the interaction with the given environment,
and it facilitates an improvement in postural control, it may
reduce motion sickness. Prior literature wherein synchronization
of visual information and postural variability was associated with

motion sickness (Walter et al., 2019) suggested a relationship
between motion sickness and synchronization of vibration and
body movement according to the strong anticipation concept.
It should be noted that if the improvement of self-motion
perception based on the weak anticipation concept leads to
the improvement of postural control, the proposed model for
exogenous motion prediction should be able to explain the effect
of prediction on motion sickness in the context of postural
instability theory in a broad sense, though the present research
depends on sensory conflict theory.

Limitations and Future Research
Questions
In the proposed model, RGPR was used for sequential learning
and prediction of the exogenous motion. Methods that can
learn time series data with strong non-linearity and estimate
the mean with confidence could serve as perspective candidates.
Additional research of both the experimental and computational
types is needed to deepen our understanding of the prediction
effects and to improve the accuracy of the model. The rationale
behind the selection of the free parameters and the function
used to tune kpr in the proposed model should be investigated
in the future because they were determined by trial and error.
Given that the proposed model was evaluated only in a very
limited number of scenarios, verification in various additional
scenarios is needed. To verify the validity of the model and
improve its accuracy, it is necessary to conduct a series of
experiments on the effect of the prediction on motion sickness.
Given the limited experimental knowledge of the effect of
prediction on motion sickness, the proposed model is expected
to facilitate the deriving directions or formulation of hypotheses
for further experimental studies. For example, investigating the
effect of period of the disturbance motion on motion sickness
can reveal the size of the prediction time window, which
will provide hints on the structure of the model used for
human prediction.

The proposed model adjusts the degree of utilization of the
predicted result for self-motion perception according to the
variance of the predicted motion. This function was introduced
based on an analogy with the multisensory integration process
(Ernst and Bülthoff, 2004). This model function implies
that the sickness will worsen when the difference between
the estimated and actual values suddenly becomes large in
the case that the variance of the prediction part is small,
meaning that the confidence of the prediction is high. To the
best of the author’s knowledge, no prior research study has
confirmed this implication experimentally. Thus, this topic also
constitutes an interesting future research direction. The proposed
computational model shown in Figure 3 can deal with only
passive motions. Expansion to the model that can be applied even
for active motions is also important future research. With the
results of the present research, it is not possible to determine the
extent to which the model reflects the underlying causal processes
at present. It is expected that the interaction between hypothesis
modeling research such as the present research and experimental
research will advance this understanding.
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