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Recent neurocognitive models commonly consider speech perception as a hierarchy

of processes, each corresponding to specific temporal scales of collective oscillatory

processes in the cortex: 30–80 Hz gamma oscillations in charge of phonetic analysis,

4–9 Hz theta oscillations in charge of syllabic segmentation, 1–2 Hz delta oscillations

processing prosodic/syntactic units and the 15–20 Hz beta channel possibly involved

in top-down predictions. Several recent neuro-computational models thus feature theta

oscillations, driven by the speech acoustic envelope, to achieve syllabic parsing before

lexical access. However, it is unlikely that such syllabic parsing, performed in a purely

bottom-up manner from envelope variations, would be totally efficient in all situations,

especially in adverse sensory conditions. We present a new probabilistic model of

spoken word recognition, called COSMO-Onset, in which syllabic parsing relies on fusion

between top-down, lexical prediction of onset events and bottom-up onset detection

from the acoustic envelope. We report preliminary simulations, analyzing how the model

performs syllabic parsing and phone, syllable and word recognition. We show that,

while purely bottom-up onset detection is sufficient for word recognition in nominal

conditions, top-down prediction of syllabic onset events allows overcoming challenging

adverse conditions, such as when the acoustic envelope is degraded, leading either to

spurious or missing onset events in the sensory signal. This provides a proposal for a

possible computational functional role of top-down, predictive processes during speech

recognition, consistent with recent models of neuronal oscillatory processes.

Keywords: Bayesian modeling, speech perception, neural oscillations, spoken word recognition, top-down

prediction, bottom-up event detection, syllabic parsing

1. INTRODUCTION

1.1. Neural Oscillations and Multi-Scale Speech Analysis
Speech processing is classically conceived as a hierarchical process which can be broken down
into several processing steps, from the low-level extraction of phonetic and prosodic cues, to
their higher-level integration into lexical units and syntactic phrases, and ultimately to global
comprehension. This hierarchical organization may be related to a hierarchy of temporal scales,
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from short-term phonetic analysis at a temporal scale of tens of
milliseconds, to syllabic envelope modulations around 200 ms,
and slower prosodic-syntactic phrases with durations of the order
of magnitude of typically a second. Importantly, these temporal
scales are found in all languages of the world, and, in particular,
the regularity of syllabic rhythms has been the focus of a large
number of studies (Ramus et al., 1999; Pellegrino et al., 2011;
Ding et al., 2017).

This hierarchy of temporal scales finds a strong echo in
the hierarchy of neuronal rhythms structuring the electrical
activities of the brain, with characteristics that can be related to
several cognitive functions (Buzsáki and Draguhn, 2004; Buzsaki,
2006; Fries, 2015). Although still a matter of debate, there is a
growing consensus on the potential causal role of brain rhythms
in the perception and understanding of speech (Poeppel and
Assaneo, 2020). An influential model relating speech and brain
rhythms has been proposed by Giraud and Poeppel (2012),
in which the speech input would be initially parsed according
to syllabic rhythm thanks to neural oscillatory processes in
the theta band (4–8 Hz). Inside syllabic chunks, phonetic
analysis would be conveyed by gamma oscillations at around
40 Hz. Further syntactic parsing would rely on lower frequency
processes in the delta range (1–2 Hz). This model is embedded
in the predictive coding framework (Rao and Ballard, 1999;
Friston, 2005; Friston and Kiebel, 2009), which hypothesizes that
the brain is inherently predictive, exploiting internal states to
make inferences about upcoming sensory data. This framework
provides a way to integrate top-down predictions with bottom-
up information. Top-down information from various stages
of the speech perception process would be fed back to lower
processing stages, possibly exploiting the beta band (15–20 Hz)
which is assumed to be a relevant channel for providing such
descending predictions (Engel and Fries, 2010; Arnal, 2012; Arnal
and Giraud, 2012; Sohoglu et al., 2012; Rimmele et al., 2018).

1.2. Neuro-Computational Models of
Syllabic Segmentation
These theoretical proposals gave rise to a number of recent
neuro-computational models of speech perception exploring the
possibilities offered by neural oscillations to address issues related
to speech segmentation. The common point between all these
models is that they use a sensory, input-driven approach, where
the slow modulations of the speech signal envelope would be
tracked by endogenous cortical oscillations. This enables parsing
speech into intermediate speech units such as syllables, which
play an important role in the speech prosodic structure used
to segment the continuous acoustic stream (Grosjean and Gee,
1987; Rosen, 1992; Kolinsky et al., 1995).

Following experimental evidence by Ghitza and Greenberg
(2009) on the role of syllabic modulations as potential “packaging
units” for further speech processing in the human brain, Ghitza
(2011) presented the TEMPO model based on the “syllabic
packaging” principle. In TEMPO, a lower auditory analysis stage
is in charge of extracting syllabic parsing information, controlling
the decoding process performed at a higher stage, in charge
of phonetic decoding before lexical access. Syllabic parsing in

TEMPO is based on a “theta oscillator” tracking modulations of
the acoustic envelope in the 4–10 Hz frequency range typical of
syllabic rhythm (Greenberg, 1999). Then, so-called theta-cycles
are divided in a fixed number of sub-syllabic units (fixed at 4 in
the first version of TEMPO, Ghitza, 2011), in charge of phonetic
decoding (see also the model developed by Yildiz et al. (2013)
for word recognition, using the same architecture though with 8
sub-syllabic units instead of 4). Theta-cycles would be generated
in the auditory cortex (Ghitza, 2013), likely in superficial layers
of auditory neurons (Giraud and Poeppel, 2012), potentially
influenced by sensory-motor interactions with parieto-frontal
regions in the dorsal cortical pathway (Morillon et al., 2010;
Strauß and Schwartz, 2017).

While a computational version of TEMPO has not been
tested on speech corpora to the best of our knowledge,
neurocomputational models based on such principles have
been implemented and tested in the past years. Firstly, Hyafil
et al. (2015) introduced a spiking theta network model
called Pyramidal Interneuron Theta (PINTH), by analogy with
the so-called Pyramidal Interneuron Gamma (PING) model
implementing a gamma network with bursts of inhibitory
neurons following bursts of excitatory neurons (Jadi and
Sejnowski, 2014). The PINTHmodel connects spiking excitatory
and inhibitory neurons that synchronize at theta frequency
(6–8 Hz), through slowly decaying inhibition, which leads to
resonance behaviors in the corresponding frequency range.
PINTH neurons are driven by the output of a (supposedly sub-
cortical) auditory model receiving the speech acoustic stimulus
as input. The model, applied to a corpus of real speech signals
consisting of phonetically labeled English sentences (the TIMIT
corpus; Garofolo, 1993), was shown to produce consistent
theta bursts following syllabic onsets. Still, precise quantitative
evaluation was not provided by the authors. Indeed, the syllabic
alignment accuracy is said to remain “well above chance levels”
(Hyafil et al., 2015, p. 5) but it seems to remain rather low when
exposed to the variety of stimulation occurring in real speech.

Then, a new version proposed by Hovsepyan et al. (2020)
replaces the spiking network in Hyafil et al. (2015) by a
continuous model driven by coupled first-order nonlinear
differential equations providing a resonant system—in the 3–
8 Hz frequency range—driven by the envelope of the acoustic
input. The model includes a systematic sequence of 8 phone
decoders inside each syllable, as in Ghitza (2011) and Yildiz
et al. (2013), together with a reset mechanism that automatically
triggers an onset at the end of the last phone decoder (the 8th).
This reset mechanism hence exploits predictions about the input
spectrogram stored in memory, though no explicit fusion process
exploiting temporal top-down timing predictions from higher
linguistic levels. The model was tested on 220 sentences of the
previously mentioned TIMIT database. It yielded only moderate
syllabic detection accuracy, estimated at 53 %, by measuring the
percentage of time when a given syllable labeled as such in the
database corresponded to the theta-cycle detected by the model.

Hence, altogether, the performance of these models seems
rather limited. At least three sets of reasons could explain
such low performance level. Firstly, these models are based on
oscillators which drive the models into a predictive mode in
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which timing regularity is the rule and irregularity the exception,
while natural speech timing is known to be far from isochronous.
This is likely to limit performance, as displayed by the large
trend for too regular theta-syllable durations compared with real
syllabic durations in both Hyafil et al. (2015, Figure 1B) and
Hovsepyan et al. (2020, Supplementary Figure 2). Secondly, event
detection strongly depends on the amplitude and saliency of
envelope modulations, which is modulated by phonetic context
(e.g., smaller modulations for nasal stops, liquids or semi-vowels
than for unvoiced stops in vowel-consonant-vowel sequences)
and by the strength of articulation (e.g., smaller modulations
for hypo-articulated speech compared with hyper-articulated
speech, see Lindblom, 1990). Finally, we could expect event
detection to be largely degraded in adverse conditions, such as for
instance, superimposed acoustic noise likely to produce a number
of spurious envelope fluctuations resulting inmistakenly detected
events. Many studies have shown that, in these conditions,
performance is negatively impacted, for listeners of all ages
(Wong et al., 2008; Anderson et al., 2010, 2011).

In this context, purely bottom-up algorithms for event
detection and syllabic parsing do not appear sufficient for
efficient speech processing. Instead, it seems likely that top-down
predictions exploiting the listener’s knowledge of the timing
of natural speech (e.g., lexical or prosodic information) could
improve the efficiency of purely bottom-up segmentation (Davis
and Johnsrude, 2007). Indeed, clear evidence for the role of top-
down timing predictions has been recently provided by Aubanel
and Schwartz (2020). Their study showed that speech sequences
embedded in a large level of noise were better processed and
understood by listeners when they were presented in their
natural, irregular timing than in a timing made isochronous
without changing their spectro-temporal content. The strong
benefit in intelligibility displayed by natural syllabic timing,
both in English and in French, was interpreted by the authors
as evidence for the role of top-down temporal predictions for
syllabic parsing.

1.3. Toward a New Neurally-Inspired
Computational Model Introducing
Top-Down Temporal Predictions for
Syllabic Segmentation
The objective of the present neurally-inspired computational
model is to address, for the first time to our knowledge,
the question of the fusion of bottom-up and top-down
processes for speech syllabic segmentation. We address this
question in a Bayesian computational framework, which
enables to efficiently introduce, conceptualize and compare
computational processes expressed in a unified probabilistic
formalism (Bessière et al., 2008). The combination of bottom-
up information extraction and top-down predictions from
higher linguistic levels is actually not new. Indeed, it is at the
heart of all modern speech recognition architectures, be they
classical Hidden Markov Models (HMM) in which bottom-
up acoustic cues are associated to top-down state transition
probabilities in phonetic decoding or word recognition (Rabiner
et al., 1989; Gales and Young, 2008) or more sophisticated

architectures such as hierarchical HMMs (Murphy, 2002) or
multi-scale HMMs enabling to incorporate hierarchical linguistic
structures in language processing (Eyigöz et al., 2013); and
of course recent neural speech recognition models including
recurrent architectures implementing top-down feedback in
the decoding process (see Graves et al., 2013; or a recent
review in Kim et al., 2020). In the field of psycholinguistics
also, since the pioneer development of TRACE (McClelland
and Elman, 1986), the question of the role of feedback
processes in speech perception and comprehension has been
the focus of intense discussions (Norris, 1994), and led
to many developments in Bayesian framework (Norris and
McQueen, 2008). Recent findings confirm that recurrence plays
a crucial role in perceptual processing in the human brain
(e.g., Kietzmann et al., 2019; Spoerer et al., 2020). Still, while
the importance of top-down predictions has been largely
discussed in the literature, it has been mainly focused on the
mechanisms involved in the decoding process, though not on the
segmentation process per se. This is precisely the objective of the
present work.

For this aim, we introduce COSMO-Onset, a variant of the
COSMO framework developed over the years to simulate speech
communication processes in a perceptuo-motor framework
(Moulin-Frier et al., 2012, 2015; Patri et al., 2015; Laurent
et al., 2017; Barnaud et al., 2018). The present variant does
not incorporate at this stage the whole perceptuo-motor loop
developed and studied in previous COSMO papers. Instead, it
concentrates on the auditory pathway, detailing two mechanisms
of interest for the present study: first, a hierarchical decoding
process combining the phonetic, syllabic and lexical levels, and,
second and most importantly in the present context, a syllabic
parsing mechanism based on event detection, operating on the
speech envelope. COSMO-Onset is a Bayesian speech perception
model associating a decoding module to decipher the spectro-
temporal content of the speech input and a temporal control
module enabling to control how the speech input is segmented
into constituent linguistic units. The decoding module has
a hierarchical structure similar to classical psycholinguistic
models like TRACE (McClelland and Elman, 1986), with three
layers of representations (acoustic features, syllable and word
identity) usually considered in the context of isolated word
recognition. The temporal control module associates a bottom-
up mechanism for syllabic onset detection with an original top-
down mechanism for syllabic onset prediction, involving lexical
temporal knowledge. The bottom-up onset detection process
does not rely on oscillatory models as in Ghitza (2011), Hyafil
et al. (2015), and Hovsepyan et al. (2020), but features instead
a simple algorithm based on detecting loudness increases in the
envelope, and regulating it by a refractory period. Indeed, the
focus of present model is set on studying the way bottom-up
and top-down information could be efficiently combined for
syllabic parsing.

With this model, we explore the dynamics of speech
segmentation resulting from the combination of such bottom-
up and top-down temporal mechanisms. It is crucial at this
stage to make clear the novelty of the present study, together
with some explicit limitations of its perspective. Indeed, the
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Bayesian formalism is seldom used in the context of such
an event detection task, and much care has been taken in
this study to conceptualize the way temporal fusion could
occur and be expressed in Bayesian terms. Therefore, the
contribution of the COSMO-Onset model is, at this stage,
rather conceptual and focused more on principles than on
realistic simulations. Nevertheless, the fusion architecture has
been developed in relation with the observed weaknesses of the
existing computational models presented in the previous section.
Hence, the paper does involve a set of principled simulations
addressing two potential problems for a purely bottom-up event
detection process.

Firstly, we consider the case of attenuated envelope
modulations associated to, for instance, specific phonetic
contexts or hypo-articulated speech. This leads to a situation in
which, compared to a “nominal” configuration where envelope
modulations enable a bottom-up mechanism to perform
efficiently, some events would be missed by the bottom-up
processing branch. To deal with such perturbation, we consider
a so-called OR fusion process, in which detected onsets could
be provided either by the bottom-up processing of acoustic
envelope or by temporal predictions from a top-down process
capitalizing on the temporal structure of stored items in the
lexicon and their ongoing recognition. Secondly, we consider the
case of noisy conditions where spurious envelope modulations
would appear and lead to spurious events in the bottom-up
processing branch. To deal with such degradation, we consider
another fusion process, that is an AND fusion, in which events
would be detected only if bottom-up detection and top-down
prediction co-occur more or less in a synchronous manner.

Therefore, we formulate the following predictions. First,
we expect a model based solely on bottom-up information
to perform well in nominal conditions. Second, in the case
of adverse conditions, we expect top-down predictions of
onset events to yield robust performance, that is, to maintain
performance despite perturbations. In conditions such as hypo-
articulated speech, we expect a model based on the OR fusion
model to be robust; in conditions such as with a noisy
environment, we expect a model based on the AND fusion model
to be robust.

In the next section, we present the model architecture, and
we describe its two components, the spectro-temporal decoding
module and the temporal control module exploiting a fusion
process between sensory-driven bottom-up segmentation and
knowledge-driven top-down onset prediction. In Section 3,
we present our simulations, which rely on a representative
set of “toy” stimuli and situations, elaborated for the purpose
of this preliminary study to assess the various components
of the model. More precisely, we highlight the role of
the top-down onset detection component, systematically
comparing performance of the pure bottom-up process
with the AND and OR fusion processes incorporating
top-down temporal predictions. Section 4 presents the
corresponding simulation results. Finally, the general discussion
in Section 5 addresses potential neurocognitive predictions
that could emerge from the simulations with the AND
and OR fusion models, and provides perspectives for more

elaborate simulations toward the processing of realistic
speech inputs.

2. MODEL ARCHITECTURE

COSMO-Onset is a hierarchical probabilistic model. It is
mathematically specified by a joint probability distribution,
defined by its decomposition into a product of probability
distributions, some of which are simplified, thanks to conditional
independence hypotheses. The complete mathematical definition
of the model is provided in Supplementary Materials (see
sections A.1–A.4); here, instead, we describe the overall structure
of the model, and its resulting simulation of spoken word
recognition processes.

The probabilistic dependency structure, which results from
the conditional independence assumptions used to define the
model, can be interpreted as the architecture of the model, and
can be graphically represented (see Figure 1). The left part of
the schematic representation of the model (gray rectangle in
Figure 1) is the “temporal control” submodel, whereas the rest
(right part of the schema) constitutes the “decoding” portion of
themodel. Applying Bayesian inference to themodel architecture
provides computing steps for simulating word recognition
and onset detection; these steps are illustrated on the model
structure in Figure 2. Finally, Table 1 provides the summary of
variable names and their interpretation. We now describe first a
panorama of the general principles and functioning of the model,
and second, each of the two submodels.

2.1. General Principles
As shown in Figure 1, the overall structure of the decoding
portion of the model consists in six layers, connected by
Boolean variables called “coherence variables” (represented by
λ nodes in Figure 1). These can be seen as “probabilistic
glue,” allowing merging, in a mathematically principled manner,
probability distributions over the same domains (Gilet et al.,
2011; Bessière et al., 2013). During inference, these coherence
variables are used to choose how probabilistic information
propagates into the model; in that sense, they can be interpreted
as “Bayesian switches.” First, they can be “closed,” so that between
two connected variables information propagates through them.
Mathematically, this corresponds to assuming that the value
of the coherence variable is known and equal to 1, and it
yields a product of the probability distributions of the variables
connected by the coherence variable (whatever these probability
distributions). Second, a Bayesian switch can be “open,” by
ignoring its value during inference; this results in disconnecting
the corresponding portions of the model connected by the
coherence variable, through a marginalization process that
can be shown to simplify. Technical details can be found
elsewhere (Gilet et al., 2011, see also section A.5 in the
Supplementary Material).

Some of the coherence variables in the decoding module (the
ones with input arrows coming from node At

1 : 15 in the temporal
control module (see Figure 1) are further “controlled” (Phénix,
2018), that is to say, they allow controlling in a gradual manner
the propagation of probabilistic information, from the phone
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FIGURE 1 | Graphical representation of the COSMO-Onset model. Variables of the model are represented as nodes (a summary of variable names and their

interpretation is available in Table 1). Subscripts indicate position in sequential parsing of the input into linguistic unit, and superscripts indicate time instant. For

instance, SyPt1 is the variable related to the first syllabic decoder at time t. Probabilistic dependencies between variables are represented by arrows: there is an arrow

from node X to node Y if X is a “parent node” of Y , that is to say, X appears as a conditioning variable of Y in a term [e.g., the arrow from SySt1 to FeLt1 represents the

term P(FeLt1 | SySt1)]. Self-looping arrows denote dynamical models, that is to say, a variable that depends on the same at the previous time step [e.g., there is a term

P(WPt | WPt−1)]. The dotted arrow between node OCt and node At+1
1 : 15 is not a probabilistic dependency, and represents instead a decision process (i.e., the

probability that OCt is True is compared to a threshold, and this conditions variables At+1
1 : 15). Sub-models are represented as colored rectangular blocks, to assist

model description (see text for details). Portions of the model, specifically, some “phone branches” are not shown, for clarity.

to the syllable to the word perceptual layers. Where coherence
variable can be interpreted as “Bayesian switches,” controlling
information flow in an all-or-none manner, controlled coherence
variables can be interpreted as “Bayesian potentiometers,” thanks
to their gradual control of information propagation. Technically,
this is done by connecting a probability distribution over the

control variable, which is Boolean, to the coherence variable. The
probability that the control variable is “True” then modulates the
amount of probabilistic information propagation (see section A.5
in the Supplementary Material).

In the context of the COSMO-Onset model, we therefore
use controlled coherence variables to modulate, over time,
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FIGURE 2 | Graphical representation of computation steps to perform word decoding and onset detection. Orange arrows indicate inference steps, labeled in the

order they are performed, and roughly superposed to the relevant portions of the model for each step (see Figure 1). Step 1 is feature decoding, step 2 is syllable

decoding, step 3 is word decoding; these steps are performed in a purely feedforward manner in the decoding module (i.e., no lexical feedback to bias syllable or

feature decoding). In the blue nodes, incoming input information is combined with information of the previous time-step. Step 4 is bottom-up onset detection from the

input, step 5 is lexical, top-down onset prediction, step 6 is the combination of the results of steps 4 and 5 (applying either the AND or the OR operator). Finally, step 7

is a decision process on the combined onset probability; when an onset is detected, the states of decoding gates (open or closed) are changed. Notice that it is

precisely at step 7 that the implementation shifts toward the next time step, thus breaking the probabilistic dependency cycle to avoid complex computational loops.

information flow in the model (see variable At
1 : 15 in Figure 1).

This allows to modify dynamically, during perception, which
portion of the model receives and processes sensory evidence. In
other words, variables At

1 : 15, which are the main output of the
temporal control module, are used to explicitly “open” or “close”
channels through which probabilistic information propagates in
the model.

More precisely, we employ such a mechanism to control
information flow between one “word decoder” (variable WPt),
3 “syllabic decoders” (variables SyPt1, SyP

t
2 and SyPt3) and 12

“phone decoders” (variables FePt1 to FePt12), so that the word
decoder includes a sequence of 3 syllabic decoders and each
syllabic decoder includes 4 phone decoders. In other words,
control variables At

1 : 15 control the temporal windows during
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TABLE 1 | Summary of symbols: variable names and their interpretation.

Variables for acoustic signal description

I1 : T1 : 12 Spectral contents of the acoustic signal Input (F1, F2 formants)

1L1 : T1 : 12 Derivative of the Loudness of the acoustic signal

Sil1
: T

1 : 12 SILent portions of the acoustic signal (Boolean)

Variables for linguistic content

FeS0 : T
1 : 12, FeP

0 : T
1 : 12, FeL

0 : T
1 : 12 Phones (i.e., FEatures), respectively from Sensory decoding, in phone Perceptual accumulators and from Lexical

prediction

SyS0 : T
1 : 3 , SyP

0 : T
1 : 3 , SyL

0 : T
1 : 3 SYllables, respectively from Sensory decoding, in syllabic Perceptual accumulators and from Lexical prediction

WS0 : T , WP0 : T Words, respectively from Sensory decoding and in the word Perceptual accumulator

Variables for controlling information flow in the model

λFeSP1 : T
1 : 12, λFePL1 : T1 : 12, . . . Coherence or controlled coherence variables, connecting layers of the model

A1 : T
1 : 15 Control variables modulating information flow (opening, closing and sequencing phone and syllable perceptual

accumulators)

Variables for onset detection

OTD1 : T , OBU1 : T , OREF1 : T , OC1 : T Onset detectors (Boolean), respectively from TD knowledge, BU sensory decoding, REFractory period inhibition

and Combined result

which phone and syllable perceptual variables receive sensory
evidence to process. This allows implementing the sequential
activation of phone and syllabic decoders, that is to say, phone
and syllabic parsing.

The purpose of the temporal control module is thus exactly
to control syllabic and phone parsing. To do so, it computes,
at each time step, the probability that there would be a syllabic
onset event, that is, the probability that a new syllable begins in
the acoustic input. When this probability passes a threshold, the
system decides there was an onset, which has two main effects
(see Figure 1, dotted arrow). First, the currently “activated”
phone and syllable decoders stop receiving sensory input from
the stimulus or lower-level layers. Second, the next syllabic
decoder, in a sequential order, is activated, along with its first
phone decoder. In contrast, phone decoders process input for a
fixed time and then activate the next one. Therefore, our model
segments the continuous speech stream into linguistic units of
varying lengths at the syllabic level. Consequently, the model can
handle words that have a varying number of syllables, syllables
that have a varying number of phones, and phones that have a
varying number of iterations (since the last phone decoder of a
syllable can be “deactivated” before completion, as does the last
syllable decoder of a word). We note, as mentioned in section 1.2,
that previously proposed models also feature such mechanisms,
of sequential activation and deactivation of syllabic (Ghitza, 2011;
Hyafil et al., 2015; Hovsepyan et al., 2020) and phone decoders
(Yildiz et al., 2013).

2.2. Decoding Module
The decoding module of the COSMO-Onset model is
inspired both by the BRAID model (Bayesian model of
Word Recognition with Attention, Interference and Dynamics)
of visual word recognition (Phénix, 2018; Ginestet et al.,
2019) and by the classical, three-layer architecture of models
of spoken word recognition, such as the TRACE model
(McClelland and Elman, 1986). It can also be construed as
a hierarchical (multi-layered) dynamic Bayesian network

(Murphy, 2002), with an external component to control
information propagation.

Three representation layers are featured in the model, with
internal representation of phones, of syllables, and of words. Each
is associated with a series of probabilistic dynamic models (i.e.,
Markov-chain-like probabilistic terms, colloquially referred to
as “decoders” above), which allow continuous accumulation of
sensory evidence about the representation domain they consider.
Information gradually decays from these Markov chains, to
ensure return to their respective initial states in the absence of
stimulation. However, information decay rate is set to a low
value, to basically ensure that the result of sensory evidence
accumulation is maintained and remains available for the whole
duration of processing a given word. Therefore, these Markov
chains essentially provide perceptual models about phonetic
states (“phones” in the following), syllables and words (see
blue rectangles in Figure 1), central to phone, syllable and
word recognition.

Two lexical layers (red rectangles in Figure 1) feature
probabilistic terms to define “transformation terms,” that is to
say, knowledge about how one representational space maps onto
another. The word-to-syllable lexical layer describes how known
words are composed of known syllables [with terms of the form
P(SyLti | WSt)], whereas the syllable-to-phone lexical layer
describes how known syllables are composed of known phones
[with terms of the form P(FeLtj | SySti)]. The final layer of the

decoding portion of the model (green rectangle in Figure 1)
maps phones onto sensory input, and more precisely, represents

knowledge about how known phones correspond to acoustic

signals [with terms of the form P(Itj | FeS
t
j )]. It also contains the

complete description of the acoustic input, with both its spectral
and amplitude (loudness) contents.

With these six layers connected by coherence variables, so that

sensory information can enter the model and propagate, we can
then simulate word recognition with the decoding portion of the
model, that is to say, compute the probability distribution over
variable WPt , at each iteration t, given the acoustic stimulation,
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as described by variables Itj , Sil
t
j and 1Ltj . Because of the complex

structure of the model, with its hierarchically layered Markov-
chains, Bayesian inference results in complex computations,
involving both feed-forward (from acoustic input to word space)
and feed-back (from word space to acoustic input) propagation
of information. However, in the current study, we approximate
these, considering word recognition in the decoding module as a
purely feed-forward process (in contrast with our main focus of
this study, that is, the inference in the temporal control module,
which features both bottom-up and top-down components; see
below). Word recognition, in the decoding module, is thus
based on phone recognition (Figure 2, step 1) activating syllable
recognition (Figure 2, step 2), and finally word recognition per
se (Figure 2, step 3). These steps are based on time-varying
computations of probability distributions, respectively over the
phone perceptual variables, the syllable perceptual variables and
the word perceptual variables.

2.3. Temporal Control Module
The “bottom-up” portion of the temporal control module
assesses the probability of syllabic onset events by relying on the
temporal cues that can be extracted from the speech envelope
(step 4, in Figure 2). This has been largely discussed in the
literature and several models of syllable onset and boundary
detection have been proposed (Mermelstein, 1975; Ghitza, 2011;
Hyafil et al., 2015; Räsänen et al., 2018; Hovsepyan et al., 2020).
These models process the speech envelope, either in search of
rapid increases or decreases (troughs) in the energy of the speech
envelope. In the COSMO-Onset model, syllable onset detection
from the stimulus is based on tracking the rapid increase of
energy in the speech envelope. If such an increase is detected for
several successive time steps, and if the corresponding increase
exceeds a given threshold, then the probability of an onset events
gets high (terms of the form P(OBUt | 1Ltj ), see Figure 1).

The “top-down” portion of the temporal control module
relies on lexical knowledge about word composition. This lexical
knowledge associates each word of the lexicon to a sequence
of syllables, each of a known composition, thus of known
duration. Therefore, themodel incorporates knowledge about the
“canonical” instants at which syllabic onset can be expected, for
each word [term P(OTDt | WSt)]. During word recognition, this
lexical prediction of onset events is combined with the ongoing
computation of the probability distribution over words, so that
words contribute to syllabic onset prediction according to their
current probability (step 5, in Figure 2).

The next component of the temporal control module is a
fusion model between the bottom-up detection and top-down
prediction of onset events (term P(OCt | OTDtOBUtOREFt),
step 6, in Figure 2). We define two ways of combining the two
pieces of information, through two fusion “operators,” the AND
and the OR operators. They are both mathematically defined as
particular products of the probability distributions provided by
the top-down and bottom-up components. Nevertheless, they
can easily be interpreted: with the AND operator, the temporal
control module decides that there is an onset event if both the
bottom-up and top-down components agree that there is one;
in contrast, with the OR operator, the temporal control module

decides that there is an onset event if at least one component
suggests that there is one.

The final component of the “bottom-up” portion of the
temporal control module implements a refractory period
(variableOREFt , also within step 6, in Figure 2). If an onset event
was detected, this refractory mechanism prevents successive
detection for a given time-window. This is inspired by well-
known properties of the dynamics of oscillators in speech
processing, that prevent the firing of successive onsets in the
same oscillation period, classically observed in the theta band
(Schroeder and Lakatos, 2009; Wyart et al., 2012). This is also a
classical feature of previous models (Hyafil et al., 2015).

The computed probability that there is an event [P([OCt =

True] | OTDtOBUtOREFt)] is then compared with a decision
threshold: if it exceeds this threshold, an onset event is considered
detected, which closes and opens the appropriate phone and
syllable decoders of the decoding module, for the next simulation
time step. This is represented, in Figure 1, by the dotted arrow
between nodes OCt and At+1

1 : 15 (step 7, in Figure 2).

3. MATERIAL

3.1. General Principles
The present contribution is focused on the definition and
assessment of the major principles of the COSMO-Onset model.
For this aim, and since we are still far from a complete
implementation and evaluation on real speech stimuli, we have
defined a set of highly simplified material, easily tractable but
still enabling to test all the different components of the model.
This “toy” material hence respects a compromise between two
antagonist requirements: being sufficiently varied to display a
variety of configurations for the model and being sufficiently
simple to enable simple simulations easy to interpret at this initial
stage of development.

3.2. Linguistic Material
The linguistic material we consider in this first study is made of
isolated words with a variable number of syllables from 1 to 3, and
syllables made of either a single vowel (a V syllable) or a sequence
of a consonant and a vowel (a CV syllable). We consider a set of
3 vowels /a i u/ and 2 plosive consonants /p t/. Furthermore, we
defined a lexicon of 28 toy words, at most tri-syllabic, the list of
which is provided in column 2 in Table 2.

3.3. Phonetic Material
At the acoustic and phonetic level, we represent syllables by
sequences of phones with a maximum number of 4 phones per
syllable (in the same vein as in Ghitza, 2011). The sequence of
phones for the 28 words in the lexicon is provided in column 3 in
Table 2. For example, the word “pata” is composed of a sequence
of 7 phones p-@-a-t-@-a-#, the content of which will be described
in the following of this section. Altogether, the constraints on the
maximal number of syllables per word (3) and phones per syllable
(4) match with the decoding structure of the current COSMO-
Onset implementation (see Figure 1), respectively in the word-
to-syllable lexical layer and syllable-to-phone lexical layer.
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TABLE 2 | List of the 28 words of the lexicon together with their “phonetic”

content.

Word type Word Phone sequence Duration

Monosyllabic “a” a-# 150

“pa” p-@-a-# 200

“pi” p-@-i-# 200

“pu” p-@-u-# 200

“ta” t-@-a-# 200

“ti” t-@-i-# 200

“tu” t-@-u-# 200

Bi-syllabic “apa” a-p-@-a-# 300

“ata” a-t-@-a-# 300

“ipi” i-p-@-i-# 300

“iti” i-t-@-i-# 300

“upu” u-p-@-u-# 300

“utu” u-t-@-u-# 300

“papa” p-@-a-p-@-a-# 350

“pata” p-@-a-t-@-a-# 350

“patu” p-@-a-t-@-u-# 350

“pipi” p-@-i-p-@-i-# 350

“pita” p-@-i-t-@-a-# 350

“tata” t-@-a-t-@-a-# 350

“tatu” t-@-a-t-@-u-# 350

“tuti” t-@-u-t-@-i-# 350

Tri-syllabic “apata” a-p-@-a-t-@-a-# 450

“apiti” a-p-@-i-t-@-i-# 450

“iputu” i-p-@-u-t-@-u-# 450

“utatu” u-t-@-a-t-@-u-# 450

“patata” p-@-a-t-@-a-t-@-a-# 500

“patati” p-@-a-t-@-a-t-@-i-# 500

“tapatu” t-@-a-p-@-a-t-@-u-# 500

Column 1 provides the grouping of words according to their number of syllables. Column

2 provides the name of each word, corresponding to its phonological content. Column 3

provides the phonetic content of each word, that is, the sequence of acoustic phones.

Column 4 provides the corresponding duration of the model input, in simulated time steps.

Vowel and plosive phones in our simulations are acoustically
represented as sets of pairs of formants (F1, F2) in Barks, a
subjective perceptual scale (Zwicker, 1961; see Figure 3). While
it is classical to characterize vowels by their first two formants
(Fant, 1970), it is less classical to use formant values for plosives
(although, see Schwartz et al. (2012) for a characterization of
plosives by formant values). More precisely, the formant values
for the considered vowels are gathered from a dataset obtained
using VLAM, the Variable Linear Articulatory Model (Maeda,
1990; Boë and Maeda, 1998). It contains a large set of synthetic
acoustic samples for all oral French vowels, and we only used
the data points for the vowels /a i u/, respectively corresponding
to phones a, i and u in the following, which amount to 15,590
samples. To this vowel set, we added 1,000 points for the phones
p and t associated to consonants /p t/, 500 each, supposed to lie
in the (F1, F2) space between i and u, p close to the back rounded
u and t close to the front i (Schwartz et al., 2012).

For the syllables formed by two different phonemes (in the
present simulations, C followed by V), in order to simulate
formant transitions (Lindblom and Studdert-Kennedy, 1967;
Stevens and Klatt, 1974; Dorman et al., 1975), we defined linear
transitions between the phones associated to the constituent
phonemes. An example of a transition between phones a and u
is depicted in Figure 3. Transitions are denoted by the phone
symbol @, both in descriptions of the stimuli used in the
simulations, but also as a value in the phone space in the model.

Finally, in the present simulations, each word input consists
in a phone sequence ending with an “end of sequence” marker,
to signal silence in the acoustic signal. Silence is denoted by the
phone symbol #, here again, both in descriptions of the stimuli
and as a possible phone to be recognized by the model. An
example of formant sequence used as input for the bi-syllabic
word “pata” is shown in Figure 3 right.

All these formant data distributions for each phone are used
to obtain the parameters of the sensory models, that is, the
probability distributions over acoustic input for each phone
category [term P(Itj | [FeStj = f ])]), and more precisely, their

parameters, i.e., the means and co-variances of the Gaussian
distributions for each phone in the lexicon (see Figure 3, black
dots and black ellipses). In the case of the end-of-sequence
marker #, it is arbitrarily mapped with formants normally
distributed around the origin of the 2D formant space; such
an arbitrary value is well outside of the meaningful formant
descriptions for the vowels and the consonants of the lexicon, and
thus silence is “easily recognized.”

3.4. Phone Duration and Loudness Profiles
In the current simulations, we consider that all phones have a
constant duration of 50 ms, that is, 50 “time steps” (we keep the
description of simulations in terms of time steps in the following,
acknowledging that they would correspond to ms for application
to real acoustic inputs). Nevertheless, syllables have variable
duration since they have a variable number of phones. This
number varies from 1 to 4: 1 for a non-terminal syllable made
of a single vowel (e.g., the initial syllable in word “apata”), 2 if
the vowel is followed by a final silence # (e.g., in the monosyllabic
word “a”), 3 for a CV syllable with a phone for C and a phone for
V connected by a transitional phone@, and 4 in a CV syllable that
ends a word, because of the end-of-sequence phone. Accordingly,
the duration of each word stimulus is displayed in column 4 in
Table 2. For example, the word “pata” is composed of 50ms of the
phone p, followed by 50 ms of the transitional phone @, followed
by 50 ms of the phone a, and so on, to end with 50 ms of the “end
of word” marker #.

In addition to its description in terms of temporal sequence
of phones, each syllable is characterized by a loudness profile
L which provides the input to the temporal control module
for syllable segmentation. Loudness represents the auditory
evaluation of acoustic intensity at a given time, resulting from
sensory processing of the acoustic signal envelope. This can be
seen as capturing the variations of energy of the acoustic signal.
In our simulations, loudness values are normalized between 0 and
1. Positive values of the local derivatives of loudness are used to
define onset events.
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FIGURE 3 | (Left) Phones of the lexicon represented on a two-dimensional space with the second formant F2 on the x-axis from right to left and the first formant F1

on the y-axis from top to bottom, as is classical in phonetic displays. Phones associated with phonemes /a/, /i/, /u/, /t/, and /p/ are, respectively, represented by blue,

yellow, green, red and purple colored dots. The trajectory of the simulation of the word “pata,” is also displayed. The annotations correspond to the different

corresponding time steps for each constituent phone of the word “pata,” with one sample of the phone p from 0 to 50 time steps, the transitional phone @ between

the phones p and a, from 50 to 100 time steps, along a linear transition joining the barycenters of the two phone categories (brown dots), one sample of the phone a

from 100 to 150 time steps, one sample of the phone t from 150 to 200 time steps, the transitional phone on 50 time steps, and one sample of the phone a from 250

to 300 time steps. For each phone, are also shown the mean (black dot) and the 3 standard-deviation ellipse of the bi-variate normal distribution best fitting the data

points (black ellipses). (Right) Example of formant inputs (y-axis, in orange for F1, in blue for F2) used for the word “pata,” as a function of simulated time steps (x-axis).

The loudness profiles used in this study are simplified, and
serve to illustrate and capture the fact that there are syllabic
energy fluctuations in real speech with, generally, rapid increase
at syllable onsets and gradual decrease toward syllable offsets
(in-between, almost anything can happen). In Figure 4, we
display examples of loudness profiles we use in the simulations,
respectively for the mono-syllabic word “a,” composed of one
vowel (Figure 4 left), for the bi-syllabic word “pata,” composed
of 2 CV syllables (Figure 4 middle) and for the tri-syllabic word
“apata” composed of 3 syllables (one V and 2 CV syllables,
Figure 4 right).

3.5. Paradigms for Test Conditions
We explored various test conditions for the model, in order to
assess and illustrate the interaction between the bottom-up onset
detection and the top-down onset prediction mechanisms, with
the stimuli configured as presented above.

First, we consider a “nominal condition”, in which the
stimulus presents no difficulty, that is to say, the stimuli loudness
profiles are “smooth and regular,” such as shown in Figure 3.
Second, to assess the model in more difficult situations, we define
degraded versions of the loudness profiles, in two possible ways.
In the first case, we add noise-events to the loudness, randomly
positioned in portions where loudness is sustained in the nominal
case: this may lead to detection of spurious loudness events
by sensory processing (“noisy-event condition”). In the second
case, we decrease the depth of the loudness dip found at syllable
boundaries and randomly modify the shape of the loudness dip:
this may lead sensory processing to miss syllabic onsets from the
loudness signal (“hypo-articulation-event condition”). The three

conditions, and the corresponding loudness profiles employed,
are illustrated Figure 5 for the bi-syllabic word “pata.”

3.6. Simulation Configuration
We performed a set of simulations to evaluate the performance
of the COSMO-Onset model. To do so, we simulate word
recognition by the different model variants, for different words
and for the various test conditions; for the test conditions that
simulate a degradation of the stimulus, we applied different
severity levels of the degradation. We now detail each of these
components of our simulation set.

To recall, there are three considered variants of the model,
in which syllable onset events are either assessed from bottom-
up sensory information only (the “BU-only” model, in the
following), or with top-down onset prediction combined with
the AND operator (ANDmodel), or, finally, with top-down onset
prediction combined with the OR operator (OR model). The
stimuli we used for the experiment are all non-monosyllabic
words from the lexicon (21 different words out of the 28 in
the lexicon, see Table 2). Monosyllabic words were not used as
stimuli since they would only contain a single onset event, at the
initial iterations; nevertheless, they are part of the lexicon and
are evaluated as possible candidates by the model during word
recognition. Each of these words is presented once to the three
variant models in nominal test conditions (i.e., with nominal
loudness profiles).

In the “noisy-event” test condition, we considered 5 possible
severity levels, by varying the number of noise events applied to
the loudness profile, from 0 (identical to the nominal case) to 4.
Each noise event lasts 10% of the duration of the word, and its
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FIGURE 4 | Examples of loudness variations for three input sequences: the word “a” (left), the word “pata” (middle) and the word “apata” (right). Simulated time is

on the x-axes, normalized loudness (arbitrary units) is on the y-axes. The vertical bars and top annotations refer to the associated phonetic content of the stimulus.

FIGURE 5 | Loudness profiles for the bi-syllabic word “pata” used in the three simulation conditions: the nominal condition (left), the “noisy-event” condition (middle)

and the “hypo-articulation-event” condition (right). Simulated time is on x-axes, normalized loudness (arbitrary units) is on y-axes. Degraded conditions (middle,

right), respectively correspond to the first noise level with one spurious event in a random position in the “noisy-event” condition, and to a dip value at 0.75 with

random dip shapes in the “hypo-articulation-event” condition. The different colors correspond to different random degradations.

position is randomly drawn in the loudness profile of the word,
ensuring that, when there are several noise events, they do not
overlap (see examples of severity level 1 on Figure 5middle).

In the “hypo-articulation” test condition, we considered 5
possible severity levels, by varying the depth of the loudness dip
between syllables. In this dip, loudness decreases to a varying
minimal value, from 0.6 (identical to the nominal case) to 0.8
(in which case the loudness dip between syllables is entirely
removed, since loudness is at 0.8 inside syllables). The 5 possible
values therefore are 0.6, 0.65, 0.7, 0.75 and 0.8. To introduce
some variability, we randomly draw the precise time iteration,
during the loudness dip, at which the minimal value is attained
(except, of course, for perturbation level 0.8, since the dip is
removed altogether. See examples of dip position at 0.75 on
Figure 5 right).

Note that, while severity level 0 of the “noisy-event” test
condition perfectly corresponds to the nominal case (and the
simulations are thus not repeated), this is not the case for
severity level 0 of the “hypo-articulation” test condition, since
the time instant of the loudness minimal value is varied,
which may affect onset detection. Whenever perturbations

would be randomly generated, we performed 10 independent
simulations for that condition. Overall, we therefore performed
21∗3∗(1 + 4∗10 + 4∗10 + 1) = 5,166 word recognition
simulations: 21 word stimuli, 3 model variants, 1 for the nominal
condition, 4∗10 for the noisy-event condition, 4∗10+1 for the
hypo-articulation condition.

3.7. Performance Measures
In order to evaluate the performance of themodel variants during
the simulations of word recognition, we use two performance
measures: correct recognition probability, and correct onset
detection. First, correct recognition probability is measured as
the probability ascribed by the model to the input word, at the
last simulated iteration. The second performance measure aims
at evaluating whether onset events were correctly detected by the
model. As in any signal detection task, errors can be of two types:
the model can incorrectly detect an onset where there was none,
or the model can fail to detect an onset event in the stimulus.
We therefore apply the F-score measure (Chinchor, 1992; Sasaki,
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2007) to assess event detection performance. We compute F as:

F = 2
PR

P + R

with P the precision and R the recall. This scalar measure is
therefore a trade-off between precision and recall; its value is
high when errors, whatever their type, are few. In practice, we
consider an event to be correctly predicted if the model generated
an onset event internally in a 30-iteration wide time-window
around the onset position in the stimulus (15 iterations before,
15 iterations after).

4. RESULTS

We now report simulation results, to assess performance of
the three model variants in the three experimental conditions:
the “nominal” condition, the “noisy-event” condition, and
the “hypo-articulation-event” condition. First, we detail an
illustrative example, allowing to investigate the mathematical
behavior of the model. This illustrative example is based on the
input word “pata” in the nominal condition. Second, for each
degradation condition, we first show the model behavior for
the same input word “pata,” to illustrate mechanisms, before
proceeding to systematic evaluation of performance over the
whole simulation set.

4.1. Illustrative Example in Nominal
Condition
Figure 6 shows the simulation of the full model with the AND
fusion in the nominal condition, for the example stimulus
word “pata.” It shows probability distributions computed by
the model. Figure 6 left shows the different onset probability
distributions in the temporal control module, and their evolution
over time: the top-down onset prediction, the bottom-up onset
detection composed of the refractory period and sensory event
detection, and finally, the combined result with the AND fusion
model. Figure 6 right shows probability distributions in the
decoding module, with probability distributions over words
(which provide the final output of the model), over syllables, and
over phones.

Bottom-up onset detection shows that the model, based on
sensory processing of the loudness envelope alone, would detect
2 events (Figure 6 left, bottom green curve), respectively around
iterations 0, and 150. These, indeed, correspond to increase in
the loudness profile for the stimulus word “pata” (see Figure 5

left). Since these are outside the refractory period (dashed orange
curve, left column, middle row of Figure 5), these two onset
events are maintained and “output” by the bottom-up branch of
the temporal control module.

Top-down lexical knowledge would predict 3 onset events
(Figure 6 left, top red curve), respectively around iterations 0,
150 and 300. The first twomatch with bottom-up onset detection,
and, since we illustrate here the AND fusion model, they are
maintained in the output of the temporal control module (orange
curve in the middle of Figure 6). The third onset predicted
by top-down knowledge is due to the fact that the presented

stimulus, the word “pata” is a prefix of other words in the lexicon
(tri-syllabic words “patata” and “patati”). At this stage of word
recognition, these three words are equally probable (see Figure 6
top right plot), so that a third onset is likely. In this example, it is
not confirmed by the bottom-up sensory event detection, and the
AND fusion model filters it out.

At each detected onset, the model activates a new syllable
decoder, so we observe that 2 syllabic decoders are involved in the
model (Figure 6 bottom right portion). In each syllable decoder,
the probability distributions over syllables evolve as acoustic
input is processed, and the probability value of the correct
syllable, that is, the one in the input, converges toward high
values. We thus observe that each syllable decoder recognizes
the appropriate syllable, which are /pa/ for the first syllable,
and /ta/ for the second one. In the first syllable decoder, we
observe a perfect competition for the first 100 time steps between
all syllables beginning with phone p, which gets disambiguated
when phone a is processed. The second syllable decoder is
activated around iteration 150 (it is a uniform probability
distribution before activation), and shows a similar dynamic:
first, competition between all syllables starting with phone t,
then recognition of the correct syllable /ta/. The third syllable
decoder is never activated, and thus remains uniform during the
whole simulation.

Within every syllable decoder, phonetic decoders get activated
sequentially (Figure 6 bottom 12 plots of right portion). We
observe behavior similar to the syllable decoders, except at
a smaller timescale. Phone decoders stay uniform until their
activation (this is especially visible for the phone decoders of
the third syllable, which are never activated), then they decode
the input, yielding, in this simulation, correct phone recognition,
and after another onset is detected and predicted, the probability
distributions gradually decay (this is especially visible for the
phone decoders in the first syllable).

The probability distributions over syllables are then used, in
the rest of the probabilistic computations in the model, to infer
the probability distribution over words (Figure 6, top of the
decoding module panel). Since syllable parsing was successful, so
that syllable decoding was, too, then word recognition proceeds
as expected, to recognize the word according to its syllables.
Indeed, we observe that, at time step 150, that is, after decoding
the first syllable /pa/, all words of the lexicon that start with /pa/
are equally probable. At time step 300, the lexical competition
continues, and three words remain equally probable: the correct
word “pata,” and two competitors, the words “patata” and
“patati,” which embed the word “pata.” This issue has been
discussed in the literature (Davis et al., 1998, 2002); in the current
illustrative simulations we do not address this general question, as
it is naturally solved since we only consider isolated words: after
a few iterations in which the acoustic input represents silence, the
recognized word is the correct one, the word “pata.”

We therefore observe correct onset detection (thus correct
syllable parsing), but also correct phone, syllable and word
recognition by the full model with AND fusion. Simulating the
model in either the “BU-Only” or the OR fusion variant, in the
nominal condition, also provides correct answers and thus, good
performance (simulations not shown here, see below for model
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FIGURE 6 | Example of simulation of the full model with the AND fusion in the nominal condition, on input word “pata.” Plots are organized to roughly map with

corresponding positions in the model schema, see Figure 1. (Left, “Temporal control module” panel) Plot of the onset detection probabilities computed in the model

(y-axis) as a function of simulated time (x-axis). Left column: In red, top-down onset prediction, in dashed orange, the probability of an onset being outside a refractory

period, in green, onset probability based on sensory processing of stimulus loudness. (Middle): in orange, the onset probability of the AND fusion model (Right,

“Decoding module” panel) Top plot shows the probability (color coded, see the color bar on the right) over words (y-axis) as a function of time (x-axis). The vertical

black bars, and annotations at the top of the plot recall the stimulus structure; in this example, the stimulus is the word “pata,” with the acoustic signal of the first

syllable during the first 150 iterations, the one of the second syllable during the next 150 iterations, followed by silence. Second row: plots of the probabilities (color

coded) over syllables (y-axis), as a function of time (x-axis) during the activation of the corresponding syllable decoder. Bottom four rows: plots of the probabilities

(color coded) over phones (y-axis), as a function of time (x-axis). Plots for phone decoders are sorted vertically, with the first phone above and the fourth at the bottom.

performance evaluation), with the exception of the activation of
a third syllabic decoder, when the top-down model relies on the
OR model, because the word “pata” is a prefix of other words
in the lexicon (this is not shown here but can be observed in
the final simulation, in the “hypo-articulation-event” condition:
see Figure 9).

4.2. Noisy-Event Condition
A first challenge for the listener is when the acoustic signal
is perturbed, because for instance of external noisy conditions.
In that case, the speech envelope can be degraded, introducing
extraneous fluctuations of loudness leading to detecting spurious

events in the sensory processing of loudness. In other words,
such spurious onsets would be detected by the bottom-up onset
mechanism. Therefore, in this second simulation, we expect the
“BU-only” model to result in erroneous syllable parsing, leading
to incorrect syllable and word recognition. On the other hand,
the complete model would rely on top-down lexical predictions
of onset to “filter out” the unexpectedly detected onset (with the
AND operator), leading to correct parsing and recognition.

Figure 7 shows the simulation of the “BU-only” variant of
the model and of the full model (with the AND fusion model),
on input word “pata,” with a degraded loudness profile that
includes 2 spurious noise events. The simulation we selected
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FIGURE 7 | Example of simulation of the “BU-only” variant (top row) and the full model, with the AND fusion model (bottom row), in the noisy-event condition, on

input word “pata.” (Left column): plots of onset detection probabilities; (Right column): plots of word probabilities in the word decoder (top row) and syllable

probabilities of the syllable decoders (bottom row). Graphical content is presented in the same manner as in Figure 6 (except that onset probabilities are

superposed in a single plot and the phone decoders are not shown).

here for illustration adds these events at iterations 60 and 200
(see Figure 5 middle). We observe that with the bottom-up
onset mechanism alone (Figure 7 top row), the bottom-up onset
mechanism “fires” 4 events, corresponding to the 4 energy rises
in the loudness profiles: near the start, then at iterations 60, 150,
and 200. These are well outside the refractory period of 50 ms,
which would have otherwise filtered out these spurious onset
events. Therefore, the bottom-up portion of the model detects
4 onset events. It leads to premature onset detection, which has
a number of deleterious effects. First, it prematurely “closes” the
first syllabic decoder, which was only fed with phone p, so that it is
unable to correctly identify the first syllable in the input. Instead,
the first syllabic decoder remains in an unresolved state of
competition between all syllables that start with consonant phone
p. Second, it prematurely opens the second syllabic decoder, that

interprets the a vowel phone in the input as the syllable /a/, even
though it is not legal in our lexicon in non-initial positions. This
does not help resolving competition at the word level. Third,
it correctly detects the real onset at time step 150, and opens
a third syllable decoder supposed to decode the second syllable
starting with phone t. But this is misaligned with the structure of
the word “pata” which is bi-syllabic. Finally, the third decoder is
prematurely closed, by the detection of the spurious onset event,
near iteration 200. Overall, from one spurious event to another,
the error in syllable parsing persists during decoding, and the
BU-only variant is unable to correctly recognize the input word.

Compare with the simulation of the full model, with the
AND fusion model, on the same stimulus (Figure 7 bottom
row). We observe that, while the bottom-up onset detection
mechanism would lead to propose an onset near time step 60,
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the top-down temporal prediction model does not confirm this
proposal. Therefore, the AND fusion model results in filtering
out this event. This also happens with the other spurious event
near time step 200. Therefore, with the AND fusion model, only
the two “real” onsets are detected, that is to say, the ones at the
start of each syllable. As a consequence, the behavior of the AND
fusion model in the “noisy-event” condition is quite the same as
in the nominal condition, with correct syllabic parsing, phone
recognition, syllable recognition and word recognition.

Figure 8 shows performance measures for the three variant
models in the “noisy-event” condition, across all simulations.
We first observe that both performance measures are highly
correlated, suggesting that correct event detection relates with
correct word recognition. Second, when there is no perturbation
(perturbation level 0), all variant models have the same
performance, which is expected since top-down event prediction
is redundant in this case with events that can be detected from the
input signal. Third and finally, we also observe that the higher the
severity level of degradation, the more performance decreases.
Indeed, as degradation increases, the chance of having noise
perturbations outside refractory periods increases, thus leading
to more chance for spurious onset events. However, we observe
that the model with the AND fusion is the most robust, as its
performance decreases less with perturbation.

4.3. Hypo-Articulation-Event Condition
In the second challenge we consider, degradation of the loudness
profile leads to “removing out” onset events, for instance with
an external perturbation masking a dip in acoustic energy at the
syllabic boundary, or with this dip being much smaller, maybe
because of hypo-articulation, or an error in speech planning, or
excessive speed in speech articulation leading to speech slurring,
etc. In that condition, we expect the “BU-only” variant of the
model to miss onset events, leading to incorrect syllabic parsing,
thus incorrect recognition. On the other hand, the complete
model, with the OR operator, would use the lexically predicted

onsets to insert them where the sensory onsets were missed,
leading to correct parsing and recognition.

Figure 9 shows the simulation of the “BU-only” variant of the
model and of the full model (with theOR fusion model), on input
word “pata,” with the degraded loudness profile that decreases
the dip depth in acoustic loudness at the syllabic boundary
(see Figure 5 right). We observe that the “BU-only” variant of
the model does not ascribe a probability for the second onset
prediction that is high enough (the probability is lower than the
decision threshold at 0.4), and therefore it misses the second
onset (near time step 150), so that the first syllabic decoder stays
activated for too long. Although it correctly recognizes the initial
/pa/ syllable, it never activates the second syllable decoder. This
leads to unresolved competition at the word level between all
the bi-syllabic words starting with syllable /pa/, and, ultimately,
incorrect word recognition.

In contrast, with the OR fusion model (Figure 9), the top-
down onset prediction allows to recover the missed onset event
at time step 150, which helps to avoid the problem of faulty
syllabic parsing and misalignment of the second syllabic decoder
with the stimulus. In this condition, the full model with the OR
fusion model leads to correct syllabic parsing, phone recognition,
syllable recognition and word recognition. Notice, however, that
simulations here are not exactly the same as those of the model in
the nominal condition, with two differences that merit attention.

Indeed, we first observe that the syllabic decoders are a few
iterations ahead the stimulus: for instance, whereas the syllabic
boundary between the first and second syllables is exactly at time
step 150 in the stimulus, the first onset event resulting from
the OR fusion model is around time step 140. This leads the
second syllabic decoder to process, for a few iterations, the end
of the first phone a in stimulus “pata.” This slight temporal
misalignment is due to the value we set for the onset decision
criterion, at 0.4. Such a value is reached early of the “bump” in
onset probability provided by the lexical model, that correctly
peaks at time step 150 [Figure 9 bottom left plot, compare the

FIGURE 8 | Performance of the three variant models in the “noisy-event” condition. (Left): F-score (y-axis) as a function of the severity of degradation (x-axis).

(Right): word recognition probability (y-axis) as a function of the severity of degradation (x-axis). Every data point is averaged, over 21 words, and, where applicable,

over 10 independent simulations with different randomly drawn perturbations.
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FIGURE 9 | Example of simulation of the “BU-only” variant (top row) and the full model, with the OR fusion model (bottom row), in the hypo-articulation-event

condition, on input word “pata.” Graphical content is presented in the same manner as in Figure 7.

lexical prediction (red curve) and output of the OR fusion model
(orange curve)].

The second notable behavior in this simulation is the
activation of a third syllabic decoder. Indeed, the lexical onset
prediction model is aware of words in the lexicon which
embed “pata.” Therefore, up to time step 300, there is an
unresolved competition, at the word recognition level, between
the embedding words containing “pata” and “pata” itself. A third
syllable could then, from the lexical prediction, be expected,
so that an onset event is lexically generated. This leads to
activating a third syllable decoder, which mostly processes the
“end of word” marker in the acoustic input (after the few
iterations where it processes the end of the second a, because
of the slight temporal misalignment discussed above). Observing
a third syllable “composed of silence” is only consistent with
the word “pata” in the lexicon, so that it is, ultimately,
correctly recognized.

Figure 10 shows performance measures for the three variant
models in the “hypo-articulation-event” condition, across all
simulations. First, we observe, here again, that both performance
measure correlate. Second, we observe that, contrary to
simulations in the “noisy-event” condition, all three model
variants do not have the same performance for the less degraded
condition. Indeed, in our simulation, we randomly select the time
iteration at which the minimal value is reached; this changes
the geometry of the dip in loudness, so that, even though it
has nominal depth (when dip position is 0.6), it can mis-align
onset detection and prediction, which negatively affects the AND
fusionmodel. Third and finally, we also observe that performance
decreases as degradation increases, for the “BU-only” and the
AND fusion models. The performance of the OR fusion model,
on the contrary, does not decrease as perturbation increases,
indicating robustness of the OR fusion model in the “hypo-
articulation-event” condition.
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FIGURE 10 | Performance of the three variant models in the “hypo-articulation-event” condition. (Left): F-score (y-axis) as a function of the severity of degradation

(x-axis). (Right): word recognition probability (y-axis) as a function of the severity of degradation (x-axis). Severity of degradation is measured with the minimal value

attained in the loudness dip at syllable boundaries (“dip position” in plot labels; 0.6 corresponds to a well-marked dip, 0.8 removes the loudness dip altogether). Every

data point is averaged, over 21 words, and over 10 independent simulations with different randomly drawn perturbations.

5. DISCUSSION

In this paper, we explored the processes of syllabic segmentation,
with a specific focus on the potential role of top-down temporal
predictions. Simulations show that, even though, in ideal
conditions, acoustic envelope processing alone may be sufficient
for efficient syllabic segmentation, in adverse conditions, the
modulation of bottom-up processes by top-down knowledge
improves segmentation of speech into its syllabic constituents.
Two sets of adverse conditions were tested. The first set
corresponds to the case where the bottom-up onset mechanism
detects extraneous events due to noisy acoustic signal. The
second one corresponds to the case where the speech envelope
is degraded, possibly in certain phonetic contexts or with hypo-
articulated speech, so as to miss crucial events for segmentation.
In these two cases, the “BU-only” variant of the model performs
poorly, segmentation of the speech input into constituent units
is negatively impacted, and hence the word recognition process
is impaired.

To evaluate how such an impaired performance can be
mitigated by integrating top-down lexical knowledge providing
temporal predictions about syllabic onsets, we proposed two
fusion models for combining the bottom-up detection and top-

down prediction submodels. The first one aims at compensating

for the case where the bottom-up branch detects spurious onsets,

requiring the top-down branch to filter out these spurious events.

This is dealt with by the AND fusion model, which decides that
there is an onset only if the probability distributions in both
submodels are coherent, enabling the top-down branch to inhibit
the detection of spurious events in the bottom-up one. The
second fusion model corresponds to the case where the bottom-
up branch misses important events. This is dealt with by the OR
fusion model, which detects an onset when at least one of the
two branches “fires,” enabling the top-down branch to recover the
events missed by the bottom-up one. Altogether, this confirms

that appropriate fusion in the full model allows to mitigate the
weak performance of the “BU-Only” variant of the model.

Therefore, the main goal of the present study, which was to
design and test fusion models associating bottom-up acoustic
envelope processing and top-down timing predictions from
higher linguistic levels, is reached, and this provides the major
contribution of this paper. We now have at our disposal a general
Bayesian architecture associating temporal control and phonetic
decoding, that can be implemented, tuned or modified in various
ways, tested on speech stimuli and possibly used for generating
predictions for future neurocognitive experiments. Of course,
the simulations we proposed here are preliminary, and should
be extended in the future, in various directions. We discuss
this below.

From “Toy” Stimuli to Realistic Speech
Processing
First of all, it is important to acknowledge that the current
material used as input to the model is far from real speech. To be
able to finely monitor the model output at this preliminary stage,
we designed toy stimuli. Specifically, the spectral description
of the acoustic stimulus was limited to the first two formants.
The first layer in COSMO-Onset, that is the Phone Sensory
Layer, currently takes for granted the feature extraction from
the speech input by directly implementing phone recognition
from the first two formants, while realistic spectral analysis
of speech utterances would rather exploit a bank of auditory
filters (e.g., gammatones Patterson et al., 1992; Hohmann, 2002
or mel-cepstrum analysis Rabiner, 1989). This is also the case
for the synthetic loudness curves used to simulate the speech
envelope and the two kinds of adverse perturbations applied to
these curves, together with the simplified loudness processing
in the bottom-up branch performing a “simplistic” bottom-
up onset detection with straightforward envelope analysis. A
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further step in the development of COSMO-Onset will be to
consider more realistic neuro-computational models able to
track the signal envelope and adapt in an online manner to
variations in instantaneous syllabic frequency, as in oscillatory
models such as the ones developed by Hovsepyan et al.
(2020), Hyafil et al. (2015), and Räsänen et al. (2018) (see
also the neuro-physiological refinements recently introduced
by Pittman-Polletta et al., 2021). Importantly, these various
existing models should help provide COSMO-Onset with a
possible neurophysiological implementation of the temporal
processing component of the algorithmic structure presented
on Figure 1, which would make the relationships between
the present simulations and real neurophysiological data
more straightforward.

Efficiently Combining Bottom-Up and
Top-Down Information for Syllabic Parsing
The simulations presented in section Results suggest a rather
clear overall picture. Firstly, in the “hypo-articulation simulation
set,” generating missing events in the bottom-up branch, the
OR model behaves efficiently and outperforms the “BU-Only”
model in terms of both detection accuracy and recognition score.
Secondly, in the “noisy-simulation set,” generating spurious
events, the AND model discards most of these spurious events
and outperforms the “BU-Only” model once again in terms
of both detection accuracy and recognition score. Notice that
in both cases, the bottom-up branch performs actually better
than the non-adapted fusion model. Indeed, the AND model
degrades event detection when it is already difficult in the
hypo-articulation case, probably because of a slight asynchrony
between the bottom-up and the top-down branches; and the OR
model slightly increases the number of inaccurate or spurious
events detected in the noisy case, probably because the top-down
information enhances spurious envelope modulations.

Globally, this raises the question of selecting the right
model for the right stimulus condition. This falls into the
general question of model selection and averaging, for which
literature is abundant (e.g., Wasserman, 2000; Burnham and
Anderson, 2004). This would suggest various ways of analyzing
the probabilistic content of each of the three models “BU-Only,”
AND andOR and selecting or averaging their output accordingly.
Importantly, the rationale of the two sets of simulations suggests
that some exogenous contextual criterion could be used for
model selection. Thus, if the system is able to extract some
evaluation of the level of noise or the quality of articulation
during a short period of time, this information could be used as
a proxy to select the AND or the OR fusion model accordingly,
or even to combine them. The same kind of endogenous or
exogenous information could also be used as a prior or a weight
in the Bayesian fusion process involved in both the AND and
the ORmodel. For example, instantaneous estimates of the noise
level could act as a weighing factor in the AND Bayesian fusion
process, increasing/decreasing the respective roles of the bottom-
up and top-down branches accordingly. The Bayesian framework
that we have adopted all along this work in the development
of the COSMO-Onset model is obviously adapted to study and

explore all the corresponding questions about model selection
and fusion.

Finally, if there indeed exist two different fusion modes,
namely an AND and an OR behavior, this raises some interesting
questions for cognitive neurosciences, asking whether specific
neural markers could be associated to a shift from one mode
to the other. Indeed, it has been proposed, for instance by
Arnal and Giraud (2012) and Giraud and Poeppel (2012),
that there could exist specific frequency channels, respectively,
associated to bottom-up (theta channel) and top-down (beta
channel) messages. The shift from the AND to the OR
behavior, possibly associated to noisy conditions vs. hypo-
articulation, would result in different coordination in time
between theta and beta bursts, that could be explored in adequate
neurophysiological paradigms.

Relation With Classical Models in
Psycholinguistics
The decoding module in COSMO-Onset has a hierarchical
structure similar to classical psycholinguistic models like TRACE
(McClelland and Elman, 1986), though it replaces neural
computations in TRACE by probabilistic computations. Still, a
model like TRACE incorporates feedback from higher to lower
levels in the decoding process, which means that not only the
perception of phonemes influences the perception of words, but,
conversely, word recognition influences phoneme identification,
although the way this feedback process influences perception is
still a matter of debate (Norris et al., 2016). We plan to include
such feedback processes into the COSMO-Onset model, to
provide top-down predictive processes at the decoding stage, in
coherence with the predictive coding framework (Friston, 2005;
Friston and Kiebel, 2009). This, combined with the architecture
we proposed in the COSMO-Onset model, raises an interesting
issue. Indeed, the temporal control module of COSMO-Onset
can be seen as an “alternate” pathway of the decoding module
for information propagation into the model. In other words,
the COSMO-Onset model could yield specific predictions about
the mathematical influence of syllabic parsing on lexical access;
these could be compared with psycholinguistic data on spoken
word recognition.

Assessment in Relation With Experimental
Data on Speech Perception
Finally, an important perspective concerns the ability of a model
like COSMO-Onset to deal with specific experimental conditions
in which the role of top-down processes in syllabic parsing and
onset detection could be crucial. We have particularly in mind
two types of experimental paradigms related to transformations
of the temporal structure of speech.

A first challenge concerns the processing of temporally
compressed data. Ghitza and Greenberg (2009) showed that
speech perception resists rather well to temporal compression,
up to a factor of 3, where intelligibility is degraded, and that the
introduction of silences at specific moments provides the listener
with “additional decoding time,” which restores intelligibility.
This first paradigm provides a good test-bed for assessing the
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resilience of the bottom-up temporal control module in word
processing. In its present stage, the COSMO-Onset model is
not likely to be able to simulate this behavioral pattern in
a realistic manner. Indeed, this would probably require an
intrinsic temporal scale, to adapt to the stimulus speech rate,
which would set limits for compression, likely related to limits
of an oscillatory process. Hence, this first set of experimental
data will probably require to replace the oversimplified onset
detection algorithm based on loudness increase in the present
version by a real neurocomputational oscillatory model such
as the ones by Hyafil et al. (2015) and Hovsepyan et al.
(2020).

A second challenge concerns the already mentioned study
by Aubanel and Schwartz (2020) showing that natural speech
is more intelligible in noise than speech rendered isochronous,
while isochrony also plays a role in helping intelligibility,
but to a lesser extent. Naturalness and isochrony play here
complementary roles which could fit quite well with the existence
of a bottom-up onset detection branch exploiting isochrony,
and a top-down prediction branch exploiting naturalness. Once
again, the beneficial role of isochrony would probably require an
oscillatory process in bottom-up onset detection. However, the
role of naturalness is incompatible at this stage with the existing
neurocomputational syllabic parsing models such as those of
Ghitza (2011), Hyafil et al. (2015), Hovsepyan et al. (2020), since
it requires top-down predictions about speech timing. Here,
an experimental prediction is that a fusion model associating
bottom-up detection with top-down predictions would hence be
necessary. Since the experimental paradigm tested by Aubanel
and Schwartz (2020) is based on perception in noise, it is
likely that the AND fusion model would be required here.
The experimental test-bed provided by this study could enable
to refine the precise coordination in time between the top-
down and the bottom-up detection processes. It could indeed
be suggested that the top-down predictions from the statistics
of natural speech timing could provide a window, probably

rather large, where an event should be searched for. In such
a window, the bottom-up branch could exploit a temporally
narrow envelope processing algorithm to provide a final precise
estimation of syllabic events, later used for word recognition and
sentence comprehension.
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