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Segmenting individual neurons from a large number of noisy raw images is the

first step in building a comprehensive map of neuron-to-neuron connections for

predicting information flow in the brain. Thousands of fluorescence-labeled brain neurons

have been imaged. However, mapping a complete connectome remains challenging

because imaged neurons are often entangled and manual segmentation of a large

population of single neurons is laborious and prone to bias. In this study, we report an

automatic algorithm, NeuroRetriever, for unbiased large-scale segmentation of confocal

fluorescence images of single neurons in the adult Drosophila brain. NeuroRetriever uses

a high-dynamic-range thresholding method to segment three-dimensional morphology

of single neurons based on branch-specific structural features. Applying NeuroRetriever

to automatically segment single neurons in 22,037 raw brain images, we successfully

retrieved 28,125 individual neurons validated by human segmentation. Thus, automated

NeuroRetriever will greatly accelerate 3D reconstruction of the single neurons for

constructing the complete connectomes.

Keywords: neuroimage processing, drosophila, segmenation, tracing, connectome

To understand information flow and its computation in the brain of healthy and diseased states
(Alivisatos et al., 2012), we need to have a comprehensivemap of all neuron-to-neuron connections.
Using electron microscopy, complete connectomes at synaptic resolution have been mapped in the
small nematode with 302 neurons (White et al., 1986), themushroom body of first instarDrosophila
larval (Eichler et al., 2017), and the whole adult Drosophila brain (Zheng et al., 2018; Scheffer et al.,
2020). These connectomes provide the most comprehensive connectivity information but does not
tell us who the neurons are and what they are doing. To study how brain neurons change their
gene expression and neural activity to orchestrate specific behavior, light microscopy imaging of
connectome at single neuron resolution remain essential.

By rendering the brain optically transparent with tissue-clearing reagents, confocal and multi-
photon microscopy are commonly used to image large populations of single neurons in the
brain (Oheim et al., 2001; Ntziachristos, 2010; Chiang et al., 2011; Hama et al., 2011; Chung and
Deisseroth, 2013; Erturk et al., 2014; Richardson and Lichtman, 2015; Huang et al., 2021). With
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the aim of generating every neuron of connectome, scientists
have collected a large number of 3D reconstructed neurons (Peng
et al., 2010; Shih et al., 2015) (see also http://www.flycircuit.
tw/ and https://github.com/bigneuron). Image processing
to categorize single neurons for connectome reconstruction
involves following steps: (i) preprocessing and denoising the
raw image, (ii) segmenting the boundary of a single neuron for
3D morphology reconstruction (Ang et al., 2003), (iii) tracing
and skeletonization from segmented volume data to extract
structural features and reduce image size, (iv) warping to archive
identified neurons into a common framework for rapid searching
and analysis, and (v) 3D visualization of the target neurons in
the established model brain. Many automatic/semi-automatic
tracing algorithms have been proposed to combine pre- and post-
processing methods into pipelines for large-scale skeletonization
of single neurons (Peng et al., 2010, 2011, 2015, 2017; Halavi
et al., 2012; Lee et al., 2012; Xiao and Peng, 2013; Quan et al.,
2016; Magliaro et al., 2017, 2019; Wang et al., 2017; Kayasandik
et al., 2018). Nevertheless, background denoise depends largely
on sample’s intrinsic property and quality of image acquisition.
Segmenting a single neuron from original fluorescent image is
challenging because its cell boundary is often obscure, due to the
intensity variation of genetic labeling, the point spread function
of fluorescence and limited optical resolution (see below).
Thus, far, in all optical images, single-neuron segmentation has
been considered the rate-limiting step in connectomics. For
large-scale neuron reconstruction from original raw images,
manual segmentation is still considered the gold standard.

For connectomics mapping of large number of single neurons,
high-throughput and unbiased segmentation is necessary.
However, even in the cleared brain with increased signal-to-noise
ratio, background noise still varies among images optimized
for each sample with different gene expression and genetic
background. Further, fluorescence intensities within the same
brain are usually uneven between different neurons or at different
parts of the same neuron, and background noise is irregular
at different depths. Thus, applying a global cut-off intensity
faces a dilemma—a low threshold would not filter out the noise
effectively, whereas a high threshold may divide actual neural
fibers into separate parts if they are connected by voxels with
an intensity level lower than the threshold (Agaian et al., 2007;
Pool et al., 2008). This is less a problem in manual segmentation
because the human eye judges boundaries based mainly on local
features and intensity differences. However, human segmentation
is subjective, labor-intensive, and time consuming (Peng et al.,
2013). Recently, some state-of-art algorithms have been proposed
for single neuron reconstruction according to local properties of
the images (Quan et al., 2016; Radojevic and Meijering, 2019;
Callara et al., 2020).

TheDrosophila brain has∼135,000 neurons. Imaging random
single neurons expressing fluorescent proteins (Lee and Luo,
2001), the FlyCircuit image database (version 1.2) has cataloged
more than 22,000 single neurons derived from the manual
segmentation of thousands of sample brains (Chiang et al., 2011;
Shih et al., 2015). Here, inspired by how human eye judges the
boundaries of an object, we propose an automated and unbiased
segmentation algorithm, NeuroRetriever, using local branch

features and high dynamic range (HDR) threshold to identify
single neurons from the raw confocal images of the Drosophila
adult brain. UsingNeuroRetriever, we successfully retrieved more
than 28,000 single neurons validated by manual segmentation.

RESULTS

How NeuroRetriever Works
To accomplish the goal mentioned above, we (1) developed
a tracing algorithm named the Fast Automated Structure
Tracing (FAST) algorithm that extracts the details of a single-
neuron skeleton with high accuracy and efficiency at multiple
intensity thresholds (or level sets); (2) introduced the concept
of “branch robustness score” (BRS) based on domain knowledge
of neuronal morphology to assess the position of each voxel
within the structure; (3) adapted an HDR thresholding mask
on the basis of BRS to segment the target neuron; and (4)
integrated the algorithms above into an executable package
named NeuroRetriever (NR), which automatically segments and
reconstructs a large population of fluorescent single-neuron
images for connectome assembly.

Figure 1A shows the workflow of NR. Multiple global
intensity thresholds, t, were applied to the raw data and yielded
a series of images with different levels of noise. Next, FAST
was applied to each image to obtain skeletal information. The
next step was to calculate the branch score (BS) for all voxels
in each thresholded image. Summing up BS for all thresholds
gave a BRS for each voxel. The HDR thresholding mask was
then automatically generated using the set of voxels with a BRS
larger than a default m value (m = 40 for the FlyCircuit dataset).
With the HDR thresholding mask containing a wide range of
intensity thresholds, the program then automatically segmented
the single neuron by intersecting between the mask and the
raw image. Smaller m value gives more details of the neuronal
morphology. Users can optimize the segmentation result by
adjusting them value.

The main engine of this procedure, FAST, was designed
for tracing tree-like images, such as neurons and blood vessels
(Supplementary Figure 1). All voxels in an image were first
coded by a value “source field,” which was the path distance from
the starting point plus 1 (the numbers in the squares representing
the voxels in Figure 1B). Source field of starting point (soma of
the neuron) was 1. A “codelet” at position i was the set of voxels
whose source field values were i–1, i, and i+1. At the beginning of
tracing, the initial codelet position is at (i = 2) which means the
codelet contains the voxels with source field values 1, 2, and 3.
Then the codelet was launched from the cell body (increasing its
position i by 1 for each step) and traveled through the whole voxel
set to trace the structure (green voxels in Figure 1B, upper panel).
FAST determines the branching points, endpoints, and central
points of each branch, which were the points on the trajectory
of the center of mass of the codelet (Figure 1B, lower panel).

Figure 1C presents a schematic illustration of the BS/BRS
scoring system of a single neuron. In the upper panel, the squares
represent voxels and the number in each square represents
its green fluorescent protein (GFP) intensity. In this case,
a global intensity threshold, t = 4, was applied. Note that
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FIGURE 1 | NeuroRetriever segmentation procedure. (A) NR workflow. Left to right: MARCM-labeled neurons (green) in the whole brain (magenta):50 datasets

(t1-t50) with serial intensity thresholds from low (top) to high (bottom):Apply FAST to trace skeletal structure for each dataset and calculate BS:Sum 50 BS

datasets to obtain BRS for each voxel:Set BRS threshold to generate HDR thresholding mask:Intersect HDR thresholding mask with raw image to segment

single-neuron image, and integrate segmented neuron back into original sample brain. (B) Schematic of FAST algorithm. Upper: Numbered source field for each voxel

(square), starting with soma (cyan) as 1. Codelet (green), comprising three rows of linked voxels with consecutive source field values, propagates from soma to fiber

terminals. Initial codelet (voxels with source field 1, 2, and 3) travels along the branch, and splits into two at branch point (orange, source field = 33). Each branch has

(Continued)

Frontiers in Systems Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 687182

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Shih et al. NeuroRetriever: Automatic Neuron Segmentation

FIGURE 1 | new start point at center (blue). Lower: New branch point (red) determined by retracting two voxels from original codelet branch point (orange). Skeleton

determined as serial central points (gray) linking soma (cyan) and branch point (red) to terminals (yellow). (C) Upper: Schematic example of BS calculation with

G0 = 2, L0 = 2 voxels and N0 = 3G0 = 6. Numbers in voxels are original fluorescent intensity. Gray branches are terminals. Consecutive voxels with same color

belong to same branch. Boxes beside branches demonstrate BS calculation. The super- and subscripts of G
(j)
i , N

(j)
i , L

(j)
i , and BS

(j)
k have all been omitted and shortened

to G, N, L, and BS, respectively. Lower: Resulting BS for each voxel. Scale bars represent 25µm.

FIGURE 2 | An example of segmentation dilemma solved by NR. (A) The raw image of a visual neuron (FlyCircuit Neuron ID: Trh-F-000025, 8-bit, intensity 0–255).

(B,C) Skeletons traced by FAST with global thresholds t = 2 and 10, respectively. (D) The neuron segmented by NR with HDR thresholding mask at m =10,

fine-tuned from the default value of m = 40, for the best segmentation. (E) Skeleton of (D) traced by FAST. Scale bars represent 25µm.

the GFP intensity in the proximal upstream branches was
generally greater than that in distal downstream branches and the
intensity of actual signals was usually greater than that of noise.
Nevertheless, exceptional weak points (the star in Figure 1C)
often exist due to the inevitable fluctuation of intensity in the
imaging procedure. Upon applying thresholds greater than the
intensity of such weak points, they would be eliminated and
downstream branches would be excluded from the segmentation.
The lower panel of Figure 1C shows the BS for each voxel at
this t by measuring the downstream branch generation numbers,
downstream branch numbers, and length of each branch. This
essential information arose from the FAST tracing results. In this
example, we see that the BS for the upstream fibers, including
the weak point mentioned above, was higher than that for the
downstream fibers. Note that, importantly, the BS still maintains
intensity information because voxels with higher intensities
survived under higher thresholds and were counted more times
than low-intensity voxels. Accumulating the BS from the whole

range of t, we obtained the final BRS for each voxel in the image.

Thus, the global structure of the whole segment and intensity of

individual voxels were both taken into account in the BRS.

Evaluation of the HDR Thresholding
Figure 2 shows an example of differences between using the
HDR thresholding and the uniform thresholding for segmenting
a single neuron with variable label intensity and background
noise at different depth. This neuron innervated both sides of

the optic lobes and had an extremely complex arborization.
The image was the maximal projection of serial raw images
constructed by stitching two stacks of optical sections through
the left and right brain hemispheres, respectively, because of its
large size (Figure 2A). Therefore, the background noise levels
for the left and right parts were intrinsically different, providing
an ideal example for the test (Supplementary Figure 2). There
were many key voxels with a very low intensity in the right part,
which could make the structure fragile, even though the intensity
threshold was not very high. If we used a lower threshold on
the raw image, the detailed structure of the right side would
survive but that of the left side would be very noisy (Figure 2B,
Supplementary Figures 2A–C). On the other hand, a higher-
intensity threshold filtered out more noise and made the left
part clearer, but the structure of the right part was severely
disrupted (Figure 2C, Supplementary Figures 2D–J). The NR
segmentation using a wide range of intensity thresholds solved
the dilemma of effectively denoise the background while keeping
fine structures with weak signal at different locations. Using the
BRS-based HDR thresholding, NR acts like the human eye with
dynamic detection of intensity differences in local boundaries
along the fibers of a single neuron for 3D image segmentation
(Figure 2D). Once the neuron was segmented, we then used
the FAST algorithm to trace the skeleton again for efficient
connectomic analysis (Figure 2E). In this case, the structure of
the right part was well-preserved, while the left part also became
much clearer.
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FIGURE 3 | Examples of single neurons segmented by NR vs. human. (A) An

olfactory projection neuron (Trh-F-500061) linking the antennal lobe and lateral

horn. (B) A local interneuron (Trh-F-100025) within the antennal lobe. Upper

row: raw images, middle row: human-segmented neurons, lower row:

NR-segmented neurons. Red arrows indicate soma. Scale bars represent

25µm.

NeuroRetriever vs. Human Segmentation
Automatic NR segmentation retrieved 28,125 single neurons
from 22,037 raw brain images archived in the FlyCircuit database.
To evaluate the effectiveness and quality of NR segmentation, all
neurons were also segmented by experienced operators using the
same raw images (called “human segmentation” in the following)
and served as the “gold standard” for the segmentation.

Figures 3A,B show two raw images of single neuron in a noisy
background representing different types of challenges for the
qualitative assessment of NR-segmented results compared with
their human-segmented counterparts. The first example was a
projection neuron sending long fibers innervating several brain
regions at different depths (Figure 3A). Another example is a
local interneuron with numerous short fibers close to each other
within a small region (Figure 3B). In both cases, the automatic
NR segmentation retrieved additional fine details but also more

noises resulting in blurrier image than human segmentation.
Upon closer observation, we found that at least some of these
NR-segmented blurry fine structures are weakly labeled tiny
branches and small protrusions along the fiber. Importantly, NR
and human segmented neurons exhibited similar morphometric
features and FAST-traced skeleton for connectomic analysis
(see below).

For quantitative comparison, we measured the distance of
the centers of mass, radius of gyration, relative moment of
inertia, and directions of principal axes for each segmented
neuron, which quantitatively characterized the position, size,
shape, orientation of the neuron, respectively (Figures 4a–d).
Combining these parameters and a voxel-to-voxel comparison
(Figures 4e–g), we then generated a global similarity metric (GS)
ranging from 0 to 1 (GS = 1 for two identical images, see
Methods) to evaluate the quality of results generated by NR
and human segmentation. Among 28,125 segmented neurons,
we found 59.7% within GS ∈ [0.9, 1)(Class I), 21.6% within
GS ∈ [0.7, 0.9)(Class II), and 18.7% within GS ∈ [0, 0.7)(Class
III), respectively (Figure 4h).

Next, we visually inspected all results and classified the
differences between NR and human segmented neurons into
three groups: matched, broken, and tangled (Figures 4a–g).
Here, we applied a very strict standard for “matched”
segmentation—they could be archived into the single neuron
image database directly without any human correction. Overall,
the morphology of 65.8% of NR segmented neurons matched
with human segmentation, which had minor differences within
the range as those segmented by different operators using the
same raw image. The remaining 34.2% ofNR segmented neurons
contain two kinds of mismatch: broken and tangled. Most broken
neurons resulted from discontinuous labeling of fibers in the raw
images. And when two or more neurons were tangled in the raw
image, NR inevitably segmented additional fibers and/or soma.

Comparing the quantitative GS with the expert visual
validation, we found that almost all matched cases has GS
> 0.7 (Supplementary Figure 4). For example, GS for the
neurons in Figures 3A,B are 0.788 and 0.972, respectively.
Supplementary Figure 5 shows two rare cases with GS > 0.95
but classified as broken and tangled under the strict condition
of visual validation. In such cases, they need to be human
corrected before archived into the database. Overall, ∼65%
of matched neurons could be directly deposited to the image
database, while the remaining 35% still served as good references
and greatly accelerated human segmentation process with only
minor intervention. In addition to high degree of similarity,
NR segmentation also retrieves additional new neurons that are
previously overlooked by human segmentation from the same
brain samples (e.g., shown in Supplementary Figure 6).

Comparing the FAST-Traced Skeletons
Next, we compared FAST with other popular algorithms, i.e.
APP2 (Xiao and Peng, 2013) and ENT (Wang et al., 2017), for
tracing and skeletonization of single neurons from three different
types of raw images: single neuron with clean background,
multiple neurons with clean background, and multiple neurons
with noisy background (Figure 5). FAST successfully generated
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FIGURE 4 | Structural and voxel-to-voxel comparison between NR and human segmentation. Compared with human segmentation results, assessment of NR results

is classified into three types: matched (M, red), broken (B, blue), and tangled (T, green) by visual validation of experts. The distributions of quantitative analyses were

(a) the distance between centers of mass (position), (b) difference in the radii of gyration (size), (c) difference in moments of inertia (shape), (d) difference in orientation

of the three principle axes of rotation (orientation), (e) recall, and (f) precision. (g) Scatter plot for the (recall, precision) for each neuron. The point (recall, precision) =

(1, 1) implies a perfect match (identical NR- and human- segmentations). As expected, type M neurons (red points) had a recall since they successfully reproduced

human segmentation. They also had an intermediate precision because of the greater thickness of the fibers and the preserved weaker fibers, as discussed in

Figures 3A,B. The precision could be smaller than 0.5 due to the large surface-volume ratio of the fractal-like neuronal morphology. The tangled type T (green points)

has high recall because the voxels in the NR result contained the whole target and low precision small because the neuron mixed with other neuron(s). Finally, the

points for the broken type B form two groups. The first group is close to the group of red points (matched) but with lower recall, corresponding to the cases that only a

few branches are missing. Another group is located at the upper left corner (low recall and high precision), corresponding to the cases that NR gets only the part close

to the soma and misses most of the branches. (h) Pie chart for the ratios of the three classes according to the ranges of the GS.

skeletons from all 28,125 NR-segmented single neurons. These
FAST-traced skeletons consistently represented the morphology
of NR-segmented neurons similar to the APP2- and ENT-traced
skeletons for the human-segmented neurons. Note that however,
without segmentation, all the above three algorithms failed to
directly generate reliable skeleton from raw brain images with
noisy background (Supplementary Figure 7). The advantage of
NR/FAST is that it can process images with a wide range of
quality generated from large-scale imaging tasks such as the
MARCM procedure used in FlyCircuit, and get the correct
skeleton structure as other algorithms.

DISCUSSION

Recent advances in automated microscopy have generated a large
neuroimage dataset for connectome analysis (Oh et al., 2014;
Markram et al., 2015; Costa et al., 2016). Labor-intensive human
segmentation is still the major bottleneck for high-throughput
analysis of connectomic data (Arganda-Carreras et al., 2015). In
this study, we report an automatic algorithm, NeuroRetriever,

using anatomic features and HDR thresholding to segment single
neurons directly from the raw fluorescent images with variable
background noises. NR segmentation has several advantages
over the human segmentation. First, NR is a deterministic and
non-biased method. Unlike inconsistency between operators in
human segmentation, NR always produces the same result from
the same raw data. Second, in general, NR-segmented neurons
have more details (Figure 3). During our visual inspection,
we often found that some NR results were evidently “better”
than the human results because human segmentation often
skipped minute details and humans occasionally made mistakes
(Supplementary Figure 3C). Third, although the computing
time for segmenting a single neuron was similar between NR-
and human-segmentation (ca. 20min), human operators require

rest and NR could run 24 hours a day with multiple computers

in parallel. Using 200 cores of an AMD Opteron 6174 cluster,
we used NR to segment all 28,125 single neurons from the
whole FlyCircuit dataset in <2 weeks. Compared with human
segmentation (Chin et al., 2014), NR does not require expert
knowledge, is applicable to a large population of diverse neuron
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FIGURE 5 | Comparison between FAST-traced skeleton and APP2- and ENT-traced skeletons. Upper panel: Examples of three different types of raw image quality.

(a) 5HT1A-F-500009: a single neuron in the brain with clean background. (b) 5HT1A-M-800017: multiple single neurons with clean background. (c) Cha-F-000459:

multiple neurons with noisy background. Yellow panel: FAST-traced skeleton from the NR-segmented neurons. Green panel: APP2- and ENT-traced skeleton from

the human-segmented neurons. Arrowhead indicates the cell body.

types, and consistent between different runs for the same data.
Nevertheless, since GS analysis requires a posteriori test and no
human segmentation results would be available during its actual
application, we recommend that NR users should still visually
confirm all results to avoid unexpected errors.

Several automated/semi-automated algorithms for tracing
and/or segmentation of individual neurons have had some
success for certain types of data (Santamaria-Pang et al., 2015;
Zhou et al., 2015; Quan et al., 2016; Hernandez et al., 2018;
Callara et al., 2020). For the non-uniform background noise
problem, the “smart region-growing algorithm” (SmRG) (Callara
et al., 2020) segments the neurons using local thresholding based
on the distributions of foreground and background signals of
optical microscopy. For large-scale neuron segmentation from
the images with dense neurites, the “NeuroGPS-Tree” algorithm
(Quan et al., 2016) can detangle the densely packed neurites form
the statistical morphological information of neurons, to obtain
single neuron images. With HDR local thresholding based on the
voxel weighting of the tree-like structure, NR can deal with both
non-uniform background and large-scale segmentation.

Successful NR segmentation depends largely on image quality
and resolution. We expect that broken mismatch of NR
segmented neurons will be greatly reduced in clarified tissue
with strong and continuous fluorescent labeling of neuronal
fibers. However, solving the entangled mismatch and segmenting
from dense fibers require nanoscale resolution. We expect that

NR can be applied to process fluorescence images taken by
super-resolution microscopy and expansion microscopy with
resolution beyond the optical limit (Small and Stahlheber, 2014;
Sigal et al., 2015). Also, the concept of an HDR thresholding
mask is likely applicable for identifying other tree-like structures,
such as tracheoles and blood vessels (Lin et al., 2017), or other
types of non-fluorescent images, such as X-ray images (Ng et al.,
2016). With automated NR for high-throughput single-neuron
segmentation, connectomemapping for large brains with billions
of neurons is now conceivable.

METHODS

Source of Images
The images used in this study were obtained from the FlyCircuit
database (Chiang et al., 2011; Peng et al., 2015), version 1.2.
The full dataset contains 22,037 fluorescent three-dimensional
raw image stacks and 28,573 single-neuron images manually
segmented by experienced operators. Raw images were two-
channel.lsm files, the ZEISS LSM standard format. The neuronal
image in the green fluorescent protein (GFP) channel has far
fewer non-zero points in comparison with the disc-large (Dlg)
channel. We used a script running on Avizo 9.2 to split the
channels into two Avizo mesh (.am) files and automatically
selected the GFP channel by file size. The.am files from the GFP
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channel were stored in an ASCII format that could be directly
accessed by NR.

Basic Concept
The central concept of NR is to assign a score to each voxel
with non-zero intensity according to its “importance in the
global neuronal morphology” under a wide range of intensity
thresholds. In contrast to traditional denoising and segmentation
methods, which treat the importance of a voxel as intuitively
equivalent to its own fluorescent intensity or the local intensity
distribution around the voxel, NR evaluated the possibility of
the voxels being a real signal from both the intensity and global
structure of the neuroimages. Under typical imaging conditions,
noise appears randomly and clusters of neighboring noise do
not preferentially adopt any particular shape. On the other hand,
the basic feature of neuronal morphology is a tree-like structure
composed of quasi-one-dimensional fibers. A set of connected
voxels having a large tree-like structure composed of many fibers
and branching levels was very unlikely to be random noise.
Voxels in such a structure should have higher survival chance
or, equivalently, smaller local threshold during the denoising
procedure. A similar argument could be applied to the connected
voxels that form a very long fiber.

Another major feature of NR is the reorganized workflow
shown in Figure 1A. With the raw fluorescent image, the first
task was to detect the soma position(s) automatically in the image
based on the shape of the largest ellipsoid-like clusters of voxels
(He et al., 2017). The second step involved applying FAST to trace
the images under a series of global intensity thresholds, tmin =
t1, t2, · · · , tn = tmax. The range and step of tj are determined by
the features of the raw image. In this study, both 8-bit and 12-bit
fluorescent images were processed, whose voxel intensities were
in the ranges of 0–255 and 0–4095, respectively. The increment,
tstep = tj+1 − tj, was set at 2 and 10 for the 8- and 12-bit images,
respectively. The tstep value can be smaller, but it will need larger
n to cover the threshold range, which means more computing
time. For large tstep, it is possible to drop a lot of structure of the
neuron and get a broken segmentation.We suggest users do some
tests to determine the best value of tstep and other parameters.
The default minimal global intensity threshold, t1 was tstep. For
images with very high background noise, almost all voxels were
connected into a big volume under the small intensity threshold
values. For such high-background low-threshold cases, FAST will
give a huge number of branches, which were meaningless and
time-consuming. For such situation,NRwould adjust the t1 value
such that the number of traced branches was closest to, but no
more than, the upper limit of the branch number, Bmax = 10,000.
Fifty threshold values were taken for each image (n = 50), which
meant that the widths of the range of intensity thresholding
Rth = tmax-tmin for the 8- and 12-bit images were 98 and 490,
respectively. The parameters Bmax, tstep, and Rth can be chosen by
the user according to their requirements and the properties of the
raw images.

FAST: Extracting the Structural Features
FAST is a powerful tracing algorithm to extract structural
features from volume data. The flowchart for FAST is shown

in Supplementary Figure 1. As a schematic example shown in
Figure 1B, the “source field” of the voxels (numbers in the
squares) in the image was encoded according to the shortest
path lengths from the starting point, namely, the soma of the
neuron. A “codelet” was launched from the soma and traveled
in the direction of increasing source field. Voxels with a source
field between i − 1 and i + 1 belonged to the ith position of the
codelet. For example, the initial (i= 2) and the (i= 20) positions
of the codelet are marked by the green voxels with a thick
black frame in the upper panel. The codelet traveled through the
connected voxels by increasing i. At (i= 35), the codelet split into
two codelets (green) and started to trace the two new branches
individually from the two new starting points (respective centers
of mass of the two new codelets, blue). The codelets stopped at
the next branching points or endpoints (yellow) of the neuron.

The trajectory of the center of mass of the codelets defined
the central points of the branch (dark gray points in the lower
panel of Figure 1B). The central point at the position where the
codelet split defined the branch point (orange point). A “local
tracing” procedure was performed to (1) move the branching
point back from the edge of the branch to an interior point
on the central line (red point) and (2) to fill the gap between
the new branching point and the starting points of the two
downstream branches with additional central points (light gray
points in the lower panel). The final FAST results in the lower
panel show the partition of branches (light green, pink, and light
orange), starting point of each branch (blue), branching point
(red), endpoints (yellow), and skeleton (gray) of the neuron.

BRS: Scoring the Structural Importance of
Voxels
FAST provided the positions of all key points in the skeleton
of each neuron (including branching, central, and end points)
and the hierarchical information for each branch of the traced
neuron at all thresholds, tj. Figure 1C provides an example of
the BRS calculation. The intensity threshold in the example was 4
and the three white voxels were deleted. The voxel set under this
threshold was traced and had 15 branches. Here are definitions of
the measurements for each branches in a neuron traced by FAST:

G
(j)
i : the number of descendant generations of the ith branch

at threshold, tj. G
(j)
i = 0 for all terminal branches (the eight gray

branches in Figure 1C). If the ith branch is not a terminal, it

would have the set of child branchesC(i),G
(j)
i = max

(

G
(j)

k∈C(i)

)

+

1. For the example in Figure 1C, we focus on the i = primary
neurite (yellow) and intensity threshold j= 4 as a demonstration.

The primary neurite has two child branches whose G
(j=4)
i=primary

are 1 (green) and 5 (cyan). Therefore, G
(j=4)
i=primary of the primary

neurite is max(1, 5)+ 1 = 6.

L
(j)
i : the length of the ith branch at threshold tj. For the

primary neurite in Figure 1C, L
(j=4)
i=primary = 3 voxels.

N
(j)
i : the number of descendant branches of the

ith branch at threshold tj. For the primary neurite in

Figure 1C, N
(j=4)
i=primary = 14.
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At threshold, tj, voxels in a particular branch i can obtain BS

if the branch has G
(j)
i > G

(j)
0 , N

(j)
i > N

(j)
0 , and Li > L0. For the

images in FlyCircuit, L0 = 20 voxels = 6.4 µm (20 times the side
length of a voxel in the x-y plane) for the whole range of intensity
threshold t. And the definition of the other two parameters:

G
(j)
0 : For j = 1 (minimal intensity threshold), calculate G

(1)
i

for all branches. G
(1)
0 is set as the value of 75th percentile of G

(1)
i

values for all i. If this value is smaller than 20, G
(1)
0 is set to be 20.

As the threshold tj increases, G
(j)
0 decreases accordingly because

more branches will be eliminated at higher thresholds and all G
(j)
i

will be decreased. In the present study, we use:

G
(j)
0 = max

(⌈

G
(1)
0 ×

(

1−
tj

tmax

)⌉

, 1

)

(1)

where ⌊⌋ and ⌈⌉ are the floor and ceiling functions, respectively.

N
(j)
0 :

N
(j)
0 = 3G

(j)
0 (2)

According to this principle, BS
(j)

k
, the “branch score” earned by

voxel k belonging to the i(k)th branch at the threshold, tj, is
defined as:

BS
(j)

k
= max

([

G
(j)

i(k)
− G

(j)
0

]

, 0
)

+









N
(j)

i(k)

N
(j)
0









+









L
(j)

i(k)

L
(j)
0







+ λ
(j)

i(k)
(3)

where

λ
(j)

i(k)
= max

(⌊

L
(j)
p

L
(j)
0

⌋

, for p ∈ 3
(j)

i(k)
, G

(j)

i(k)
< G

(j)
0

and N
(j)

i(k)
< N

(j)
0

)

(4)

which was the score obtained from the length of the longest

offspring branch of the ith branch, where 3
(j)
i was a set formed

by all offspring of the ith branch. In the example in Figure 1C,

G
(j)
0 = 2, L

(j)
0 = 2 voxels, and N

(j)
0 = 6. Thus, the BS of all voxels

in the primary neurite equaled (6− 2) +
⌊

14
6

⌋

+
⌊

3
2

⌋

+ 0 = 7 at
an intensity threshold of 4.

The BRS of voxel k is evaluated by summing BS
(j)

k
for all

thresholds, tj:

BRS(k) =
∑

j

BS
(j)

k
(5)

The BRS effectively represents the importance of each voxel in
the global neuronal morphology extracted from a wide range of
intensity thresholds; the original fluorescent intensity of the voxel
was also taken into account because voxels with higher intensity

would survive for a wider range of thresholds and thus could be
countedmore times. The next step was to set a cut-off for the BRS,
m, to determine the HDR thresholdingmask of the image. Voxels
with a BRS less thanm are viewed as noise and discarded from the
mask of the image. The set of voxels for the single target neuron
is segmented out by intersecting the mask and raw image. Finally,
FAST was used to trace the segmented voxel set again to extract
all structural features and the neuron was digitally reconstructed.

Quantitative Validation of the NR Results
A series of quantities were computed for comparing NR and
human segmentation results, including the segmented voxel sets
and global structural features as follows:

DCM : normalized centers of mass distance which is the
difference of the positions of the two segmentation. ERH and ERNR
are centers of mass vectors of human- andNR-segmented images,
respectively. The voxels with non-zero intensity were treated
equally with mass= 1.

DCM ≡ min

(

1,

∣

∣ERNR − ERH
∣

∣

rH

)

(6)

where rH is the radius of gyration of human segmentation image.

For some heavily tangled cases,

∣

∣ERNR−ERH
∣

∣

rH
was larger than 1. We

used the “min” operator to keep DCM between 0 and 1.
DRG: normalized radius of gyration difference which is the

difference of the sizes of the two segmentations.

DRG ≡ min

(

1,
|rNR − rH |

rH

)

(7)

where rNR is the radius of gyration of NR-segmented images,

respectively. Again, for those cases |rNR−rH |
rH

larger than 1, we used
the “min” operator to keep DRG between 0 and 1.

DI : normalized moment of inertia difference which is the
difference of the rough shapes of the two segmentations. For
an image, the principal moments of inertia were I1, I2, and I3,
with I1 ≥ I2 ≥ I3. The normalized principal moments of

inertia vector Ei were then defined as Ei =
(

1, I2I1 ,
I3
I1

)

. EiH and EiNR

were moments of inertia vectors of human- and NR-segmented
images, respectively.

DI ≡ min
(

1,
∣

∣EiH −EiNR
∣

∣

)

(8)

DPA: difference of the orientations of the principal axes which is
the difference of the orientations of the two segmentations. For
a given image, EAi was the principal axis corresponding to the
principal moment of inertia, Ii (i= 1, 2, 3).

DPA = 1−

∑3
i=1

∣

∣EAH,i · EANR,i

∣

∣

3
(9)

Recall: defined as the number of true positive voxels that existed
in the human-segmented image and were correctly detected by
NR, divided by the number of voxels in the human-segmented
image. VH and VNR represent the set of the voxels in the human-
and NR- segmented images, respectively.

R =
|VNR ∩ VH |

|VH |
(10)
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Precision: defined as the number of voxels in the intersection of
the human- and NR-segmented image divided by the number of
voxels in the NR-segmented image.

P =
|VNR ∩ VH |

|VNR|
(11)

SGlobal: Combining the comparisons of position of center ofmass,
image size, image orientation and voxel accuracy, we defined
the global similarity between the human- and NR-segmented
images as:

SGlobal

=
(1− DRG)+ (1− DCM)+ (1− DI)+ (1− DPA)+ R

5
(12)

DCM , DRG, DI , DPA and R are all between 0 and 1 by definition.
The value of SGlobal lies between 0 and 1. Note that the precision
P is not included in the definition of SGlobal. As described
previously, NR to segmented more details from the raw image.
On the other hand, human tended to segment cleaner and
sharper images. The fibers in the NR segmented image were
usually thicker than the human segmented one. This caused
the number of voxels in NR segmented image always larger
than the human segmented one because of the large surface-
volume ratio of the tree-like neuronal structure. Those extra
voxels of the real features would be falsely counted in the
“false positive” part and lower the precision. As a result, P
values were not high for those neurons which were classified
as “matched” according to the visual validation by biologists
(red bars in Figure 4f). On the other hand, some of the broken
cases had higher P because they didn’t have those extra voxels.
Thus, P was not included in the calculation of SGlobal. Those
real false positive voxels which were not from the reason
above would be reflected in the D values and decrease the
global similarity.
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Supplementary Figure 1 | Flowcharts of FAST processing.

Supplementary Figure 2 | Segmentation of a visual neuron (Trh-F-000025)

under various intensity thresholds. BRS accumulation (right) solves the

segmentation dilemma of skeleton tracing under a fixed threshold (left). Intensity

thresholds from (A–J) were 2–20, with intervals of two. This is an eight-bit image

and the saturating intensity is 255.

Supplementary Figure 3 | Pros and cons of NR versus human segmentation. (a)

A putative glutamatergic neuron (VGlut-F-600204) segmented by NR (green)

showing incomplete fibers as a result of disrupted GFP signals (arrow) that was

amended by human segmentation (magenta). (b) A putative glutamatergic neuron

(VGlut-F-800082) segmented by NR (green) showing tangled fibers with a

neighboring neuron as a result of oversaturated GFP signals (arrow) that was

separated by human segmentation (magenta). (c) A raw image with noisy

background containing a VGlut-F-200267 olfactory projection neuron (box).

Axonal terminals in the calyx was overlooked by human segmentation (magenta)

but segmented perfectly by NR (green).

Supplementary Figure 4 | Global similarity of the matched and unmatched

(broken + tangled) cases. Almost all global similarities of the matched cases are

larger than 0.7. Global similarity of the unmatched cases distributed broadly from

0 to 1.

Supplementary Figure 5 | Examples of high GS but unmatched results. In

Supplementary Figure 4, there are many cases with SGlobal close to 1 but

classified as unmatched (tangled or broken) because of our strict standard for

matched. (a–c) are human segmented, NR segmented, and raw images of the

neuron TH-F-300027, respectively. (a,b) are almost identical (SGlobal = 0.974)

except a terminal branch is broken (red rectangle), which causes a missing brain

region innervated by the neuron. This case was classified as “broken.” (d–f) are

human segmented, NR segmented, and raw images of the neuron

Cha-F-800137, respectively. Many neurons were labeled in the raw image (f).

SGlobal = 0.986 for this case. An extra fiber crosses from a nearby neuron crossed

a major fiber and made it classified as “tangled”.

Supplementary Figure 6 | New single neuron images found by NR from the

existing raw images. These neurons were overlooked in the human segmentation

process, possibly due to the noisy background or weak signal.

Supplementary Figure 7 | Tracing and skeletonization directly from raw brain

imaging. Without single-neuron volume segmentation, skeletons reconstructed by

the three tracing algorithms, FAST, APP2, and ENT, are rather inconsistent, even

for a single neuron in the brain with clean background. Most importantly, these

skeletons do not represent the morphology of the neuron.
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