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Consistent with embodied cognition, a growing evidence in young adults show that
sensorimotor processing is at the core of cognition. Considering that this approach
predicts direct interaction between sensorimotor processing and cognition, embodied
cognition may thus be particularly relevant to study aging, since this population is
characterized by concomitant changes in sensorimotor and cognitive processing. The
present perspective aims at showing the value and interest to explore normal aging
throughout embodiment by focusing on the neurophysiological and cognitive changes
occurring in aging. To this end, we report some of the neurophysiological substrates
underpinning the perceptual and memory interactions in older adults, from the low
and high perceptual processing to the conjunction in the medial temporal lobe. We
then explore how these changes could explain more broadly the cognitive changes
associated with aging in terms of losses and gains.
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INTRODUCTION

Embodied cognition defines the body and the interaction with the world as shaping cognition
and not just as simple inputs/outputs (Wilson, 2002). As a consequence, perceptual and motor
systems should play a crucial role in cognitive functioning. Growing evidence, especially in
young adults, has shown that sensorimotor components are at the core of language (Pulvermüller
et al., 2005), attention (Bradley, 2007), memory (Versace et al., 2014) or action (Hommel, 2009).
However, few studies are conducted in normal aging (Vallet, 2015). This is particularly surprising
given that aging is marked by perceptual (and motor) decline in the one hand and by cognitive
decline in the other hand. This perspective aims at proposing an embodied account of age-related
cognitive decline focusing on perceptual and memory interactions in older adults. To this end,
the neurophysiological substrates at the origin of the interactions between perceptual and memory
should be understood. The low and high levels of sensory neurophysiological changes in older
adults will be firstly described as their impact on the emergence of memory representations. Then,
with the support of the hierarchical representational model (Murray and Bussey, 1999; Saksida and
Bussey, 2010), we will examine how changes in the perceptual-mnemonic conjunctive processes,
occurring in the medial temporal lobe (MTL), alter the emergence of representation. Finally, we
will discuss how these changes could explain more broadly the cognitive changes associated with
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aging in terms of losses and gains based on the Activation-
Integration model (Versace et al., 2009, 2014).

SENSORY-PERCEPTUAL DECLINE AND
LOW-RESOLUTION REPRESENTATION
IN AGING

Biological aging affects the whole body including, at a low-
sensory level (sensory organs), many sensory modalities.
Recently, the five Aristotelian senses (hearing, vision, taste, touch,
and smell) was simultaneously assessed in older adults aged 57–
85 years (Correia et al., 2016). The results showed that 74% of the
participants had a deficit in identifying taste, 70% in touch, 22% in
smell, 20% in corrected vision and 18% in corrected hearing. This
study also provides for the first time an estimate of the proportion
in which the sensory modalities are jointly altered. Two thirds of
the participants had a deficit of two or more modalities, 27% had
a deficit of only one of these modalities, while only 6% showed
no impairment. At a higher level, aging worsens the transmission
of sensory information from these organs to the brain (Ulfhake
et al., 2002) and higher perceptual thresholds are also found
(e.g., Fozard and Gordon-Salant, 2001). At a cortical level, the
occipital sensory cortex is less affected in aging with regard to
structural integrity (e.g., Peters, 2006), but long-term peripheral
sensory alteration may promote atrophy of the perceptual areas
of the brain (Baltes and Lindenberger, 1997; Boucard et al., 2009;
Golub, 2017). Functionally, the dopaminergic modulation deficit
in aging, regulating the neurons sensitivity to related signals,
reduces the functional specialization of neuronal activation.
This is also true in neuronal circuits that are still relatively
intact (Li et al., 2001), especially for visual stimuli in posterior
regions (Park et al., 2004). The impoverished perceptual signal
results in weakened unisensory and strengthen multisensory
information processing (de Dieuleveult et al., 2017). As older
adults exhibited reduced activity in occipital regions coupled
with increased frontal activity, a functional compensation occurs
(Davis et al., 2008).

Embodied cognition predicts that these perceptual changes
should directly impact cognitive functioning. In this approach, all
forms of knowledge (e.g., semantic, episodic) remains grounded
in its sensorimotor components (Glenberg et al., 2013). The
cognitive representations are not retrieved in memory, but
instead emerge from the simulation of these components
associated with the individual’s previous experiences based on
the constraints of the present situation (Figure 1). Simulation
refers here to the automatic and mandatory re-enactment of the
brain activities of the perceptual, motor and emotional states
produced by past experiences in the modal and heteromodal
areas (Barsalou, 2008). Thus, the neurophysiological degradation
occurring in aging in perceptual processing should deteriorate the
simulation mechanism at the core of representation emergence
(Vallet, 2015).

A less efficient simulation in older adults should lead to
the emergence of “low-resolution” impoverished representations,
that is, representations with lower details. In other words,
the signal-to-noise ratio of the sensorimotor simulation should

be lower, mainly due to a decrease in central perceptual
processing. Whereas the perceptual discriminability in memory
is underlied by occipital regions regardless of age (Bowman et al.,
2019), older adults exhibits reduced representation fidelity in
these regions (Zheng et al., 2018). Impoverished sensory input
may decrease the activation of specific sensory components of
perceptually present information, but it should generally not
alter the ability to simulate perceptually absent (and therefore
mnemonic) information. Coherently, it has been shown that
older adults did not suffer from a retrieval deficit, but insteaded
exhibit less precise mnemonic representations of the items (i.e.,
less accurate responses on the color and orientation) and of
the context (e.g., location) of the information to be learned
(Korkki et al., 2020). This study also showed that the reduction
in accuracy is not fully explained by a deficit in low-level
sensory functioning alone (visual acuity), which may rather
occur from neural dedifferentiation in the parahippocampus
(Koen et al., 2019). The lower-resolution hypothesis could
also account for associative (e.g., source memory) deficits in
aging. Indeed, older adults have the greatest deficit in access
associations requiring a high level of specificity (e.g., the old
man was in this park), whereas they performed as well as
younger adults to recognize general associations (e.g., the old
man was in a park) and fuzzy associations (e.g., the old man
was out somewhere) (Greene and Naveh-Benjamin, 2020). As all
forms of knowledge (e.g., semantic, episodic, autobiographical)
emerges from simulation, a consequence of this hypothesis is
that memory deficits in older people should not be limited to
newly learned knowledge. Coherently, older adults also recall less
specific perceptual or spatiotemporal details in autobiographical
memory tasks (very long-term memory see, Frankenberg et al.,
2021). A better understanding of the changes requires to
study the neurophysiological mechanisms underlying memory
in the MTL (the hippocampus and surrounding cortex) and the
effect of age on them.

LOW-RESOLUTION REPRESENTATIONS
INDUCE MORE INTERFERENCES IN
AGING MEMORY

In the MTL, the general coding principle is based on the
functional theory of the hippocampus (e.g., Marr, 1971; Rolls,
2013). According to this theory, the emergence of specific
memories (i.e., episodic memory) relies on the pattern separation
(PS) and the pattern completion (PC) mechanisms. PS is defined
as the ability to reduce interference from similar percepts
by processing non-overlapping representations, whereas the
PC allows recalling a whole and specific memory from an
incomplete input signal by complementing (activating) the
missing components. The input signals projected from the
sensory cortex and then, the entorhinal cortex processed it into a
non-overlapping pattern in the dentate gyrus via the mossy fiber
(PS). This non-overlapping pattern is then projected as distinct
representations into the CA3 field of the hippocampus, after from
which the representation could be retried from CA3 by diffusing
activation to the cortex (PC, Rolls, 2016; Pishdadian et al., 2020).
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FIGURE 1 | Illustration of the sensorimotor grounded memory traces. The left panel represents the activation of the sensorimotor components when seeing an
object (here, an alarm clock). The right panel represents the partial (re)activation, constrained by the present situation, of these sensorimotor components leading to
the emergence of the associated memory. As memory is defined as a dynamic emergence, the representation may be slightly different from the percept.

Modern approaches of neurocognition state that PS occurs
beyond the hippocampus, all along the ventral stream (Kent et al.,
2016; Cowell et al., 2019; Ekstrom and Yonelinas, 2020).

These modern approaches emphasize the content of
information to be processed focusing on the visual modality
for the moment. All visual representations are, for instance,
processed hierarchically from the simplest processing within the
visual cortex to the most complex processing in the hippocampus
(Murray and Bussey, 1999; Saksida and Bussey, 2010). This
representational-hierarchical model states that non-overlapping
representations (PS) could be obtained by the conjunction of
perceptual features along the ventral stream regions to the
hippocampus (see Kent et al., 2016). Basic sensory interference
between individual stimulus characteristics (e.g., lines and
colors) can be resolved in the sensory cortex. When more
perceptually complex features are introduced (e.g., objects),
the interference is resolved at higher processing level (e.g.,
the perirhinal cortex -PrC). Finally, combinatorial codes (e.g.,
conjunctive representations of object scenes in a spatial context)
are resolved in the hippocampus.

The representations are assumed to be widely distributed
into a system where characteristics of objects and scenes are
progressively combined as the processing progress hierarchically.
Moreover, and consistently with the embodiment, memory
representation would emerge from the activation of perceptual
units, and thus, the distinction between memory and perception
are no more relevant (see also, Graham et al., 2010). Thus,
conjunctions would not only reduce memory interference, but
would also eliminate the ambiguity of visually similar stimuli in
supposedly non-memory tasks. Accordingly, the PrC is involved

in processing of complex perceptual objects (Buckley et al., 2001;
Bussey et al., 2002; Barense et al., 2007) and lesions to the
PrC induce false recognition due to interference from similar
memories (Burke et al., 2010; McTighe et al., 2010). Similarly,
growing evidence indicates that the hippocampus underlies
the processing of conjunctions of complex spatial information
in memory (Girardeau et al., 2009) and in presumed non-
mnemonic tasks (see, Lee et al., 2012).

Applied in aging, the functionally weakened sensory signals
in the sensory cortex would increase perceptual/mnemonic
interference as conjunctions would be less efficient along the
ventral stream. Indeed, and on the contrary to the occipital
cortex, the MTL is structurally affected by aging, both in the PrC
(Ryan et al., 2012; Fidalgo et al., 2016) and the hippocampus
(Fraser et al., 2015). As a result, conjunction processing is
expected to be impoverished in older adults. This should increase
interference mainly between similar memories (Surprenant
et al., 2006; Ekstrom and Yonelinas, 2020). Actually, when the
memories are sufficiently distinct (efficient PS or dissimilar
memories), then the PC mechanism can easily complete a
specific trace, but when the memory traces overlap, then the
system will enter into an unstable attractor that may lead to
the emergence of altered/confused information (inefficient PC)
(Ekstrom and Yonelinas, 2020; Zotow et al., 2020). Furthermore,
the contribution of conjunctive representations to reduce
interference could be more important as the delay increases.
Delay-dependent impairments after MTL damage result from
deficient conjunction representations to resolve the ambiguity of
simpler representations in lower-level regions that are more likely
to be encountered during delay (Yonelinas, 2013). Therefore, the
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processing of similar information in aging could be impacted at
low levels of similarity in long-term memory, while deficits would
be evident at shorter time frames (e.g., short-term memory,
perception) only at higher levels of similarity.

On a behavioral standpoint, less efficient PS in aging is
mainly studied in memory using a perceptual lure discrimination
index. In a study phase, the participant learns images. In a
subsequent recognition task, these images (targets) are presented
along with new images that are visually distinct (foils) or that
are visually similar (lures) to the targets. The results show a
linear decrease in perceptual lure discrimination as perceptual
similarity increases in older adults (see Leal and Yassa, 2018).
Older adults thus indicated more often having already seen a
new image, especially when it is perceptually similar to a target
(declining perceptual lure discrimination index). Similarly, false
recognition was more likely for items in categories that are
visually more similar than those that are more distinct (Boutet
et al., 2019). It should be highlighted that the perceptual lure
discrimination index is associated with more global cognitive
functioning in older adults (Pishdadian et al., 2020). As such, the
alteration of the conjunction processing in the MTL could have
wider consequences than the specific memories.

DISTINCTIVENESS OF MEMORY
TRACES ON OTHER COGNITIVE
DOMAINS

The consequence of reduced sensory processing in aging
should not be limited to memory according to embodiment.
According to the embodied and situated memory models Act-
In (Activation-Integration, Versace et al., 2014), representations
(e.g., semantic, episodic) emerge from the same sensorimotor
components of the different memory traces. All experiences
of the individual are supposed to be accumulated as memory
traces. These traces are distributed across modal and heteromodal
neuronal systems coding the multiple sensorimotor components
of the experiences.

The different components of a given memory trace are bound
together (Opitz, 2010), following the conjunction processing
and therefore the PS. The binding allows the PC, described
in Act-In as an intra-trace activation. A specific memory
emerges when the activation does not propagate to similar
traces (called inter-trace activation). Reversely, the activation of
multiple similar traces (inter-trace activation) should produce
categorial (non-specific/semantic) knowledge. A strong inter-
trace diffusion achieves categorization by eliminating specific
details and context of events (see Versace et al., 2009,
2014), mechanism underlined by the CA1 subregion of
the hippocampus and neocortical upstream (Kumaran and
McClelland, 2012). The intra-trace and inter-trace activations
are mutually repulsive so strengthen or weaken one kind of
activation should directly weaken or strengthen the other. Given
that intra-trace activation is facilitated by distinctiveness, better
simulations (higher resolution representations) should allow
more activation of contextual details limiting the activation
of common/similar components of other traces (inter-trace

activation) (e.g., Ekstrom and Yonelinas, 2020). Furthermore,
distinctiveness is also a function of the number of experiences
accumulated, then more traces should increase the likelihood
of their overlap. This, in turn, should increase the inter-
trace activation. Consequently, the decline of perceptive and
conjunctive processing associated with more traces (more events
experienced by older adults) should induce less distinct traces
in older adults (Vallet, 2015), then it should in return bias the
dynamics of the simulation in favor of the inter-trace activation
(less distinct processing).

This balance between specific and non-specific knowledge
could be illustrated by the fact that older adults produce
fewer internal (specific) details associated with more external
(categorial) details when they recall an event compared
to young adults (e.g., Levine et al., 2002). The effect of
aging on the visual cortex and the hippocampus reduces
specific details (neural dedifferentiation), while aging enhances
categorial representations in the anterior temporal lobe (neural
hyperdifferentiation) (Deng et al., 2021). Therefore, older adults
exhibit relatively well-preserved performance in semantic tasks
(see, Salthouse, 2010, for a review). However, a more qualitative
analysis shows that they produce more categorial (e.g., cat)
and less unique (e.g., botfly) semantic knowledge (Murphy and
Castel, 2020). Their memory difficulties are then not limited to
a given memory system, but rather occur due to the alteration
of mechanisms involved in the emergence of specific knowledge.
Thus, not only do older adults have less detailed specific
knowledge in episodic tasks (specific knowledge, Greene and
Naveh-Benjamin, 2020; Frankenberg et al., 2021), but they also
less benefit from distinctiveness (see Smith, 2006) due to a more
generic (categorial) and less distinct processing (Koutstaal and
Schacter, 1997; Smith, 2006).

Aging might be characterized by an imbalance toward generic
(non-specific) processing constrained by the weight of prior
knowledge at the expense of specific processing. Compared to
young adults, older people produced indeed less specific details
and more generic details in a basic image description task and
in future imagination task (Gaesser et al., 2011; Schacter et al.,
2013). Yet, an integrated view of neurocognitive functioning
suggests that deficits in modal (e.g., less specialization in occipital
processing) and heteromodal (e.g., structural impairment of
MTL) regions should alter the processing done within the
connected regions as the prefrontal cortex (Davis et al., 2008).
The neuromodulation deficit induces noise in the neural
processing, including the prefrontal cortex, and leads to less
specific and more general processing (Li et al., 2001). As the
processes are less specific, and the similarity of the previous
processes favors the automation of processes (see Logan, 1988),
new processes are less likely to emerge. The same over-repeated
processes will more likely emerge, making more rigid and
less flexible other processing. This rigidity is found for their
executive functions such as to change categorization rules in the
Wisconsin tasks (e.g., Daigneault et al., 1992; Ashendorf and
McCaffrey, 2008). Interestingly, the largest executive switching
costs were found under conditions of ambiguous sensory
stimuli and overlap between sets of responses (Mayr, 2001).
This is consistent with the hypothesis that perceptual deficits

Frontiers in Systems Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 687393

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-687393 July 21, 2021 Time: 16:33 # 5

Mille et al. Embodied Perspective on Neurocognitive Aging

reduce trace distinctiveness and lead to increased inter-trace
activation, requiring more inhibition in prefrontal cortex (Li
et al., 2001). Similar link between sensory functioning and
inhibition is observed in young adults with degraded vision
(e.g., cataract vision simulation, as found in pathological visual
aging) in the Stroop task (see Monge and Madden, 2016 for
a review). A more evidence comes from the Perceptual Lure
Discrimination Index in the Mnemonic Similarity Task that is
related to inhibition (Foster and Giovanello, 2020). Finally, it is
noteworthy that the MocA (global measure of cognitive aging)
were associated with lure discrimination performances in older
adults (Pishdadian et al., 2020).

CONCLUSION

Normal aging is characterized by sensory-perceptual (and motor)
decline, on the one hand, and cognitive decline on the other.
Further studies, using a longitudinal design, are required to
fully explore the progressive sensory (motor) and cognitive
changes occurring throughout life. Embodied cognition provides
a theoretical framework explaining the possible these links given
that any representation at the source of cognitive functioning
remains grounded in these sensorimotor components. As such,
memory and perception (and action) are functionally equivalent.
This perspective investigated the neurophysiological mechanisms
underlying these links. The sensory decline (organ level) should
have a minimal impact, mainly on overlapping stimuli by
impoverishment of the related signal. Higher perceptual decline
should affect the simulation mechanism leading to the emergence
of a less specific and detailed representation. Functional changes
in the primary perceptual areas may reduce the benefit of distinct
perceptual information, while structural changes in the MTL may
reinforce of overlapping perceptual and memory information.
Since embodied representation should be at the core of cognition,
such changes should have wider cognitive consequences than
memory. Thus, aging could be characterized by less specific and
more rigid processing.

This perspective highlights the interest to study aging in
an embodied cognition approach, which could represent an

alternative to other theories of cognitive aging due to how
the sensory (motor)- cognitive interactions are defined. The
focus of the present article on perceptual-memory interactions
also suggest that early sensory improvement and environmental
enrichment could improve cognitive aging (Leon and Woo,
2018). Similar effects should also be found with motor and action
interactions. We hope that this brief overview of the contribution
of embodied cognition to characterize neurocognitive aging will
encourage further investigation of cognitive functions in aging
from an embodied perspective.
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