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The human brain constitutes one of the most advanced networks produced by

nature, consisting of billions of neurons communicating with each other. However, this

communication is not in real-time, with different communication or time-delays occurring

between neurons in different brain areas. Here, we investigate the impacts of these delays

by modeling large interacting neural circuits as neural-field systems which model the

bulk activity of populations of neurons. By using a Master Stability Function analysis

combined with numerical simulations, we find that delays (1) may actually stabilize

brain dynamics by temporarily preventing the onset to oscillatory and pathologically

synchronized dynamics and (2) may enhance or diminish synchronization depending

on the underlying eigenvalue spectrum of the connectivity matrix. Real eigenvalues with

large magnitudes result in increased synchronizability while complex eigenvalues with

large magnitudes and positive real parts yield a decrease in synchronizability in the delay

vs. instantaneously coupled case. This result applies to networks with fixed, constant

delays, and was robust to networks with heterogeneous delays. In the case of real brain

networks, where the eigenvalues are predominantly real, owing to the nearly symmetric

nature of these weight matrices, biologically plausible, small delays, are likely to increase

synchronization, rather than decreasing it.

Keywords: synchronization, time delay, Wilson-Cowan network, homeostatic synaptic plasticity, master stability

function, network neuroscience, connectomes

1. INTRODUCTION

Biological systems often form intricate and highly interconnected networks. Examples include
the chemical reaction networks present within a single cell at the small scale (Kitano, 2002), the
spread of disease through social networks (Keeling and Eames, 2005) or ecological networks across
entire biomes or even the planet itself at the large scale (Montoya et al., 2006). Yet, one of the
critical defining features in these networks is that communication from putative nodes is seldom
instantaneous, and is often plagued by delays. Nowhere is this clearer than in the human brain, an
intricate network of neurons limited by the slow propagation speed of action potentials or spikes,
which can take up to milliseconds to transmit information across areas (Roxin et al., 2005; Ghosh
et al., 2008; Deco et al., 2009).
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This seems unusual when we consider the readily
synchronizable nature of brain matter. For example,
pathologically strong synchrony exists in neurological disorders
such as epilepsy despite the presence of time-delays (Uhlhaas and
Singer, 2006). Beyond pathological states, weakly synchronized
brain areas are normal and even necessary states for the
functioning of brain networks during a variety of tasks (Varela
et al., 2001). Indeed, the presence of delays alone can have
variable impacts on synchronization with synchronizability
determined by (1) the topology of the network, (2) the dynamics
of the nodes, and (3) the nature of the delays.

We investigated how these three forces would interact with
computational modeling in networks of homeostatically-coupled
Wilson-Cowan (WC) nodes (Wilson and Cowan, 1972; Destexhe
and Sejnowski, 2009; Vogels et al., 2011; Cowan et al., 2016;
Hellyer et al., 2016; Nicola et al., 2018). In this model, each
node can be interpreted as a population of excitatory and
inhibitory neurons. The nodes are stabilized onto a steady-state
equilibrium with a homeostatic, dynamically adjusted weight
which strives to maintain a stable firing rate in each population
(Nicola et al., 2018; Nicola and Campbell, 2021). However,
the homeostatic adjustment of weights can also lead to more
complex dynamics, such as mixed mode oscillations and chaos,
which and lead to desynchronization of the nodes (Nicola
et al., 2018; Nicola and Campbell, 2021). Here, we show how
the presence of small time delays in the coupling influences
dynamic behavior and synchronization in comparison to the
instantaneously coupled networks.We limit our study to delay
magnitudes that are biologically relevant; these are small in
comparison with other time scales in the model. First, we find
that the induction of oscillations (via a Hopf bifurcation) requires
larger global coupling strengths in the delay coupled network
vs. the instantaneously coupled system. Second, we find that
for a sufficiently large delay, the system readily loses all non-
relaxation oscillator solutions (period doubling cascades, mixed-
mode dynamics, chaos) past the Hopf-bifurcation. Third, by
applying a master-stability formalism to these networks, we
find that synchronization is dependent on the underlying graph
and the nature of the time-varying synchronized solutions.
The delays decreased the synchronizability of graphs with large
complex eigenvalues (with postive real parts) while increasing the
synchronizability of graphs with purely real eigenvalues, as in the
case of DTI-derived connectomes (Bullmore and Sporns, 2009).
For small delays, synchronization could occur for chaotic or other
complex solutions as in the nondelayed case. For sufficiently
large delays, however, synchronization was always associated
with oscillatory solutions. This general portrait of the interactions
between network topology, dynamics, and delays was also robust
to delay heterogeneity throughout the network. Thus, we find
that rich dynamics and variable synchronizability with different
graph structures.

2. MATERIALS AND METHODS

2.1. Model Equations
To model the system we use a Wilson-Cowan network with
homeostatic regulation of the inhibitory connection weight due

to Vogels et al. (2011), Hellyer et al. (2016), Nicola et al. (2018),
and Nicola and Campbell (2021). We introduce a time delay in
the excitatory connections between the nodes (Figure 1A).

τ1
dEk

dt
= −Ek + φ

(

∑N
j=1W

EE
kj
Ej(t − ǫkj)−WEI

k
Ik

)

dIk

dt
= −Ik + φ(WIEEk)

τ2
dWEI

k

dt
= Ik(Ek − p)

(1)

Ek is the activity of the excitatory population of neurons within
the kth node, Ik is the activity of the inhibitory population in the
kth node, WEI

k
is the homeostatically adjusted inhibitory weight

of the kth node and WIE is the fixed excitatory weight of the kth
node. WEE

kj
> 0 are the (fixed) excitatory weights and ǫkj is the

time delay between nodes. The function φ is a sigmoidal transfer
function which we take to be the logistic function:

φ(x) =
1

1+ exp(−ax)
(2)

where a controls the steepness of the sigmoid, while the sigmoid
itself determines the proportion of the population of neurons
which is active in node k.

We use the parameter values as described in Nicola et al.
(2018): p = 0.2, a = 5, τ1 = 1, τ2 = 5. The values of WIE

andW
EE
kj

are varied. To choose an appropriate value for the time

delay, ǫ, note that in Equation (1) time has already been scaled
by the timescale of the inhibitory population, τI (Nicola et al.,

2018). This means that the delays are also scaled ǫij =
Tij
τI
. From

Hellyer et al. (2016) we find values of Tij in the range 1 − 14 ms
and τI = 20 ms, which yields ǫij in the range 0.05− 0.7.

In our work, we consider two primary constraints on this
system (Figure 1B). First, the row-sum of the weight matrixWEE

is constant:

N
∑

j=1

W
EE
kj = WE, k = 1, 2, . . .N (3)

where the parameter WE acts as the global coupling strength of
the entire system. The second constraint is that the delays are
homogeneous throughout the network:

ǫkj = ǫ, ∀k, j (4)

However, in Figure 4 we consider the impact of heterogeneous
delays by choosing the delays ǫkj value from a Beta distribution
with an average of ǫ.

2.2. The Synchronous Solution and the
Single, Self-Coupled Node
The model (Equation 1) with the constraints (Equations 3, 4)
admits a synchronous solution (Ek, Ik,W

EI
k
) = (Es(t), Is(t),

WEI
s (t)), k = 1, . . . ,N. The functions (Es(t), Is(t), W

EI
s (t))
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FIGURE 1 | (A) Communication delays in neural networks are caused by the non-instantaneous transmission of an action potential down an axon. The spike is

initiated at the axon hilock and arrives at the terminal bouton after a period of time. (B) The primary constraints in system (Equation 1), the row-sum of the weights

normalizes to WE and all the delays are constant. (C) Randomly-coupled networks with constant delay. (D) Simulation for increasing WE (E) Phase portrait of [E(t), I(t)]

for the network after synchronization for WE = 2.25. (F) Ring networks. (G) Simulated ring network with N = 8 nodes for increasing WE (H) Same as (E) except for

ring topology. (I) The single, delay coupled node. (J) Simulations of the single, delay coupled node. (K) Same as (E,H) only for the single, delay coupled node. For all

simulations, the parameter values were: ǫ = 0.1, p = 0.2, τ1 = 1, τ2 = 5, W IE = 1, and a = 5.

satisfy the equations for a single, isolated node with delayed,
self-coupling

τ1
dE

dt
= −E+ φ

(

WEE(t − ǫ)−WEII
)

(5)

dI

dt
= −I + φ

(

WIEE
)

(6)

τ2
dWEI

dt
= I(E− p) (7)

The self-coupling arises from the analysis of the synchronous
solution and is independent of whether there is self-coupling
in the full model. See Supplementary Materials Section 1

for details.
Thus, the synchronous solution of Equation 1 can be described

by analyzing the behavior of model for a single, self-coupled node
(Equations 5–7). For example, this model has an equilibrium
solution which yields the following equilibrium solution of the
full model

(Ēk, Īk, W̄
EI
k ) =

(

p,φ(WIEp),
WEp− φ−1(p)

φ(WIEp)

)

, k = 1, . . .N.

Analysis of the linearization of Equation 1 about this equilibrium
point shows that a Hopf bifurcation occurs for a sufficiently
strong global coupling strength, WE, as a function of the
excitatory-to-inhibitory coupling parameterWIE,

WE
Hopf = g(WIE)

This Hopf-bifurcation curve can be approximated via a
perturbation analysis in the limit of small delays (ǫ ≪ 1, see
Supplementary Materials Section 2).

2.3. Master Stability Function
The Master stability function was first developed to study
synchronization in large networks of coupled oscillators without
time delay (Pecora and Carroll, 1990). The derivation for
systems with time delays has been described in Dhamala
et al. (2004), Choe et al. (2010), and Flunkert et al.
(2010). The application to the model (Equation 1) is almost
identical to that described in Nicola and Campbell (2021) (see
Supplementary Materials Section 3).

Assuming that WEE is diagonalizable, the linear (local)
stability of the synchronized solution (Ek, Ik,W

EI
k
) =
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(Es(t), Is(t),W
EI
s (t)), k = 1, . . . ,N of the model (Equation

1) can be determined by studying the three dimensional linear
system

τ1
dηx

dt
= −ηx +Ms1(t)

(

r̂ηx(t − ǫ)− Is(t)ηz −WEI
s (t)ηy

)

dηy

dt
= −ηy +Ms2(t)ηx

τ2
dηz

dt
= (Es(t)− p)ηy + Is(t)ηx

(8)
where Ms1(t) = φ′(WEEs(t − ǫ) − WEI

s (t)Is(t)) and Ms2(t) =

WIEφ′(WIEEs(t)), and r̂ is an eigenvalue of WEE. The Master
stability function, λ(r) is typically defined as follows. For a given
r ∈ C if the trivial solution of (Equation 8) asymptotically stable,
then λ(r) < 0. If it is unstable then λ(r) > 0. A standard approach
is to define λ(r) be the maximal Lyapunov exponent of the system
(Equation 8). The MSF is then used to define a region of stability
in the complex plane, corresponding to all values of r for which
λ(r) < 0. If all eigenvalues of WEE lie inside this region then
the synchronous solution of Equation 1 is locally asymptotically
stable. Finally, we remark that we primarily consider the scaled

eigenvalues, rk =
r̂k
WE for all numerical simulations and plots,

thereby allowing us to compare eigenvalues on the unit circle
across global coupling strengths.

2.4. Numerical Methods
We use the commands ParametricNDSolveValue in Wolfram
Mathematica andNDSolveValue to simulate the system (1) with
homogeneous and heterogeneous delays. We used the numerical
continuation package DDE-Biftool (Engelborghs et al., 2001) to
compute Hopf bifurcation curves and period doubling curves for
the model (Equations 5–7) in theWIE,WE parameter space.

Numerically Implementing the Master
Stability Function for a Delay Differential
System
TheMaster Stability Function (MSF) approach for a generic delay
differential system

dx

dt
= F(x(t − ǫ), x(t)) (9)

is performed by first discretizing the delay-differential system:

dx1

dt
= F(xm, x1) (10)

dxn

dt
= (xn+1(t)− xn−1(t)) ·

m

2ǫ
, n = 1, 2, . . .m− 1 (11)

dxm

dt
= (xm−1(t)− xm(t)) ·

m

ǫ
, (12)

as in Farmer (1982) and Lakshmanan and Senthilkumar (2011).
This approximation is applied to the linearized system with

delays (Equation 8) which reduces the original system of
3N delay differential equations to a system of 3Nm ordinary
differential equations. Then, the classical MSF approach via

computing the Lyapunov exponents of the reduced variational
equations is now immediately applicable as the resulting network
consists of coupled ordinary differential equations. Details of
the implementation can be found online (see Code Availability
Statement). The value ofm = 10 discretization points was taken.

To supplement this approach, we performed numerical
simulations of the linear delay differential equation system
(Equation 8) and tracked whether solutions decayed to zero or
not. This was then used to define the MSF. This yielded results
consistent with those from the discretized DDE.

3. RESULTS

Delay Coupled Wilson-Cowan Systems
Can Still Synchronize
With the initial network constructed, we first sought to determine
what impacts the delay would have, if any, by comparison
with results for the instantaneously coupled network. To
assess this, we conducted an initial barrage of simulations
with randomly-coupled networks (Figures 1C–E), ring networks
(Figures 1F–H), and the single, self-coupled node with delay
(Figures 1I–K). Simulations for larger delay (ǫ = 0.3, 0.5)
showed similar behavior. First, we found that when the
networks did synchronize, they synchronized to solutions of
the self-coupled node with delay with an identical WE value
(Figures 1J,K), given by Equations 5–7. This is indeed, similar
to the instantaneously coupled network case where networks
with a coupling strength of WE can synchronize to solutions
of Equations 5–7 with ǫ = 0 (Nicola et al., 2018; Nicola and
Campbell, 2021).

However, the delay-coupled network did exhibit differences
from the instantaneously coupled network, in both the
synchronization and the nature of the attractors. For
example, the ring network considered in Figures 1F–H

would desynchronize at different parameter values (e.g., smaller
rings) in the delay-coupled case vs. the instantaneous case.
As the delay was increased further, smaller networks could
desynchronize. In contrast, the randomly-coupled networks
remained synchronized for all parameter values and delay
values we considered. Thus, the preliminary simulations display
some link to qualitative behaviors of the instantaneous case
(synchronization to the self-coupled node) but with differences
in the behavior of the delayed vs. non-delayed networks for
otherwise identical parameter values.

The Single, Delay Coupled Node
Given the synchronization to the delayed, self-coupled node
in Figure 1, we sought to investigate the bifurcation structure
of the corresponding model (Equations 5–7). First, we found
that as in the instantaneously coupled case, the self-coupled
node displayed a supercritical Hopf bifurcation at a critical
value of the coupling strength parameter WE (Figure 2A).
As WE is increased, this Hopf bifurcation is followed by
a period-doubling cascade to chaos (Figures 2B–D) provided
that the delay is not too large. These results were confirmed
using numerical simulation, numerical bifurcation analysis and
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FIGURE 2 | (A) The Hopf bifurcation boundary for the single, delayed self-coupled node, estimated analytically (dashed coloured lines) via a perturbation theory and

numerically (solid lines, DDE-Biftool). (B) The phase portraits in the (E(t), I(t)) space for the single node for increasing values of WE . (C) The single self-coupled node

undergoes period-doubling bifurcations for sufficiently small delay, (ǫ = 0.1). (D) A period-doubling cascade is present for small delays (ǫ = 0.1, green) but not large

delays (ǫ = 0.4, blue). For all simulations, the parameter values were: p = 0.2, τ1 = 1, τ2 = 5, W IE = 1 and a = 5.

by analytically approximating the Hopf-bifurcation curve (see
Supplementary Materials Section 2).

As the delay, ǫ, in Equation 5–7 increased, we found that the
critical value of the coupling strength WE required to induce
a Hopf bifurcation increased, thereby pushing the system into
the more strongly coupled regime (Figure 2A). At the level of
the single node, this is the primary factor that can eliminate the
rich single node dynamics. In particular, for sufficiently large
delays, the period doubling cascade is eliminated (Figure 2D),
with the only remaining dynamics being a putative Canard-type
explosion in limit cycle amplitude (see Nicola et al., 2018). Thus,
for small delays, the single self-coupled node maintains many of
the rich dynamical states of the instantaneously coupled system.
However, for sufficiently large delay in the self-coupling, the

rich-dynamical repertoire of the single node system is largely
eliminated as the Hopf-bifurcation is only induced at strong
coupling (WE) values.

Master Stability Function Analysis of the
System With Delays
With the dynamics of the single self-coupled node largely
resolved, we sought to determine how networks would
synchronize to non-equilibrium (e.g., limit cycle or chaotic
attractor) solutions. First, we applied the Master Stability
Function approach (MSF) for the system with a constant fixed
delay (Figure 3A, see Methods). Briefly, the Master Stability
Function, λ(r), is a function which is evaluated at the eigenvalues
of a connectivity matrix. If λ(ri) < 0 for all i = 1, 2, . . .N

Frontiers in Systems Neuroscience | www.frontiersin.org 5 July 2021 | Volume 15 | Article 688517

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Al-Darabsah et al. Time Delay and Brain Synchrony

FIGURE 3 | (A) The full Master-Stability Function (MSF) computed for WE = 2.05 and ǫ = 0.1. (B) The sign-change boundaries for the MSF for no delay (blue) and

delay ǫ = 0.1 (black) withWE = 2.05 (top),WE = 2.115 (middle),WE = 2.25 (bottom) for the full unit-circle region (left) and a zoom (right). (C) Simulated ring networks

for N = 2 (left), N = 7 (middle) and N = 8 (right) rings with the values of WE as in (B). For all simulations, the parameter values were: ǫ = 0.1, p = 0.2, τ1 = 1, τ2 = 5,

W IE = 1, and a = 5.

eigenvalues, then synchronized solutions are stable for anymatrix
with eigenvalues r1, r2, . . . rN . If, however, λ(ri) > 0 for any i,
then the synchronized solution is unstable.

First, we find that for a fixed delay, the change in the MSF in
the delay-coupled vs instantaneously coupled case is dependent
on the connectivity matrix and global coupling strength WE.
In particular, connectivity matrices with complex-eigenvalues
that are large in magnitude with postive real parts are likely
to lose stability of the synchronized solution when the network
communication is delayed, as opposed to when it is instantaneous
(Figure 3B top, middle). In contrast, connectivity matrices with
purely real eigenvalues, as is the case with symmetric matrices,
can gain stability (Figure 3B, middle). This is the differential
impact of the delay on the connectivity.

An example of the former situation is a uni-directional
ring. The spectrum of the connectivity matrix in this case lies

on the unit circle and the second largest eigenvalue increases
as the size of the ring increases. Thus delay will tend to
destabilize larger networks before smaller networks. This can
be seen in Figure 3B where the eigenvalues for unidirectional
rings with N = 7 and N = 8 are displayed with the
MSF. The MSF analysis predicts that both networks will be
synchronized for ǫ = 0, but the larger network can be
desynchronized for large enough delay. This was verified using
numerical simulations of the full network (Figure 3C), where
the ring of N = 8 nodes is desynchronized by the delay
while that with N = 7 is not. Networks with random
coupling also have complex eigenvalues, but the distribution
tends to be clustered near the origin, especially for larger
networks. See Figure 4E for some example distributions. Thus,
for our model, these networks should exhibit synchronized
solutions, largely unaffected by the presence of delays. Numerical
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FIGURE 4 | (A) Ring network with heterogeneous delays, where each delay is drawn from a beta-distribution (see Methods) with the finite sample also renormalized to

have a sample mean of ǫ = 0.1. (B) Phase portrait of the ring in [E(t), I(t)] space, for N = 6 (left), N = 7 (middle) and N = 8 (right). (C) The time series of simulations. (D)

A randomly-coupled network with heterogeneous delays, drawn as in (A–C). (E) The phase portrait in the [E(t), I(t)] space with the eigenvalue spectrum of the

sample-weight matrix drawn as an inset for randomly-coupled networks with N = 6 (left), N = 7 (middle) and N = 8 (right). (F) Time series of the simulations. For all

simulations, the parameter values were: WE = 2.115, p = 0.2, τ1 = 1, τ2 = 5, W IE = 1, and a = 5.

simulations of some specific networks confirm this (see
Supplementary Figure 1).

An example of a symmetric network is a lattice. Here the size
of the second largest eigenvalue increases with the size of the
network N. It was shown in Nicola and Campbell (2021) that for

the model (Equation 1) with no delay (ǫ = 0) andWE = 2.115 a
lattice ofN = 15 nodes is synchronized while that withN = 16 is
desynchronized. Figure 3B indicates that with delay ǫ = 0.1 and
the same value ofWE the lattice will be synchronized up to much
larger values of N.
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Heterogeneous Delays Largely Mirror
Homogeneous Delay Case
Finally, we investigated how robust our results would be if the
delays in our network were not homogeneous, but different
for each connection. Here, the MSF approach does not extend,
and thus, we opted to use numerical simulations for certain
simple connectivity matrices (Figure 4). The only constraints in
constructing these networks were that 1) all delays generated
were positive and drawn from a beta-distribution and 2) the
delays were re-scaled to force the sample mean of the delay
to exactly match the nominal delay value we considered in
Figures 1–3 (ǫ = 0.1).

First, we found that for ring networks, heterogeneity in
the delays does not appreciably alter the synchronization
characteristics of the network for the same fixed value of the
coupling strength (WE) as in the homogeneous delay network
(Figures 4A–C). In fact, even the attractors themselves were
minimally altered (compare Figures 3C, 4B).

Second, we found that for all-to-all connected, row-sum
normalized randomly-coupled networks, the solutions once
again synchronized to identical attractors as for the ring
networks (Figures 4C,F). Note that for systems which are all-
to-all coupled, and with randomly chosen, row-sum normalized,
the eigenvalues of the connectivity matrix shrink with the
network size (aside from the dominant eigenvalue), which is a
consequence of random matrix theory (Pastur and Shcherbina,
2011).

Of course the solutions cannot be perfectly synchronized since
the delays are different. Close inspection shows that the different
nodes have phase differences on the order of the size of the
delay. Since the timescale of the delay is much smaller than the
timescale of the oscillations in the WC system, these difference
are not apparent in longer simulations. This can be explained by
the analysis of Lücken et al. (2013) which determines conditions
under which the distribution of delays in a network may be
changed but still give equivalent dynamical behavior. The results
of Lücken et al. (2013) apply directly to our ring networks and
indicate that the system with heterogeneous delays will have
the same attractor as that with homogeneous delays, but the
phase relationships between the neurons will be different. A
synchronized solution for the system with homogeneous delays
becomes desynchronized in the system with heterogeneous
delays, with the timescale of the desynchronization between
neurons determined by the size of the delays.

Thus, numerically we find that the MSF results are robust for
this WC system even with a heterogeneous distribution of delays,
so long as the system with heterogeneous delays is compared to
the homogeneous system with a delay equal to the sample mean
of the heterogeneous system.

4. DISCUSSION

The impact of delays on a network cannot be readily disentangled
without simultaneously considering both the network topology,
and the dynamics of individual nodes. Here, we considered all

three in networks of delay-coupled, homoeostatically controlled
Wilson-Cowan nodes with the Master Stability Function
formalism. First, we find that when networks do synchronize,
they synchronize to the single self-delay coupled node. The
single node itself undergoes a Hopf-bifurcation to induce
oscillations which requires a stronger global strength with
larger delay. For small delays, the behavior of the network is
similar to the non-delay coupled case, and to the behavior
of other neural systems (see Keane et al., 2012 for example).
For larger delays, the shift in the Hopf-bifurcation to stronger
coupling values has a secondary impact: all mixed-mode,
period doubled, and chaotic solutions are no longer present.
Next, by applying the MSF approach, we found that the
impacts of a delay are dependent on the network structure.
Networks with large magnitude, complex eigenvalues (like rings)
are likely to lose stability in their synchronous solution(s)
while networks with large magnitude, purely real eigenvalues
are likely to gain stability in their synchronous solutions.
For a sufficiently large delay, which pushes up the global
coupling strength necessary to induce oscillations, synchrony is
the norm.

The size of delay in our study was chosen so that the ratio
of the delay (ǫ) to the synaptic time constants was < 1, as
synaptic delays are typically in the sub-millisecond tomillisecond
range (Roxin et al., 2005; Ghosh et al., 2008; Deco et al., 2009).
Nevertheless, delays in this biologically plausible range could still
be large enough to induce the effects discussed above.

Our work highlights the importance of considering the
network structure when considering the effect of time delay
on synchronization behavior. In all cases we considered, the
delay decreases the size of the region where synchronization is
stable, however the region of stability also changes shape. In
general, the region of stability near the right half of the unit
circle decreases. This means that structured networks (such as
unidirectional rings) are easier to desynchronize with larger
delay. This is consistent with studies of structured networks
that show that increasing the delay can lead to desynchronized
cluster-like solutions (Choe et al., 2010; Kyrychko et al., 2014;
Wang and Campbell, 2017; Kaslik and Mureşan, 2020; Kaslik
et al., 2020). However, the synchronization region near the real
axis was largely unchanged when the nodes exhibit periodic
solutions. This means that networks with symmetric or near
symmetric coupling are resistant to desynchronization by the
delay. This is consistent with the results of studies across a
variety of coupled networks with time delay (Dhamala et al.,
2004; Choe et al., 2010; Flunkert et al., 2010, 2014; Kyrychko
et al., 2014). For both the delayed and instantaneously coupled
networks, the key determining factor for synchronization is
the second-largest eigenvalue of the normalized connectivity
matrix (Nicola and Campbell, 2021). Networks that generate
larger eigenvalue distributions (e.g., more sparsely coupled
networks) are more likely to desynchronize than networks that
generate smaller eigenvalue distributions (e.g., more densely
coupled networks).

A novel observation in our work was the influence of
chaotic node behavior on synchronization. For networks
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with symmetric or near-symmetric coupling, a region of
desychronization occurs when the nodes exhibit chaotic or
irregular behavior. As discussed above, delays decrease the
size of this region of desynchronization due to the fact
that increasing the delay can destroy the chaotic behavior.
If one considers coupling strengths were increasing the
delay creates or preserves the chaotic behavior of the nodes
then the delay can increase the size of the region of
desynchronization. Nevertheless, we always observe the ultimate
loss of the chaotic solutions for sufficiently large delay.
This is a subtle effect of the model setup where the
type of synchronized solution that occurs depends on the
coupling strength.

The fact that time delays can influence synchronization
behavior has long been understood (Crook et al., 1997;
Ermentrout and Kopell, 1998; Ko and Ermentrout, 2007; Choe
et al., 2010; Lehnert et al., 2011; Pérez et al., 2011; Dahms et al.,
2012; Panchuk et al., 2013; Sun and Guofang, 2017). Here we
have contributed to this understanding through our study of
Wilson-Cowan networks with homeostatic adjustment of the
inhibitory weight. Our work builds on and extends prior work
on Wilson-Cowan networks with time delays, which focussed
primarily on small networks (one or two nodes) and/or networks
without the homeostatic adjustment (Coombes and Laing, 2009;
Pasillas-Lépine, 2013; Kaslik and Mureşan, 2020; Kaslik et al.,
2020).
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