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Our brains do not mechanically process incoming stimuli; in contrast, the physiological
state of the brain preceding stimuli has substantial consequences for subsequent
behavior and neural processing. Although previous studies have acknowledged the
importance of this top-down process, it was only recently that a growing interest
was gained in exploring the underlying neural mechanism quantitatively. By utilizing
the attentional blink (AB) effect, this study is aimed to identify the neural mechanism
of brain states preceding T2 and predict its behavioral performance. Interarea phase
synchronization and its role in prediction were explored using the phase-locking value
and support vector machine classifiers. Our results showed that the phase coupling in
alpha and beta frequency bands pre-T1 and during the T1–T2 interval could predict the
detection of T2 in lag 3 with high accuracy. These findings indicated the important role
of brain state before stimuli appear in predicting the behavioral performance in AB, thus,
supporting the attention control theories.

Keywords: attentional blink, EEG, phase locking value (PLV), support vector machine (SVM), top-down process

INTRODUCTION

Our brains do not process incoming stimuli passively; rather, if a certain stimulus is to be perceived,
it depends in part on the current state of the brain (Hanslmayr et al., 2011). In other words,
whether a stimulus is perceived as the result of the interaction of the bottom-up and top-down
processing approaches. Most of the previous cognitive science research focuses on the process after
the stimulus appears. For instance, consciously reported target stimuli to display a stronger and
more sustained pattern of activation (Marti and Dehaene, 2017). Late components P3 showed a
significant non-linear increase in amplitude between seen and unseen conditions (Del Cul et al.,
2007). However, top-down predictions shape how we perceive and comprehend the world has
become increasingly influential in the field of systems neuroscience (Teufel and Fletcher, 2020).
For instance, prestimulus alpha power has been proved to be a neural predictor of visual awareness
(Benwell et al., 2021). Synchronous oscillations in the alpha frequency band inhibit the perception
of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances
visual perception, indicating the attentional state could predict perception performance on a single
trial basis (Hanslmayr et al., 2007). Besides, the early transient global increase of phase synchrony
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in the gamma frequency range has also been reported to
mediate the access to conscious perception (Melloni et al., 2007).
Therefore, identifying the neural mechanism of pre-stimulus
brain states and predicting whether or not a sensory stimulus will
be perceived are two key goals in modern cognitive neuroscience
(Hanslmayr et al., 2011).

To contrast between stimuli accessing consciousness and
those that do not, previous researchers have developed a
broad variety of paradigms (Kim and Blake, 2005). Here, a
basic distinction must be clarified before we adopt a certain
kind of paradigm, that is, whether the non-conscious stimulus
is subliminal or preconscious (Dehaene et al., 2006; Kanai
et al., 2010). According to Dehaene and Changeux (2011),
subliminal stimuli refer to a kind of bottom-up, stimulus-driven
information, even in the case of concentrated attention, so that
it cannot be detected. A preconscious stimulus is a potentially
visible stimulus (the energy and duration of which can be
determined) that cannot be consciously perceived in a given
test due to temporary distraction or inattention. Subliminal
presentation is often achieved by masking, threshold stimuli,
binocular rivalry, and continuous flash suppression, while the
preconscious presentation is achieved by inattentional blindness
and attentional blink (AB) (Dehaene and Changeux, 2011).

Among the above paradigms, the AB facilitates the study of
the mechanisms that affect the rate and depth of information
processing in various setups and therefore provides an elegant
way to study correlations of conscious perception (Janson and
Kranczioch, 2011). It also offers an optimal way to contrast the
neural fate of identical stimuli; they are consciously perceived in
only some of the trials and fail in other trials (Sergent et al., 2005).
The AB effect is defined as the reduced ability to report a second
target (T2) after identifying the first target (T1) in a rapid serial
visual presentation (RSVP) of stimuli (Raymond et al., 1992).
This “blink” occurs when T2 appears in the time window of 200–
500 ms after the T1 presentation. This phenomenon has spawned
quite a several theories on the origins of the “blink” during the
past two decades.

Early models of the origins of the AB were focused more
on the central capacity limitations, such as the two-stage model
(Chun and Potter, 1995; Jolicoeur, 1998, 1999; Bowman and
Wyble, 2007), the interference in retrieving theory (Duncan
et al., 1994; Shapiro et al., 1994), and suspending processing
theory (Raymond et al., 1992). More recently, theories have
shifted from assuming central capacity limitations in memory
consolidation toward an emphasis on the configuration of the
attention network, such as delayed attentional reengagement
accounts (Nieuwenstein et al., 2005; Nieuwenstein, 2006). This
theory proposes that the AB is the result of the dynamics
of attentional selection—a top-down process that dictates that
attention is engaged to T1 and disengaged as soon as T1
disappears cannot react fast enough for the re-engagement to T2.
Similar theories, such as the overinvestment theory (Olivers and
Nieuwenhuis, 2006; Shapiro et al., 2006) and the global workspace
model for AB (Dehaene et al., 2003) are also models emphasizing
attentional control.

However, the question of why an AB is obtained in some
trials but not in others has not yet been resolved. What is the

main cause of this difference? Is it more attributed to the top-
down attentional control process before the emergence of T2 and
even before T1, or to the occupation of central capacity after the
emergence of T1?

To test this assumption, studies have explored the neural
cognitive mechanism preceding T2 utilizing various techniques.
For instance, studies drawing on electroencephalographic (EEG)
or magnetoencephalography (MEG) recording techniques set
to measure the brain oscillation mechanism of AB have the
advantage of high resolution in the time domain. The majority of
previous studies using the EEG recording technique explored the
neural mechanism of AB in terms of the event-related potential
(ERP) method, and they were most focused on the components
induced by stimuli in the RSVP stream (Vogel et al., 1998;
Vogel and Luck, 2002; Kranczioch et al., 2003; Sergent et al.,
2005; Hommel et al., 2006). Under this framework, ERP evidence
was more consistent with the early central capacity limitation
assumption of AB. For instance, the T2-induced P3 component
in the frontal or central cortical region was larger in T2-reported
trials than it in T2-missed trials (Vogel et al., 1998), while T1-
elicited P3 was smaller in T2-detected trials (Slagter et al., 2007).
The divergence of T2-detected and missed conditions began to
appear at approximately 270 ms (Sergent et al., 2005).

A problem exists that the ERP technique is locked to the
stimuli and nearly all studies using ERP focused on the process
after stimuli appeared. Additionally, the ERP components are
more indicative of a certain brain area activated or inhibited
during the cognitive process. Nonetheless, the working mode
of our brain is more like a collaboration of distributed neural
groups. Different neural assemblies communicate with each
other in a given spatial and temporal structure, which is largely
organized by oscillations (Draguhn and Buzsáki, 2004). Brain
oscillations in different brain areas become synchronized and
consequently allow for concerted execution of the whole range
of brain functions (Arnal and Giraud, 2012; Chakravarthi and
VanRullen, 2012). Thus, it is necessary to utilize more techniques
in addition to ERP to explore the working mechanisms of
our brain from a more comprehensive and holistic viewpoint.
Fewer studies have focused on the brain synchronizations among
different neural assemblies, especially for the time preceding
target onset (Gross et al., 2004; Hipp et al., 2011).

To relate the temporal dynamics of attention network
communication to observed attentional limitations in AB,
a prime candidate for communication among distributed
systems in our brain is neural synchronization (Singer, 1999).
Phase-locking value (PLV), also known as a phase-locking
index (PLI), is one of the most widely used parameters in
quantifying neural synchronization (Lachaux et al., 1999).
We introduced this concept in detail in the “Materials and
Methods” section. A few studies have tried to predict the
behavioral performance of T2 using PLV. For instance,
Gross et al. (2004) reported that beta synchronization in the
target-related network is significantly stronger during the
entire RSVP stream in the T2-correct condition than in its
incorrect condition; and beta synchronization is significantly
stronger to targets and significantly weaker to distractors
(Gross et al., 2004). Additionally, high levels of alpha PLV
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predicted a miss, whereas low levels predicted correct perception
of the T2 (Kranczioch et al., 2007). It was assumed that
oscillatory neuronal synchronization mediates neuronal
communication within frequency-specific, large-scale cortical
networks (Hipp et al., 2011).

Based on previous studies using PLV measurement, we moved
forward to combine the PLV and new data mining strategies
of machine-learning methods to predict target performance.
Among the existing machine-learning methods, support vector
machines (SVMs) have demonstrated superior performance in
several domains and, in particular, in neuroscience (Liu et al.,
2009; Cerasa et al., 2015). SVMs are designed to exhibit the
desirable theoretical property and advantage of maximizing the
margin between classes to provide good generalization and
thus, can yield reliable results using a minimal amount of data
for training (Krusienski et al., 2006). We utilized the SVM
algorithm to differentiate the trials in which both T1 and T2
were correctly reported and those in which only T1 was reported
but T2 was missed.

In summary, we aimed to explore whether the pre-stimulus
neural states in our brain could predict the final target
performance and how far it can be achieved. We hypothesized
that the different attentional states leading to different behavioral
outcomes (T2 reported correctly or not) are characterized
by specific patterns of synchronization between distributed
brain areas involved in target processing. Here, we tested the
assumption by adopting the AB paradigm and analyzed interarea
synchronization based on the PLV parameter. Specifically,
brain states before T1 presentation and during T1–T2 should
determine the detection of T2 in the AB interval. Furthermore,
the resources allocated to T1 and T2 processing should be directly
mirrored by the P3 component, which means that the successful
temporal management of resources should be reflected in larger
T2-induced P3 and smaller in T1-elicited P3 for detected T2 trials
(Vogel et al., 1998; Slagter et al., 2007).

MATERIALS AND METHODS

Subject
Eighteen male participants were recruited at the Zhejiang
University, with an average age of 21.35 (20–22). They were
required to be free of current or past neurological or psychiatric
disorders. All participants had normal or corrected-to-normal
visual acuity and normal color vision, and all participants were
right-handed and Chinese native speakers. They were paid for
their participation and informed written consent was obtained
prior to the start of the experiment. Two participants were
excluded from the EEG data analysis due to excessive head
movements, thus 16 participants remained. The smallest sample
size of subjects was calculated as 12 by using G-power 3.1.9.7,
with predefined effect size set as 0.4, statistical test power set as
0.8 in a within-subject repeated ANOVA design.

Stimuli and Procedure
According to previous research, there are three preconditions for
AB to be observed: (i) the stimulus presentation rate must be

approximately 10 items per second. (ii) At least one distracter
must follow T1 and T2. (iii) The second target, T2, must
be presented between approximately 100 and 500 ms after
T1 (Raymond et al., 1992; Klimesch, 2012). Therefore, our
experiment was designed as follows: visual stimuli were presented
on a CRT computer monitor with a refresh rate of 80 Hz, resulting
in a frame duration of 12.5 ms. Each trial consisted of an RSVP
stream of letters and digits. Distractors were letters and the two
targets were digits. Both T1 and T2 appeared in every single trial.
Visual stimuli were subtending 0.36 by 0.50 of visual angle at a
viewing distance of approximately 80 cm and were presented as
fixed on a white background.

Stimuli were presented at the center of a gray screen. At the
start of each trial, a black fixation cross appeared for 1,000 ms.
Then, the RSVP sequence began: T1 was presented after 8–15
distractors, followed by 10 more items in which T2 appeared
among the distractors. T2 could be the first, third, or the seventh
item following T1, corresponding to the conditions of Lag1,
Lag3, and Lag7. Items in RSVP were presented for 50 ms each,
and stimulus-onset-asynchrony (SOA) was 100 ms. Following
the RSVP sequence, the screen remained blank for 1,000 ms.
Subsequently, participants were required to report T1 and T2 by
clicking the corresponding key on the keyboard. There were 80
trials for each lag condition, and the total number of experimental
trials was 240. All the lag conditions were randomized and
presented in four blocks. Short breaks were scheduled between
four blocks. Stimuli and trial structure are illustrated in Figure 1.

Electroencephalographic Recording
Participants were tested individually in a soundproof and
electrically shielded recording booth. They were asked to fixate
their gaze on the center of the monitor as much as possible,
to minimize movement of eyes and facial muscles, and to
keep their bodies (especially their heads) as still as possible
during the presentation. Continuous EEG was recorded using the

FIGURE 1 | Experimental design. Each trial started with a black fixation cross
lasting for 1,000 ms. Then, the RSVP sequence began: T1 was presented
after 8–15 distractors, followed by 10 more items in which T2 appeared
among the distractors. T2 could be the first, third, or seventh item
following T1. Items in RSVP were presented for 50 ms each, and
stimulus-onset-asynchrony (SOA) was 100 ms. Following the RSVP
sequence, the screen remained blank for 1,000 ms. Then, responses were
requested for T1 and T2 via response screens. RSVP, rapid serial visual
presentation.
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Neuroscan SynAmps2 system at a sampling rate of 1,000 Hz and
analog-filtered DC-100 Hz. Quick-Cap 64 electrode (Ag/AgCl)
sites were placed according to an international modified 10–20
system montage (Nuwer et al., 1999). Additionally, four bipolar
electrooculogram (EOG) signals to monitor eye movements were
set. Impedances were kept below 10 kW for all electrodes. All
scalp electrodes and the EOG signals were referenced to the
left mastoid (M1) during recording. All scalp electrodes were
grounded at a point midway between Fpz and Fz.

Preprocessing Analysis for
Electroencephalographic Data
Off-line analysis was performed using MATLAB. Ocular artifacts
(such as horizontal and vertical EOG) were regressed out using
the least-squares method (Jin et al., 2018). In addition, we
rejected artifacts with a standard of ±80 µV and artifacts with
a gap between the maximum and minimum value exceeding
120 µV. After artifact rejection, an average of over 72 trials was
left for each condition per subject, with conditions not being
significantly different from each other (Keil et al., 2014). EEG
data were filtered in a band of (0.5, 40). Epochs were extracted
from continuously recorded EEG relative to the onset of T1s,
800 ms before and 1,000 ms after the stimuli. The mean voltage of
800 ms segments preceding stimuli was subtracted as the baseline.
The averaged ERP waveforms were time-locked to the onset of
T1. Trials with incorrect T1 responses were excluded from the
ERP waveforms and all behavioral analyses. We only analyzed
the Lag3 data from T1 correct epochs and then classified them
into the correct T2 and incorrect T2 epochs according to the
behavioral results.

Event-Related Potential Analysis for P3
Component
We analyzed the average amplitude from T1 onset (referenced
as time zero) in a time window of 100 ms, which progresses
at a steady pace of every 10 ms. The difference between T2-
detected and T2-undetected conditions was calculated using a
t-test for each window. The significant results of t-tests are
marked with shadows in the waveforms of each electrode. The
onset of the P3 was measured using the fractional area latency
of the component, which was defined as the time point at which
the waveform reached 25% of its area within the time window
of 300–900 ms post-stimulus (Hansen and Hillyard, 1984). Time
windows were defined based on previous studies (Kranczioch
et al., 2003, 2007) and visual inspection to cover the main
properties of the P3 processes.

Phase Coupling Analysis
Phase indicates a particular time point within a single oscillatory
cycle or period and is frequently measured in degrees (0–
2π). Phase coupling or synchronization assesses the stability
of differences between phases of EEG signals at equivalent
frequencies taken simultaneously by different electrodes. More
simply stated, it is a measure of how the relative phase is
distributed over the unit circle (Bosch et al., 2018). Phase coupling
has been interpreted as a means of communication between

distant neural assemblies (Lachaux et al., 1999; Varela et al.,
2001; Fries, 2005; Uhlhaas et al., 2009). This assumption has
been lent more credibility with evidence from intracranial studies
in primates (Canolty et al., 2010). Previous AB research using
PLV (Kranczioch et al., 2005), phase synchrony index (SI; Gross
et al., 2004), and dynamic cross-lag phase synchronization (dI;
Nakatani et al., 2005) all indicated the neural synchronization
of various brain areas and will be referred to as interarea phase
synchronization.

To discover to what extent two sensor locations were
synchronized, we used the PLV, which is one of the most widely
used measures of brain synchronization (Lachaux et al., 1999;
Varela et al., 2001). It quantifies the phase relationship between
two signals with high temporal resolution without making any
statistical assumptions on the data.

Given two time series of signals x(t) and y(t) and a frequency
of interest f, the procedure computes a measure of phase locking
between the electrodes of x(t) and y(t) for each time point
at frequency f. This process requires the extraction of the
instantaneous phase of every signal at the target frequency. The
phases are calculated by convolving each signal with a complex
wavelet function (pn_eegPLV, written by: Praneeth Namburi)
(Lachaux et al., 1999).

Under certain frequencies (alpha or beta), PLV serials
(1,891 × 1,800 × 2) in two-time windows were chosen for
analysis: (−300, 0) and (0, 300) with the T1 onset as a
reference, separately for T2-detected and undetected conditions.
The parameter 1,891 stands for the number of electrode pairs,
1,800 stands for the time span (we chose the epoch 800 ms
before and 1,000 ms after T1 onset), and 2 stands for the two
conditions of T2 detected or not. The PLV values in the window
were summed, and then the results of certain electrode pairs were
kept as PLV [sum (x, y), f ]. x and y indicate the corresponding
electrodes, and f indicates the frequency. We calculated the
PLVs in the alpha and beta frequency ranges in all the electrode
pairs and then normalized them to minimize the influence of
trial number imbalance under the two conditions. After this
normalization, the key feature of PLV was sensitive only to
phases, irrespective of the amplitude of each signal. Then t-tests
(p< 0.005) between PLV (sum, x) in the T2-correct and incorrect
trials were adopted to obtain the significant PLV pairs as features
to perform the SVM test.

Support Vector Machines Calculation
The SVM is designed to determine the hyperplane that maximizes
the separating margin of separation between the two classes of a
binary classification. With class labels coded as yi ∈ [±1], Eq. 1
can be reformulated as

yi
(
w · f (xi)+ b

)
+ ηi ≥ 1 (1)

Where ηi > 0 represents the distance from the misclassified
points to the margin. With the margin simply equaling 2/w, the
maximum margin will minimize subject to Eq. 2:

C
l∑

i=1

ηi + 0.5 ‖ w ‖2 (2)
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Subject to Eq. 2, where C is an arbitrary regularization parameter
that reflects the penalty for misclassification and l is the number
of training examples. This constrained optimization problem can
be solved using Lagrangian multipliers, equivalently maximizing:

max(α)

{
l∑

i=1
αi −

1
2

l∑
i=1

l∑
j=1

αiαjyiyjK(xj, xi)

}
s.t.αi ≥ 0, i = 1, . . . , l
l∑

i=1
αiyi = 0

Where the kernel function K(xj, xi) = Ø (xj) and Ø (xi) defines
the non-linear transformation and Ø (x) = x for the linear case.
With the vector of Lagrangian multipliers, the classification score
of a feature vector x, disregarding the inconsequential bias term,
is computed as follows:

scoreSVM =

l∑
i=1

αiyiK(xi, x)

The reason we did not choose a non-linear SVM, such as
Gaussian SVM, is that overfitting can be a common dilemma
with non-linear classifiers. Although they are often able to model
the training data very accurately, they can fail if the training
data are not wholly representative of independent test data.
Overfitting may be resolved by tuning the classification algorithm
to generalize to independent test data, leading to another
drawback of SVMs—the onerous process of attaining a suitable
model and training parameters. Because SVM parameters, such
as the regularization parameter and kernel bandwidth, cannot be
intuitively generated, it may be necessary to examine the multiple
combinations to achieve optimal performance.

Importantly, in all cases, the data were divided into two non-
overlapping sets, a training set, and a test set. The Leave One
Out Cross-Validation (LOOCV) approach was used due to its
advantages of producing model estimates with less bias and more
ease in smaller samples. LOOCV consists of splitting the dataset
randomly into n partitions. At each of the n-th iterations, n − 1
partitions will be used as the training set, and the remaining
sample will be used as the test set. At each of the n-th iterations,
the whole data set is used as the training set except for one sample,
which is left out as a test set.

The performance of the classifier was evaluated by comparing
the classifier predictions relative to the test data with the actual
behavioral results obtained from the test data. In the case of
binary classification, the chance level is 50% and the maximum
classification performance is 100%. We also used the area under
the ROC (AUC) to measuring classifier performance based on
sensitivity and specificity (Kassraian-Fard et al., 2016).

RESULTS

Behavioral Results
According to previous studies, we calculated the T2 accuracies
under three lag conditions premised on a correct T1 response.

The average accuracies (mean) and SD in every lag condition are
shown in Figure 2.

A repeated ANOVA indicated a significant main effect of Lag
[F(2, 15) = 23.35, p < 0.0001, η2 = 0.61], indicating that the AB
did occur in our study. The post hoc comparisons showed that
the accuracies in Lag1 and Lag7 were significantly higher than
that in Lag3 (p < 0.001, p < 0.001), but there was no difference
between Lag 1 and Lag7. All the p-values were corrected by a
Bonferroni correction.

Event-Related Potential Results
According to our observations and previous related research
(McArthur et al., 1999), the T1-related P3 had a peak latency of
approximately 400 ms, while the T2-related P3 had a peak latency
of approximately 600 ms. We calculated the averaged amplitudes
of a 100 ms time window separately for T2-detected and T2-
undetected conditions and moved forward at a pace of 10 ms. The
distribution of significant results for t-test (p < 0.05) conditions
was displayed on a 2D brain map in four-time windows as shown
in Figure 3.

As we can see from Figure 3, the red parts indicate that the
average amplitudes in the T2-detected condition are larger than
those in the T2-undetected condition and vice versa. Thus, the
central part of the brain (mainly covered C1, Cz, C2, FCz, and
FC1) is sensitive to T2 detection. In detail, in the 390–490-ms
time window, the central part is blue, and in contrast, it turned
red in the 750–850-ms time window. The former time window
may correspond to the T1-related P3 peak, and the latter may
correspond to the T2-related P3 peak.

Significant differences between T2-detected and T2-
undetected conditions in the average amplitudes of P3 time
windows in the frontal and central regions are marked with
shadows in the corresponding ERP waveforms and are shown in
Figures 4, 5.

Moreover, we used a permutation method to test the
significance of the difference between detected and undetected
conditions for the T1- and T2-evoked P3 components in the
corresponding electrodes in the frontal and central areas. The

FIGURE 2 | The averaged T2 accuracy in every lag condition given T1 was
correct.
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FIGURE 3 | Distribution of significant areas depending on T2 detection. Significant results of t-tests (p < 0.05) between T2-detected and T2-undetected conditions
are displayed on 2D brain maps in four-time windows. The red parts show that the average amplitudes in the T2-detected condition are larger than in the
T2-undetected condition; and the blue parts represent the opposite situation.

FIGURE 4 | Typical P3 components evoked by T1 and T2 in electrodes within the frontal area. The blue lines represent the T2-detected condition and the red
dashed lines represent the T2-undetected condition. Significant differences in average amplitude between the two conditions are shown in shadows as above.

detailed p-values of P3 components in every electrode are shown
in Table 1.

Phase-Locking Value and Corresponding
Support Vector Machines Results
We chose PLV serials (1,891 × 1,800 × 2) in two-time
windows for analysis: (−300, 0) and (0, 300) with the T1

onset as a reference, separately for T2-detected and -undetected
conditions under a certain frequency (alpha or beta). Then
t-tests (p < 0.005) for PLVs in the T2-correct and -incorrect
trials were adopted to obtain the significant values after
normalization. All the significant pairs are depicted in the
2D brain map shown in Figure 6 (red lines show higher
PLV values in T2-correct trials, and blue lines reflect the
opposite situation).
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FIGURE 5 | Typical P3 components evoked by T1 and T2 in electrodes within the central area. The blue lines represent the T2-detected condition and the red
dashed lines represent the T2-undetected condition. Significant differences in average amplitude between the two conditions are shown in shadows as above.

Under the alpha frequency band in the time window of
(−300, 0), four pairs of electrodes were found to be significantly
different in their PLV by using a t-test to compare T2-detected
and -undetected trials. These pairs were FP1-FCz, AF3-FCz,
Fz-C6, and C3-CP5.

Under the beta frequency band in the time window of (−300,
0), 11 pairs of electrodes were found to be significantly different in
their PLV by using the same method. These pairs were FPz-FC1,
AF3-FC1, F3-FC1, F1-FC1, FC5-FC1, C1-FC1, AF4-C6, P5-CP3,
P5-P1, P5-PO3, and P8-O1.

Under the alpha frequency band in the time window of
(0, 300), six pairs of electrodes were found to be significantly
different in their PLV. These pairs were (FPz, FP2, AF4, F2, FC5,
FT8, C5, and Cz), with a decrease in alpha synchronization in the
T2-detected condition. These connections were between the right
prefrontal and left central areas, and bilateral frontal connections.
Only one connection (F6-POz) was increased before T1 onset in
the T2-detected condition.

TABLE 1 | Corresponding permutation p-values of T1- and T2-evoked P3
components in average amplitudes difference between T2-detected and
-undetected conditions.

FC1 FC2 FCz CZ C2 C4

T1 evoked P3
(380–480 ms)

0.012 0.014 0.018 0.0036 0.0039 0.0039

T2 evoked P3
(760–960 ms)

0.033 0.11 0.023 0.0001 0.007 0.008

Under the beta frequency band in the time window of (0, 300),
47 pairs of electrodes were found significantly different in their
PLVs. Figure 5 shows that these pairs covered a broad area of
the brain, such as the frontal, temporal, parietal, and occipital
regions. The majority of PLV pairs were long-range connections
from the frontal to the posterior part of the brain, with increased
synchronization in the T2-correct condition. The minority of
PLV pairs were more local in the parietal and central areas, with
a decreased synchronization in the T2-correct condition.

Then, we used different combinations of these pairs as
predicting factors in the SVM function separately for the four
conditions. The SVM calculation results demonstrated that these
factors can predict the performance of the T2 target with high
accuracy. Table 2 indicates the results of different combinations
of features in the SVM algorithm.

Regression Between P3 and Preceding
Phase-Locking Value
To explore whether the P3 amplitude could be predicted by
preceding PLV activities, we also carried out regressions between
P3 average amplitudes and preceding PLVs separately in different
frequency bands. In detail, we analyzed the regression between
PLV in the time window of (−300, 0) and T1-induced P3 and
the regression between PLV in the time window of (0, 300) and
T2-induced P3 in the alpha and beta frequency bands. We did
not go through all the electrodes; instead, we chose electrodes
based on their significance in differentiating T2-detected and
T2-undetected conditions.
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FIGURE 6 | Significant phase-locking value (PLV) pairs were used in differentiating T2-correct trials and T2-incorrect trials. The upper left panel represents the
significant PLV pairs in the time window (–300, 0) with T1 onset as time 0 in the alpha frequency band. The upper right panel represents the time window of (–300, 0)
in the beta frequency band. The bottom left panel represents the significant PLV pairs in the time window of (0, 300) in the alpha frequency band. The bottom right
panel represents the significant PLV pairs in the time window of (0, 300) in the beta frequency band (red lines show higher PLV values in T2-correct trials, and blue
lines reflect the opposite situation). The colors in the topographical map of the brain were obtained by calculating the PLV means of every electrode with all the other
electrodes. PLV, phase-locking value.

Significant regression results in the time window (−300, 0)
and corresponding electrodes are shown in Table 3.

Significant regression results in the time window (0, 300) and
corresponding electrodes are shown in Table 4.

DISCUSSION

The main aim of this study was to explore whether the
pre-stimulus neural states in our brain could predict the

final target performance utilizing the AB paradigm. The
mechanisms of our brain controlling why physically identical
information sometimes succeeds in reaching awareness while
failing at other times remain poorly understood. We calculated
the phase synchronization to predict behavioral outcomes
using an SVM classifier and examined the correspondence
between ERP components and behavioral performance. The
present results showed that the pre-T2 PLV could predict
the later T2 performance with high accuracy and support
the attention control hypothesis that certain attentional states
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TABLE 2 | Results of different combinations of PLV pairs in SVM calculation.

PLV pairs as features Max accuracy Max AUC

Alpha T1 (-300,
0)

(FP1,FCz), (AF3, FCz),
(Fz, C6), and (C3, CP5)

0.8125 0.8633

Beta T1 (-300,
0)

(FPz, FC1), (FC5, FC1),
(CP3, P5), and (P5,P1)

0.8750 0.8984

Alpha T1 (0,
300)

(FC5, FT8), (F2, C5),
(FPz, Cz), and (F6, POz)

0.8750 0.9063

Beta T1 (0,
300)

(FC6, T7), (F1, CP6),
(FC3, CP6), and (FC3,

CPz)

0.9688 1

PLV, phase-locking value; SVM, support vector machine.

TABLE 3 | Results of significant regressions between PLV pairs and P3 in the time
window (−300, 0).

PLV (-300, 0) T1-induced P3 R2 P

Alpha FP1, FCz FCz 0.175 0.017

AF3, FCz FCz 0.151 0.028

Beta F1, C1 FC2 0.174 0.017

AF4, C6 P2 0.143 0.033

PLV, phase-locking value.

and low efficiency in attentional resource allocation lead
to the “blink”.

Phase Coupling Results With the Support
Vector Machines Learning Algorithm
Recently, there has been an increase in the number of studies
applying data mining tools to neuroscience (Squarcina et al.,
2017). However, the vast majority of these studies commonly
seek to discover patterns in electrophysiological signals and
images correlated with the diagnosis, prognosis, and progress
of a particular pathology or brain disorder and with the image
analysis of normal/disease resting-state functional magnetic
resonance imaging (fMRI) (Rashid et al., 2016; Hojjati et al.,
2017). By comparison, very few investigations in this area use
machine-learning techniques for studying normal brain cognitive
functions. In particular, tools and approaches tailored to grasp the
complexity of brain electric activity through the analysis of EEG
signals are lacking (Bosch et al., 2018).

Our primary finding demonstrates that classification of EEG
PLV patterns using data mining tools with neural cognitive data
related to consciousness is achievable. For each pair of EEG
channels, phase synchrony was calculated within a given time
window, separately for detected and undetected T2 trials. A novel
feature selection methodology that identifies the most relevant
connections in these networks was applied with a linear SVM-
based classifier. This methodology allows us to determine the
most relevant connections, thus reducing the complexity, and
facilitating the interpretation of mined patterns.

According to our result, the most significant connections were
observed in electrode pairs covering the parietal, temporal, and
frontal areas. According to previous research, these areas are

TABLE 4 | Results of significant regressions between PLV pairs and P3 in the time
window (0, 300).

PLV (0, 300) T2-induced P3 R2 P

Alpha FP2,C5 Cz 0.13 0.042

AF4, C5 C2 0.125 0.047

AF4, C5 C4 0.156 0.025

F2, C5 Cz 0.144 0.032

F2, C5 C2 0.204 0.009

F2, C5 C4 0.153 0.027

F6, POz Cz 0.175 0.017

Beta Fz, FC3 C4 0.149 0.029

FP1, FC1 C2 0.181 0.015

FP1, FC1 C4 0.207 0.008

AF4, FC1 C2 0.146 0.031

AF4, FC1 C4 0.200 0.01

F5,CP6 C4 0.170 0.019

F1,CP6 C4 0.144 0.032

FC3, CP6 C4 0.172 0.018

CP5,P5 C4 0.136 0.037

FC5, P3 FC1 0.132 0.04

FC5, P3 FCz 0.128 0.044

AF3, P8 Cz 0.125 0.047

AF4, P8 Cz 0.0266 0.0025

FC3, P8 FCz 0.124 0.049

FCz, P8 FCz 0.170 0.019

FCz, P8 Cz 0.130 0.043

FP1, CB1 Cz 0.142 0.034

AF3, CB1 Cz 0.136 0.038

F5, CB1 Cz 0.131 0.041

FC3, CB1 FCz 0.131 0.041

FCz, CB1 FCz 0.144 0.032

FCz, CB1 Cz 0.163 0.022

FP1, O1 Cz 0.161 0.023

FP1, O1 C2 0.163 0.022

AF3, O1 Cz 0.162 0.022

AF3, O1 C2 0.154 0.026

AF3, O1 C4 0.126 0.046

CPz, O2 C4 0.156 0.025

PLV, phase-locking value.

linked to attentional control in general (Marois and Chun, 2000;
Dehaene et al., 2003; Friedman-Hill et al., 2003).

Interestingly, interarea phase coupling varied among different
frequency bands and different time windows. In the alpha band,
we observed long-range connections, while in the beta band,
the phase coupling only showed small-area synchronization,
thus supporting the theory of frequency-related brain function.
This theory assumes that different brain networks oscillate at
different frequencies, with small networks oscillating at fast
frequencies (>40 Hz) and large networks oscillating at slower
frequencies (<20 Hz) (Steinu and Von Sarnthein, 2000; Draguhn
and Buzsáki, 2004). Slower oscillations may represent brain
networks of a higher hierarchy, encompassing multiple lower-
level networks, and thereby gating faster oscillations in a top-
down manner (Lakatos et al., 2005, 2008). We discussed the
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phase coupling of alpha and beta frequencies in different time
windows as follows.

Pre-T1 Time Window
Both the alpha and beta frequency activities could predict the
behavioral outcomes in the pre-T1 time window. The alpha
synchronization before T1 appearing in an RSVP stream could
account for over 80% of the behavioral outcomes. In total, we
found four pairs of significant neural connections: FP1-FCz, AF3-
FCz, Fz-C6, and C3-CP5. The first two connections showed
increased activity while the latter two showed decreased activity
in the detected T2 condition.

Pre-T1 beta frequency activities could also function as a
predictor of behavioral performance, with even higher accuracy.
The significant pairs were FPz-FC1, AF3-FC1, F3-FC1, F1-FC1,
FC5-FC1, C1-FC1, AF4-C6, P5-CP3, P5-P1, P5-PO3, and P8-
O1. We saw that two electrodes (FC1 and P5) played a central
role in interarea synchronization. The FC1-centered connections
were increased while the P5-centered connections were decreased
in the T2-correct condition. Our results were partly in line with
those of Gross et al. (2004)’s research, where beta synchronization
in the target-related network was significantly stronger during
the entire stream in the non-AB condition than in the AB
condition; and beta synchronization was significantly stronger
for targets and significantly weaker for masks (Gross et al.,
2004). Furthermore, the brain oscillation differences between
detected and undetected T2, both beta frequency (15 Hz) in
long-range neural synchrony and gamma frequency (40 Hz)
ranges have been found to emerge even before target stimulus
presentation (Gross et al., 2004; Nakatani et al., 2005). Using
event-related fMRI techniques, Kranczioch et al. (2005) observed
an increase in activation for the detected T2 condition during
the lag between T1 and T2 in the frontal and parietal cortices.
In contrast, in the occipitotemporal regions, activation was
increased for missed T2 conditions (Kranczioch et al., 2005),
which was consistent with our findings in beta frequency. They
proposed that activation in the occipitotemporal regions might
mainly reflect the duration of the attentive search, and the
frontoparietal areas seem to be involved in a highly distributed
network controlling visual awareness.

T1–T2 Interval Time Window
Phase coupling in the alpha band between T1 and T2 could
predict 90% of the behavioral fate of T2 according to the SVM
calculation. These significant neural connections mainly covered
the frontal and central regions of the brain (FPz, FP2, AF4, F2,
FC5, FT8, C5, and Cz), with a decrease in alpha synchronization
in the detected T2 condition. As shown in Figure 6, these
connections were between the right prefrontal and left central
areas, and bilateral frontal connections. However, one connection
(F6—POz) in the alpha band was increased before T1 onset in the
T2-detected condition.

Phase coupling in beta frequency during the T1–T2 time
window covered a broad area of the brain, such as the frontal,
temporal, parietal, and occipital regions. The majority of PLV
pairs were long-range connections from the frontal to the
posterior part of the brain, with increased synchronization in the

T2-correct condition. The minority of PLV pairs were more local
in the parietal and central areas, with a decreased synchronization
in the T2-correct condition. Very importantly, in this frequency
and time window, the SVM classifier found the highest accuracies
and AUC, which was nearly 1.

The electrode pair-related areas in our results have been
linked to visual attention (Nobre et al., 1997; Hopfinger et al.,
2000; Marois and Chun, 2000; Corbetta and Shulman, 2002) and
working memory (McCarthy et al., 1996; Quintana and Fuster,
1999; Fletcher and Henson, 2001). According to Desimone and
Duncan (1995), such a network may exert attentional control
by biasing the processing of incoming visual information: neural
representations of target- or goal-related stimuli receive top-
down (i.e., frontal) support, which increases their chances of
winning the competition for selection and, hence, their impact
on overt behavior. Specifically, the components of the attention
network likely represent the neural components responsible for
coding the task-related stimuli, for maintaining a template of the
target, and for matching the former against the latter (Gross et al.,
2004). In contrast, insufficient top-down control could lead to
deficits in both the inhibition of distractors and the attenuation of
T1 processing or to a slower succession of stable states and a lack
of facilitation of T2 processing (Janson and Kranczioch, 2011).

Functional magnetic resonance imaging findings also
generally support the distribution of brain area function in
attention control. For instance, Marcantoni et al. (2003) observed
increased activation in the inferotemporal, lateral frontal, left
posterior parietal, and occipital cortex for T2 stimuli presented
during the AB window (Marcantoni et al., 2003). The fMRI
evidence thus far implies the involvement of a frontal-temporal-
parietal network in the AB. These higher cortical areas likely
modulate the activity in lower visual areas via iterative feedback
loops (Janson and Kranczioch, 2011).

Event-Related Potential Components
Relating to Behavioral Results
Our results also provide strong evidence in the time domain,
particularly, for the P3 component. The average amplitude was
smaller for T1-evoked P3 and yet larger for T2-evoked P3 in T2-
detected trials. This phenomenon could be observed in the frontal
and parietal regions. In line with our findings, the amplitude of
the P3 component evoked by T1 was found to be correlated with
the size of the AB (Shapiro et al., 2006). The P3 evoked by T2, on
the other hand, was shown to be reduced for undetected stimuli
compared with detected stimuli (Kranczioch et al., 2003). It has
been suggested that this differentiation is due to a competition
between neural processes devoted to the processing of the two
targets reflected in the P3 components (Sergent et al., 2005).
Since detected task-relevant stimuli nearly always generate a P3
response, a prediction that can be drawn from these studies is
that the competition for attention resources should be directly
reflected in the T1- and T2-induced P3 amplitudes.

According to the distribution of T1-evoked P3, we observed
a slightly right-lateralized frontal-parietal network, and in T2-
evoked P3, this network shifted to a more posterior region. This
distribution is consistent with a previous fMRI study of AB. For
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instance, Kranczioch et al. (2005) found that clusters in the right
and especially the left inferior parietal lobule (IPL), especially in
the left inferior frontal gyrus (IFG), and the left superior frontal
gyrus/anterior cingulate cortex (SFG/ACC) were related to T2
detection (Kranczioch et al., 2005).

Taken together, the image that emerges from the P3 results
suggests that whether the AB occurs is a result of attentional
control or allocation between T1 and T2. This pattern of the
control process began in the frontal area first and then shifted
into the central and parietal regions.

Event-Related Potential Components
Regression to Phase-Locking Value Pairs
Under the assumption that the P3 component induced by T1 and
T2 could represent the attention resources allocated to T1 and T2,
it is also reasonable to infer that P3 amplitudes are influenced by
preceding PLV activities. Thus, we performed linear regressions
between P3 amplitudes and preceding PLV pairs. In detail, we
analyzed the regression between PLV in the time window of
(−300, 0) and T1-induced P3, and the regression between PLV in
the time window of (0, 300) and T2-induced P3 in the alpha and
beta frequency bands. The results indicated that P3 amplitudes in
electrodes FCz, Cz, C2, and C4 could be significantly predicted by
preceding PLV activities. These functional PLV pairs were mainly
covered the frontal and central areas in the time window (−300,
0). In time window (0, 300), these PLV pairs extended to long-
range connections that covered the frontal and posterior regions
in the beta band.

Therefore, our attempt to explore the inner relationship
between PLV activity, P3 amplitudes, and behavior has proven
to be effective. The current results obtained from the three parts
could be combined into a whole system in which the former could
predict the latter. That is, whether a target (T2) could be detected
would already be determined before it appears because of the
preparation state of our brain, thus supporting the attention
control theory. Top-down attention control accounts offer an
important perspective to scrutinize the mechanism of our brain
for processing stimuli under attention-limited conditions, which
may also be applied to other fields of cognitive processes.

It should be acknowledged that there were limitations in our
study. First, we only had male participants in our study, although
there was little research reporting gender difference in the classic
AB task, this gender distribution will limit the generalizability
of the findings. Second, the number of our participants was
not much higher than the minimum standard of sample size.
Therefore, further research is needed to confirm and consolidate
the current results.

CONCLUSION

In summary, our results indicate that the phase synchronization
in alpha and beta frequency bands preceding T2 could predict
the behavioral performance in T2 detection. Additionally, the P3
components evoked by T1 and T2 could reflect the behavioral
outcomes and showed high consistency with previous studies.
These results supported that the AB is not the result of a
processing impairment in a single particular process or brain
area, but the consequence of a dynamic interplay between several
processes and/or parts of a neural network. Our findings suggest
an intriguing influence of the top-down attention control on
simple cognitive processes and provide a new effective way of
exploring the neural mechanism for this influence.
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