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Dynamic excitatory-inhibitory (E-I) balance is a paradigmatic mechanism invoked to

explain the irregular low firing activity observed in the cortex. However, we will show that

the E-I balance can be at the origin of other regimes observable in the brain. The analysis

is performed by combining extensive simulations of sparse E-I networks composed of

N spiking neurons with analytical investigations of low dimensional neural mass models.

The bifurcation diagrams, derived for the neural mass model, allow us to classify the

possible asynchronous and coherent behaviors emerging in balanced E-I networks with

structural heterogeneity for any finite in-degree K. Analytic mean-field (MF) results show

that both supra and sub-threshold balanced asynchronous regimes are observable in

our system in the limit N >> K >> 1. Due to the heterogeneity, the asynchronous

states are characterized at the microscopic level by the splitting of the neurons in to

three groups: silent, fluctuation, and mean driven. These features are consistent with

experimental observations reported for heterogeneous neural circuits. The coherent

rhythms observed in our system can range from periodic and quasi-periodic collective

oscillations (COs) to coherent chaos. These rhythms are characterized by regular or

irregular temporal fluctuations joined to spatial coherence somehow similar to coherent

fluctuations observed in the cortex over multiple spatial scales. The COs can emerge due

to two different mechanisms. A first mechanism analogous to the pyramidal-interneuron

gamma (PING), usually invoked for the emergence of γ -oscillations. The second

mechanism is intimately related to the presence of current fluctuations, which sustain

COs characterized by an essentially simultaneous bursting of the two populations.

We observe period-doubling cascades involving the PING-like COs finally leading to

the appearance of coherent chaos. Fluctuation driven COs are usually observable in

our system as quasi-periodic collective motions characterized by two incommensurate

frequencies. However, for sufficiently strong current fluctuations these collective rhythms

can lock. This represents a novel mechanism of frequency locking in neural populations

promoted by intrinsic fluctuations. COs are observable for any finite in-degreeK, however,

their existence in the limit N >> K >> 1 appears as uncertain.

Keywords: balanced spiking neural populations, sparse inhibitory-excitatory networks, asynchronous dynamics,

collective oscillations, neural mass model, quadratic integrate and fire neuron, structural heterogeneity, coherent

chaos
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1. INTRODUCTION

Cortical neurons are subject to a continuous bombardment
from thousands of presynaptic neurons, mostly pyramidal ones,
evoking postsynaptic potentials of sub-millivolt or millivolt
amplitudes (Destexhe and Paré, 1999; Bruno and Sakmann,
2006; Lefort et al., 2009). This stimulation would induce an
almost constant depolarization of the neurons leading to a
regular firing, However, cortical neurons fire quite irregularly
and with low firing rates (Softky and Koch, 1993). This apparent
paradox can be solved by introducing the concept of a balanced

network, where excitatory and inhibitory synaptic currents are
approximately balanced and the neurons are kept near their firing
threshold crossing it at random times (Shadlen and Newsome,
1994, 1998). However, the balance should naturally emerge in the

network without fine-tuning of the parameters and the highly
irregular firing observed in vivo should be maintained also for
a large number of connections (in-degree) K >> 1. This
is possible by considering a sparse excitatory-inhibitory (E-I)
neural network composed of N neurons and characterized by an
average in-degree K << N and by synaptic couplings scaling

as 1/
√
K (van Vreeswijk and Sompolinsky, 1996). This scaling

as well as many other key predictions of the theory developed
in (van Vreeswijk and Sompolinsky, 1996) have been recently
confirmed by experiments on a neural culture (Barral and Reyes,
2016). Furthermore, Barral and Reyes (2016) have shown that
the major predictions of the seminal theory (van Vreeswijk and
Sompolinsky, 1996) also hold under conditions far from the
asymptotic limits where K and N are large.

The dynamics usually observable in balanced neural networks
is asynchronous and characterized by irregular neural firing
joined to stationary firing rates (van Vreeswijk and Sompolinsky,
1996; Monteforte and Wolf, 2010; Renart et al., 2010; Litwin-
Kumar and Doiron, 2012; Ullner et al., 2020). However,
other asynchronous regimes characterized by sub-Poissonian
and super-Poissonian statistics have been reported in balanced
homogenous and heterogeneous networks (Lerchner et al.,
2006; Ullner et al., 2020). Furthermore, regular and irregular
collective oscillations (COs) have been shown to emerge in
balanced networks composed of rate models (van Vreeswijk
and Sompolinsky, 1996) and of spiking neurons (Brunel, 2000;
Ostojic, 2014; di Volo and Torcini, 2018; Ullner et al., 2018; Bi
et al., 2020). The balanced asynchronous irregular state has been
experimentally observed both in vivo and in vitro (Shu et al.,
2003; Haider et al., 2006) and dynamic balance of excitation and
inhibition is observable in the neocortex across all states of the
wake-sleep cycle, in both human and monkey (Dehghani et al.,
2016). However, this is not the unique balanced state observable
in neural systems. In particular, balancing of excitation and
inhibition appears to be crucial for the emergence of cortical
oscillations (Okun and Lampl, 2008; Isaacson and Scanziani,
2011; Le Van Quyen et al., 2016) as well as for the instantaneous
modulation of the frequency of gamma oscillations in the
hippocampus (Atallah and Scanziani, 2009).Moreover, balancing
of excitation and inhibition is essential for the generation of
respiratory rhythms in the brainstem (Ramirez and Baertsch,
2018) and the rhythmic activity of irregular firing motoneurons
in the spinal cord of the turtle (Berg et al., 2007, 2019).

In this work, we characterize in detail the asynchronous
regimes and the emergence of COs (population rhythms) in E-
I balanced networks with structural heterogeneity. In particular,
we consider sparse random networks of quadratic integrate-
and-fire (QIF) neurons (Ermentrout and Kopell, 1986) pulse
coupled via instantaneous post synaptic potentials. We compare
numerical findings with analytical results obtained in the mean-
field (MF) limit by employing an effective low-dimensional
neural mass model recently developed for sparse QIF networks
(Montbrió et al., 2015; di Volo and Torcini, 2018; Bi et al., 2020).

In the asynchronous regime, our analytical MF predictions
are able to reproduce the mean membrane potentials and the
population firing rates of the structurally heterogeneous network
for any finite K value. Furthermore, in the limit N >> K >> 1,
we analytically derive the asymptotic MF values of the population
firing rates and the effective input currents. This analysis shows
that the system always achieves balanced dynamics, whose supra
or sub-threshold nature is determined by the model parameters.
Detailed numerical investigations of the microscopic dynamics
allow identifying three different groups of neurons, whose
activity is essentially controlled by their in-degrees and by the
effective input currents.

In the balanced network, we have identified three types of
COs depending on the corresponding solution displayed by the
neural mass model. The first type, termed OP emerges in the MF
via a Hopf bifurcation (HB) from a stable focus solution. These
COs gives rise to collective chaos via a period-doubling sequence
of bifurcations. Another type of CO, already reported for pure
inhibitory networks (di Volo and Torcini, 2018), denoted as
OF corresponds in the MF to a stable focus characterized by
relaxation oscillations toward the fixed point which in the sparse
network become noise sustained oscillations due to fluctuations
in the input currents. The last type of COs identified in the
finite network are named OS and characterized by abnormally
synchronized dynamics among the neurons, and the high level
of synchronization prevents their representation in the MF
formulation (Montbrió et al., 2015).

OP and OS emerge as sustained oscillations in the network via
amechanism resembling that invoked for pyramidal-interneuron
gamma (PING) rhythms (Whittington et al., 2011) despite the
frequency of these oscillations is not restricted to the γ band.
Excitatory neurons start to fire followed by the inhibitory ones
and the peak of activity of the excitatory population precedes
that of the inhibitory one of a time delay 1t. Furthermore, 1t
tends to vanish when the amplitude of the current fluctuations in
the network increases. Indeed, for OF oscillations, which cannot
emerge in absence of current fluctuations, no delay has been
observed between the activation of excitatory and inhibitory
populations. The last important question that we tried to address
in our study was whether the COs, observable for any finiteK, are
still present in the limit N >> K >> 1.

The study is organized as follows. Section 2 is devoted to the
introduction of the network model and of the corresponding
effective neural mass model, as well as of the microscopic and
macroscopic indicators employed to characterize the neural
dynamics. In the same section, the stationary solutions for the
balanced neural mass model are analytically obtained as finite
in-degree expansion and their range of stability is determined.
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The macroscopic dynamical regimes emerging in our network
are analyzed in section 3. In particular, we report bifurcation
phase diagrams obtained from the neural mass model displaying
the possible dynamical states and network simulations. The focus
of this section is on the analysis of the asynchronous balanced
state for structurally heterogeneous networks and the emergence
of the different types of COs observable at finite in-degrees. A
discussion of the obtained results and conclusions are reported
in section 4.

2. MODELS AND DYNAMICAL
INDICATORS

2.1. Network Model
We consider two sparsely coupled excitatory and inhibitory
populations composed of N(e) and N(i) QIF neurons,
respectively (Ermentrout and Kopell, 1986). The evolution

equation for the membrane potentials v
(e)
j and v

(i)
j of the

excitatory and inhibitory neurons can be written as:

τmv̇
(e)
j =

(

v
(e)
j

)2
+ I(e) + 2τm

[

g(ee)
∑

l|t(n)
l

<t

ǫ
(ee)
jl

δ(t − t
(n)
l

)

−g(ei)
∑

k|t(m)
k

<t

ǫ
(ei)
jk

δ(t − t
(m)
k

)

]

(1a)

τmv̇
(i)
j =

(

v
(i)
j

)2
+ I(i) + 2τm

[

g(ie)
∑

l|t(n)
l

<t

ǫ
(ie)
jl

δ(t − t
(n)
l

)

−g(ii)
∑

k|t(m)
k

<t

ǫ
(ii)
jk

δ(t − t
(m)
k

)

]

(1b)

where τm = 20 ms is the membrane time constant that
we set identical for excitatory and inhibitory neurons, I(e)

(I(i)) is the external direct current (DC) acting on excitatory
(inhibitory) population, g(αβ) represents the synaptic coupling
strengths between post synaptic neurons in the population α

and pre synaptic ones in population β , with α,β ∈ {e, i}. The
elements of the adjacency matrices ǫ

(αβ)
jk

are equal to 1 (0) if

a connection from a pre synaptic neuron k of population β

toward a post synaptic neuron j of population α, exists (or

not). Furthermore, k
(αβ)
j =

∑

k ǫ
(αβ)
jk

is the number of pre

synaptic neurons in the population β connected to neuron j
in population α, or in other terms, its in-degree restricted to
population β . The emission of the n-th spike emitted by neuron

l of the population α occurs at time t
(n)
l

whenever the membrane

potential v
(α)
l

(t
(n)
l

−
) → ∞, while the reset mechanism is

modeled by setting v
(α)
l

(t
(n)
l

+
) → −∞ immediately after the

spike emission. The postsynaptic potentials are assumed to be δ-
pulses and the synaptic transmissions to be instantaneous. The

Equations (1) can be formally rewritten as

τmv̇
(e)
j =

(

v
(e)
j

)2
+ i

(e)
eff ,j

, τmv̇
(i)
j =

(

v
(i)
j

)2
+ i

(i)
eff ,j

;
(2)

where i
(e)
eff ,j

(i
(i)
eff ,j

) represents the instantaneous excitatory

(inhibitory) effective currents, which include the external
DC current and the synaptic currents due to the
recurrent connections.

We consider the neurons within the excitatory and inhibitory
populations as randomly connected, with in-degrees k(αα)

distributed according to a Lorentzian distribution

P(k(αα)) =
1

(αα)
k

(k(αα) − K(αα))2 + 1
(αα)
k

2
·
1

π
(3)

peaked at K(αα) and with a half-width half-maximum (HWHM)

1
(αα)
k

, this latter parameter measures the level of structural

heterogeneity in each population. For simplicity, we set K(ee) =
K(ii) ≡ K. Furthermore, we assume that also neurons from a
population α are randomly connected to neurons of a different
population β 6= α. However, in this case, we consider no
structural heterogeneity with in-degrees fixed to a constant value
K(ei) = K(ie) = K. We have verified that by considering Erdös-
Renyi distributed in-degrees K(ei) and K(ie) with average K does
not modify the observed dynamical behavior.

The DC current and the synaptic coupling are rescaled with

the median in degree as I(α) =
√
KI

(α)
0 and g(αβ) = g

(αβ)
0 /

√
K,

as done in previous studies to obtain a self-sustained balanced
dynamics for N >> K >> 1 (van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010; Litwin-Kumar and Doiron, 2012;
Kadmon and Sompolinsky, 2015). The structural heterogeneity

parameters are rescaled as 1
(αα)
k

= 1
(αα)
0

√
K in analogy to

Erdös-Renyi networks. The choice of the Lorentzian distribution
for the k(αα) is needed in order to obtain an effective MF
description for the microscopic dynamics (di Volo and Torcini,
2018; Bi et al., 2020) as detailed in the next section.

The microscopic activity can be analyzed by considering the
inter-spike interval (ISI) distribution as characterized by the
coefficient of variation cvi for each neuron i, which is the ratio
between the SD and the mean of the ISIs associated with the
train of spikes emitted by the considered neuron. To characterize
the macroscopic dynamics of each population α, we measure

the average coefficient of variation CV(α) =
∑N(α)

i=1 cvi/N
(α), the

mean membrane potential V(α)(t) =
∑N(α)

i=1 v
(α)
i (t)/N(α), and

the population firing rate R(α)(t), corresponding to the number
of spikes emitted within the population α per unit of time and
per neuron.

Furthermore, the level of coherence in the neural activity of
the population α can be quantified in terms of the following
indicator (Golomb, 2007),

ρ(α) =
(

σ 2
V(α)

∑N(α)

i=1 σ 2
i /N(α)

)1/2

(4)

Frontiers in Systems Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 752261

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Bi et al. Dynamics of Balanced Spiking Networks

where σV(α) is the SD of the mean membrane potential, σ 2
i =

〈

(v
(α)
i )2

〉

−
〈

v
(α)
i

〉2
and 〈· 〉 denotes a time average. A perfect

synchrony corresponds to ρ(α) = 1, while an asynchronous

dynamics to a vanishing small ρ(α) ≈ O(1/
√
N(α)).

The frequencies associated with collective motions can be
identified by measuring the power spectra S(ν) of the mean
membrane potentials V(t) of the whole network. In the case of
a periodic motion, the position of the main peak νCO represents
the frequency of the COs, while for quasi-periodic motions, the
spectrum is characterized by many peaks that can be obtained
as a linear combination of two fundamental frequencies (ν1, ν2).
The spectra obtained in the present case, always exhibit a
continuous background due to the intrinsic fluctuations present
in the balanced network. The power spectra have been obtained
by calculating the temporal Fourier transform of V(t) sampled
at time intervals of 10 ms. Time traces composed of 10,000
consecutive intervals have been considered to estimate the
spectra, which are obtained at a frequency resolution of 1ν =
0.01 Hz. Finally, the power spectra have been averaged over five
independent realizations of the random network.

The network dynamics are integrated by employing an Euler
scheme with time step dt = 0.0001 ms, while time averages and
fluctuations are usually estimated on time intervals Ts ≃ 100
s, after discarding transients Tt ≃ 10 s. Usually, we consider
networks composed of N(e) = 10, 000 excitatory and N(i) =
2, 500 inhibitory neurons.

2.2. Effective Neural Mass Model
In this sub-section, we derive a low dimensional effective neural
mass formulation for the spiking network (Equation 1) by
following Montbrió et al. (2015). In such an article, the authors
obtained an exactMFmodel for a globally coupled heterogeneous
population of QIF neurons by generalizing to neural systems
using a reduction methodology previously developed for phase-
coupled oscillators by Ott and Antonsen (2008). In particular,
the neural mass model can be obtained by performing a rigorous
mathematical derivation from the original spiking network in the
limit N → ∞ by assuming that the heterogeneity present in the
network, which can be either neuronal excitabilities or synaptic
couplings, are distributed as Lorentzians. This MF reduction
methodology gives rise to a neural mass model written in terms
of only two collective variables: the mean membrane potential V
and the instantaneous population rate R. For sufficiently large
network size, the agreement between the simulation results and
the neural mass model is impressive as shown in Montbrió et al.
(2015) and in several successive publications.

The detailed derivation of the neural mass models from the
corresponding spiking networks can be found in Montbrió et al.
(2015), in this study, we limit to report its expression for a fully
coupled homogeneous network of QIF neurons with synaptic
couplings randomly distributed according to a Lorentzian:

τmṘ = 2RV +
Ŵ

π
R (5a)

τmV̇ = V2 + I + ḡτmR− (πτmR)
2 (5b)

where ḡ is the median and Ŵ the HWHM of the Lorentzian
distribution of the synaptic couplings.

Such formulation can be applied to the random sparse
network studied in this article, in this paper. Indeed, as shown
for a single sparse inhibitory population (di Volo and Torcini,
2018; Bi et al., 2020), the quenched disorder associated to the in-
degree distribution can be rephrased in terms of random synaptic
couplings. Namely, each neuron i in population α is subject to

currents of amplitude g
(αβ)
0 k

(αβ)
i R(β)/(

√
K) proportional to their

in-degrees k
(αβ)
i , with β ∈ {e, i}. Therefore, we can consider

the neurons as fully coupled but with random values of the

couplings distributed as Lorentzian of median g
(αβ)
0

√
K and

HWHM g
(αβ)
0 1

(αβ)
0 .

The neural mass model corresponding to the spiking network
(Equation 1) can be written as follows:

τmṘ
(e) = R(e)

[

2V(e) + g
(ee)
0

1
(ee)
0

π

]

(6a)

τmV̇
(e) =

[

V(e)
]2

−
[

πR(e)τm

]2

+
√
K
[

I
(e)
0 + (g

(ee)
0 R(e) − g

(ei)
0 R(i))τm

]

(6b)

τmṘ
(i) = R(i)

[

2V(i) + g
(ii)
0

1
(ii)
0

π

]

(6c)

τmV̇
(i) =

[

V(i)
]2

−
[

πR(i)τm

]2

+
√
K
[

I
(i)
0 + (g

(ie)
0 R(e) − g

(ii)
0 R(i))τm

]

; (6d)

where we have set 1
(ei)
0 = 1

(ie)
0 = 0, since we have assumed

that the connections among neurons of different populations are
random but with a fixed in-degree K(ei) = K(ie) = K.

2.2.1. Stationary Solutions

The stationary solutions {V(e)
,V

(i)
,R

(e)
,R

(i)} of Equation (6) can
be explicitly obtained for the mean membrane potentials as

V
(e) = −

g
(ee)
0 1

(ee)
0

2π
, V

(i) = −
g
(ii)
0 1

(ii)
0

2π
; (7)

while the instantaneous population rates are the solutions of the
following quadratic system

g
(ee)
0 R

(e)
τm − g

(ei)
0 R

(i)
τm = −I

(e)
0 + ε

{

[

πR
(e)

τm

]2
−
[

V
(e)
]2
}

(8a)

g
(ie)
0 R

(e)
τm − g

(ii)
0 R

(i)
τm = −I

(i)
0 + ε

{

[

πR
(i)

τm

]2
−
[

V
(i)
]2
}

(8b)

where ε = 1/
√
K is a smallness parameter taking in to account

finite in-degree corrections. It is interesting to notice that the

parameters controlling the structural heterogeneity 1
(ii)
0 and

1
(ee)
0 fix the stationary values of the mean membrane potentials
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reported in Equation (7). The solutions of Equation (8) can
be exactly obtained and the associated bifurcations analyzed
by employing the software XPP AUTO developed for orbit
continuation (Ermentrout, 2007).

For sufficiently large K, one can obtain analytic
approximations of the solution of Equation (8) by expanding the
population rates as follows:

R
(α) = R

(α)
0 + εR

(α)
1 + ε2R

(α)
2 + ε3R

(α)
3 + . . . α ∈ {e, i}, (9)

by inserting these expressions in Equation (8), and finally by
solving order by order in ε.

The solutions at any order can be written as follows:

R
(e)
k τm =

N
(e)
k
g
(ii)
0 − N

(i)
k
g
(ei)
0

g
(ei)
0 g

(ie)
0 − g

(ee)
0 g

(ii)
0

,

R
(i)
k τm =

N
(e)
k
g
(ie)
0 − N

(i)
k
g
(ee)
0

g
(ei)
0 g

(ie)
0 − g

(ee)
0 g

(ii)
0

; (10)

where,

N
(α)
0 = I

(α)
0 , N

(α)
1 =

[

V
(α)
]2

−
[

πR
(α)
0 τm

]2
(11a)

N
(α)
2j = −2 [πτm]

2

j
∑

k=1

[

R
(α)
k−1R

(α)
2j−k

]

(11b)

N
(α)
2j+1 = −2 [πτm]

2











j
∑

k=1

R
(α)
k−1R

(α)
2j+1−k



+
1

2

[

R
(α)
j

]2







for j ≥ 1 (11c)

The systems (Equation 10) with parameters given by Equation
(11) can be resolved recursively for any order and the final
solution obtained from the expression (Equation 9). The zeroth-
order approximation, valid in the limit K → ∞, corresponds
to the usual solution found for rate models in the balanced state
(van Vreeswijk and Sompolinsky, 1996; Rosenbaum and Doiron,
2014), such solution is physical whenever one of the following
inequalities is satisfied

I
(e)
0

I
(i)
0

>
g
(ei)
0

g
(ii)
0

>
g
(ee)
0

g
(ie)
0

,
I
(e)
0

I
(i)
0

<
g
(ei)
0

g
(ii)
0

<
g
(ee)
0

g
(ie)
0

; (12)

which ensure the positive sign of R
(e)
0 and R

(i)
0 . The zeroth-order

solution does not depend on the structural heterogeneity, since
the ratio 1(αα)/K vanishes in the limit K → ∞. It should be
stressed that this ratio does not correspond to the coefficient
of variation introduced in Landau et al. (2016) to characterize
the in-degree distribution. This is because we are considering
a Lorentzian distribution, where the average and the SD are
not even defined. Moreover, already the first-order corrections

depend on 1
(αα)
0 .

To characterize the level of balance in the system, one usually

estimates the values of the effective input currents i
(e)
eff ,j

and i
(i)
eff ,j

driving the neuron dynamics. These at a population level can be
rewritten as

I
(e)
eff

=
√
K
[

I
(e)
0 + τm(g

(ee)
0 R(e) − g

(ei)
0 R(i))

]

,

I
(i)
eff

=
√
K
[

I
(i)
0 + τm(g

(ie)
0 R(e) − g

(ii)
0 R(i))

]

. (13)

In a balanced state, these quantities should not diverge with
K, instead, they should approach some constant value. For an
asynchronous state we can estimate analytically, within our MF
formulation, the values of the effective currents in the limit K →
∞. These read as

I(e)a = τm

[

g
(ee)
0 R

(e)
1 − g

(ei)
0 R

(i)
1

]

,

I(i)a = τm

[

g
(ie)
0 R

(e)
1 − g

(ii)
0 R

(i)
1

]

. (14)

It should be noticed that these asymptotic values depend on the
first-order corrections to the balanced solution (Equation 10).

Therefore, they depend not only on the synaptic couplings g
(αβ)
0

and on the external DC currents but also on the parameters1
(αα)
0

controlling the structural heterogeneities.

Depending on the parameter values, the currents I
(α)
a can

be positive or negative, thus, indicating a balanced dynamics
where most parts of the neurons are supra or below the
threshold, respectively. Usually, in order to obtain a stationary
state characterized by a low rate and a Poissonian statistic, as
observed in the cortex, one assumes that the excitation and
inhibition nearly cancel. So that the mean membrane potential
remains slightly below the threshold, and the neurons can fire
occasionally due to the input current fluctuations (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000). However, as pointed out
in Lerchner et al. (2006), this is not the only possible scenario
for a balanced state. In particular, the authors have developed
a self-consistent MF theory for balanced Erdös-Renyi networks
made of heterogeneous Leaky Integrate-and-Fire (LIF) neurons.
In this context, they have shown that Poisson-like dynamics
are visible only at intermediate synaptic couplings. While mean
driven dynamics are expected for low couplings, and at large
couplings bursting behaviors appear in the balanced network.
Recently, analogous dynamical behaviors have been reported also
for a purely inhibitory heterogeneous LIF network (Angulo-
Garcia et al., 2017). These findings are consistent with the
results in Lerchner et al. (2006), where the inhibition is indeed
predominant in the balanced regime.

2.2.2. Lyapunov Analysis
To analyze the linear stability of generic solutions of Equation (6),
we have estimated the corresponding Lyapunov spectrum
(LS) {λk} (Pikovsky and Politi, 2016). This can be done by
considering the time evolution of the tangent vector δ =
{

δR(e), δV(e), δR(i), δV(i)
}

, that is ruled by the linearization of the
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Equation (6), namely

τmδṘ(e) =
[

2V(e) + g
(ee)
0

1
(ee)
0

π

]

δR(e) + 2R(e)δV(e) (15a)

τmδV̇(e) = 2V(e)δV(e) − 2(πτm)
2R(e)δR(e)

+
√
Kτm

[

g
(ee)
0 δR(e) − g

(ei)
0 δR(i)

]

(15b)

τmδṘ(i) =
[

2V(i) + g
(ii)
0

1
(ii)
0

π

]

δR(i) + 2R(i)δV(i) (15c)

τmδV̇(i) = 2V(i)δV(i) − 2(πτm)
2R(i)δR(i)

+
√
Kτm

[

g
(ie)
0 δR(e) − g

(ii)
0 δR(i)

]

. (15d)

In this case, the LS is composed of four Lyapunov exponents
(LEs) {λk} with k = 1, . . . , 4, which quantify the average
growth rates of infinitesimal perturbations along the orthogonal
manifolds. The LEs can be estimated as follows:

λk = lim
t→∞

1

t
log

|δk(t)|
|δk(0)|

, (16)

where the tangent vectors δk aremaintained ortho-normal during
the time evolution by employing a standard technique introduced
in Benettin et al. (1980). The autonomous system will be chaotic
for λ1 > 0, while a periodic (two frequency quasi-periodic)
dynamics will be characterized by λ1 = 0 (λ1 = λ2 = 0) and
a fixed point by λ1 < 0.

In order to estimate the LS for the neural mass model, we have
integrated the direct and tangent space evolution with a Runge-
Kutta 4th order integration scheme with dt = 0.01 ms, for a
duration of 200 s, after discarding a transient of 10 s.

2.2.3. Linear Stability of Stationary Solutions
The linear stability of the stationary solutions

{V(e)
,V

(i)
,R

(e)
,R

(i)} can be analyzed by solving the eigenvalue
problem for the linear Equations (15) estimated for
stationary values of the mean membrane potentials and of
the population firing rates. This approach gives rise to a fourth-
order characteristic polynomial of the complex eigenvalues

3(k) = 3
(k)
R + i3

(k)
I with k = 1, . . . , 4. The stability of the fixed

point is controlled by the maximal 3
(k)
R , whenever it is positive

(negative), the stationary solution is unstable (stable). The nature

of the fixed point is determined by 3
(k)
I , if the imaginary parts

of the eigenvalues are all zero, we have a node, otherwise a
focus. Due to the fact that the coefficients of the characteristic
polynomial are real, the eigenvalues are real or if complex they

appear in complex conjugates couples 3
(j)
R ± i3

(k)
I . Therefore,

the relaxation toward the fixed point is characterized by one

or two frequencies νk = 3
(k)
I /(2π). These latter quantities, as

discussed in detail in the following, can give good predictions for
the frequencies νCO of fluctuation driven COs observable for the
same parameters in the network dynamics.

In the limit K >> 1, we can approximate the linear stability
(Equations 15) as follows:

τmδṘ(e) = 2R
(e)
0 δV(e) (17a)

τmδV̇(e) =
√
Kτm

[

g
(ee)
0 δR(e) − g

(ei)
0 δR(i)

]

(17b)

τmδṘ(i) = 2R
(i)
0 δV(i) (17c)

τmδV̇(i) =
√
Kτm

[

g
(ie)
0 δR(e) − g

(ii)
0 δR(i)

]

; (17d)

where we have considered the zeroth-order approximation for

the population rates R
(e)
0 and R

(i)
0 .

In this case, the complex eigenvalues 3(k) are given by the
following expression:

[

3(k)
]2

=
√
K

τm

[

(

g
(ee)
0 R

(e)
0 − g

(ii)
0 R

(i)
0

)

±
√

(

g
(ee)
0 R

(e)
0 + g

(ii)
0 R

(i)
0

)2
− 4g

(ei)
0 g

(ie)
0 R

(e)
0 R

(i)
0

]

. (18)

From Equation (18), it is evident that 3(k) ∝ (K)1/4, and by

assuming I
(i)
0 ∝ I

(e)
0 , as we will do in this study, we also have

that 3(k) ∝ (I
(e)
0 )1/2. Therefore, for a focus solution, we will have

the following scaling relation for the relaxation frequencies for
sufficiently large K:

νRk =
3

(k)
I

2π
∝
√

I
(e)
0 K1/2 ; (19)

This scaling is analogous to that found for purely inhibitory
QIF networks in di Volo and Torcini (2018). In van Vreeswijk
and Sompolinsky (1996), it has been found that the eigenvalues,
characterizing the stability of the asynchronous state, scale
proportionally to

√
K, therefore, the convergence (divergence)

from the stationary stable (unstable) solution is somehow slower
with K in our model. This is due to the presence in our MF of an
extra macroscopic variable, the mean membrane potential, with
respect to the usual rate models.

3. RESULTS

3.1. Phase Diagrams
In this sub-section, we will investigate the possible dynamical
regimes emerging in our model by employing its neural mass
formulation. In particular, the dynamics of the neural mass
model (Equation 6) take place in a four-dimensional space
{

R(e),V(e),R(i),V(i)
}

and it depends on nine parameters, namely

on the four synaptic coupling strengths
{

g
(ee)
0 , g

(ei)
0 , g

(ii)
0 , g

(ie)
0

}

,

the two external stimulation currents
{

I
(e)
0 , I

(i)
0

}

, the median

in-degree K, and the HWHM of the two distributions of the

in-degrees
{

1
(ee)
0 ,1

(ii)
0

}

.

However, in order to reduce the space of parameters to
investigate and at the same time to satisfy the inequalities
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(Equation 12) required for the existence of a balanced state in the

large K limit, we fix the inhibitory DC current as I
(i)
0 = I

(e)
0 /1.02

and the synaptic couplings as g
(ee)
0 = 0.27, g

(ii)
0 = 0.953939,

g
(ie)
0 = 0.3, and g

(ei)
0 = 0.96286 analogously to what was done

in Monteforte and Wolf (2010). Therefore, we are left with four

control parameters, namely 1
(ee)
0 , 1

(ii)
0 , I

(e)
0 , and K, that we will

vary to investigate the possible dynamical states.
Three bidimensional bifurcation diagrams for the neural mass

model (Equation 6) are reported in Figure 1 for the couple of

parameters (I
(e)
0 ,1

(ee)
0 ), (K,1

(ee)
0 ), and (1

(ii)
0 ,1

(ee)
0 ). From the

bifurcation analysis, we have identified five different dynamical
states for the excitatory population: namely, (I) an unstable focus;
(II) a stable focus coexisting with an unstable limit cycle (LC);
(III) a stable node; (IV) a stable limit cycle coexisting with
an unstable focus; and (V) a chaotic regime. For the analysis
reported in the following, it is important to remark that the
stable foci are usually associated with four complex eigenvalues
arranged in complex conjugate couples, therefore, the relaxation
toward a stable focus is characterized by two frequencies (ν1, ν2)
corresponding to the complex parts of the eigenvalues. In region
(III), the macroscopic fixed point is characterized by two real
eigenvalues and a couple of complex conjugated ones. Thus, the
relaxation toward the macroscopic node is, in this case, guided
by a single relaxation frequency. The inhibitory population,
reveals the same bifurcation structure as the excitatory one, apart
from an important difference: the inhibitory population never
displays stable nodes. Therefore, the region (III) for the inhibitory
population is also a region of type (II).

As shown in Figures 1A,B, for fixed 1
(ii)
0 and for low values

of the structural heterogeneity 1
(ee)
0 and of the excitatory DC

current I
(e)
0 , one observes a stable node (III) that becomes a stable

focus (II) by increasing 1
(ee)
0 , these transitions are signaled as

green solid lines in Figure 1. By further increasing the degree of

heterogeneity 1
(ee)
0 , the stable focus gives rise to COs (IV) via

a super-critical HB (blue solid lines). Depending on the values

of K and I
(e)
0 , one can have the emergence of chaotic behaviors

(V) via a period doubling (PD) cascade (yellow solid lines). For

sufficiently large 1
(ee)
0 , the COs disappear via a saddle-node (SN)

bifurcation of limit cycles (LC) (red solid lines) and above the SN
line, the only remaining solution is an unstable focus (I).

As shown in Figure 1A, for fixed structural heterogeneities,

the increase of I
(e)
0 leads to the disappearance of the stable focus

(II) via a sub-critical HB (dashed blue line). The dependence
of the observed MF solutions on the in-degree K is reported in

Figure 1B for a current I
(e)
0 = 0.001, and it is not particularly

dramatic apart from for the emergence of a chaotic region (V)
from a CO regime (IV).

In order to observe the emergence of COs (IV) from the
destabilization of a node solution (III), we should vary the

structural inhibitory heterogeneity 1
(ii)
0 , as shown in Figure 1C.

Indeed, for sufficiently low 1
(ii)
0 and 1

(ee)
0 , we can observe a

super-critical bifurcation line from a node to a stable LC. From
this analysis, it emerges that the excitatory heterogeneity has
an opposite effect with respect to the inhibitory one, indeed

by increasing 1
(ee)
0 , the value of ρ(e) increases indicating the

presence of more synchronized COs. This effect is due to

the fact that the increase of 1
(ee)
0 leads to more and more

neurons with large k
(ee)
j >> K, therefore, receiving higher and

higher levels of recurrent excitation. These neurons are definitely
supra-threshold and drive the activity of the network toward
coherent behaviors.

In order to understand the limits of our MF formulation, it is
of particular interest to compare the network simulations with
the MF phase diagram. To this aim, we report in Figure 1C,
the coherence indicator ρ(e) (Equation 4) estimated from the
network dynamics. The indicator ρ(e) reveals that no COs are
present in the region (III), where the MF displays a stable
node, however, COs emerge in all the other MF regimes for

sufficiently low 1
(ii)
0 < 1. The presence of COs is expected

from the MF analysis only in the regions (IV) and (V), but
neither in (II) where the MF forecasts the existence of a stable
focus nor in (I) where no stable solutions are envisaged. The
origin of the discrepancies among the MF and the network
simulations in the region (II) is due to the fact that the
considered neural mass neglects the dynamical fluctuations in
the input currents present in the original networks, which
can give rise to noise induced COs (Goldobin et al., 2021).
However, as shown in di Volo and Torcini (2018) and Bi
et al. (2020) for purely inhibitory populations, the analysis of
the neural mass model can still give relevant information on
the network dynamics. In particular, the frequencies of the
fluctuation induced COs observable in the network simulations
can be well estimated from the frequencies (ν1, ν2) of the
relaxation oscillations toward the stable MF focus. The lack
of agreement between MF and network simulations in the
region (I) is due to finite size effects, indeed in this case, the
system tends to fully synchronize. Therefore, in the network, one
observes highly synchronized COs characterized by population
firing rates that diverge for increasing K and N and the MF is
unable to reproduce these unrealistic solutions (Montbrió et al.,
2015).

On the basis of these observations, we can classify the COs
observable in the network in three different types accordingly to
the corresponding MF solutions: OP, when in the MF we observe
periodic, quasi-periodic, or chaotic collective solutions in regions
(IV) and (V); OF, when the MF displays relaxation oscillations
toward the stable focus in regions (II) and (III), that in the sparse
network become noise sustained oscillations due to fluctuations
in the input currents; OS, when the MF fully synchronizes as in
region (I).

In the following sub-sections, we will analyze the macroscopic
dynamics of the E-I network of QIF neurons in order to test the
predictions of the effective neural mass mode for asynchronous
and coherent dynamics. In this latter case, we will focus on the
three types of identified COs: namely, OP, OF, and OS. These can
manifest as periodic, quasi-periodic, and chaotic solutions as we
will see by examining two main scenarios indicated as dashed
horizontal lines in Figure 1A corresponding to the transition
to chaos (black dashed line) and the emergence of abnormal
synchronization from a stable focus (purple dashed line).
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FIGURE 1 | Bifurcation diagrams of the neural mass model. The bifurcation diagrams concern the dynamical state exhibited by the excitatory population in the

bidimensional parameter spaces (I
(e)
0 ,1

(ee)
0 ) (A), (K,1

(ee)
0 ) (B), and (1

(ii)
0 ,1

(ee)
0 ) (C). The regions marked by Roman numbers correspond to the following collective

solutions: (I) an unstable focus; (II) a stable focus coexisting with an unstable limit cycle (LC); (III) a stable node; (IV) an unstable focus coexisting with a stable LC; (V) a

chaotic dynamics. The green solid line separates the regions with a stable node (III) and a stable focus (II). The blue solid (dashed) curve is a line of super-critical

(sub-critical) Hopf bifurcations (HBs), and the red one of saddle-node (SN) bifurcations of LCs. The yellow curve denotes the period doubling (PD) bifurcation lines. In

(C), we also report the coherence indicator ρ (e) (Equation 4) estimated from the network dynamics with N(e) =10,000 and N(i) = 2,500. The dashed lines in (A) indicate

the parameter cuts we will consider in Figures 4, 5 (black) and Figure 7 (purple), while the open circles in (A,B) denote the set of parameters employed in Figure 11.

In the three panels, the inhibitory DC current and the synaptic couplings are fixed to I
(i)
0 = I

(e)
0 /1.02, g

(ee)
0 = 0.27, g

(ii)
0 =0.953939, g

(ie)
0 = 0.3, g

(ei)
0 =0.96286; other

parameters: (A) K =1,000, 1
(ii)
0 = 0.3, (B) I

(e)
0 =0.001, 1

(ii)
0 = 0.3, (C) K = 1,000, and I

(e)
0 = 0.1.

3.2. Asynchronous Regimes
We will first consider a situation where the network dynamics
remains asynchronous for any value of the median in-
degree K, this occurs for sufficiently high structural inhibitory

heterogeneities 1
(ii)
0 and external DC currents as shown in

Figures 1B,C for E-I networks and as reported in di Volo
and Torcini (2018) for purely inhibitory populations. If the
population dynamics are asynchronous, we expect that at an
MF level, the system will converge toward a stationary state
corresponding to a stable equilibrium. Therefore, we have
compared the results of the network simulations with the

stationary rates (R
(e)
,R

(i)
) solutions of Equation (6). As shown

in Figures 2A,B, the macroscopic activity of the excitatory and
inhibitory populations is well reproduced by the fixed point
solutions (Equation 8) in a wide range of values of the in-degrees
10 ≤ K ≤ 104. This is particularly true for the inhibitory
population, while at low K < 100, the excitatory firing rate is

slightly underestimated by the macroscopic solution R
(e)
. Due

to our choice of parameters, the average inhibitory firing rate is
larger than the excitatory one for K > 100. This is consistent
with experimental data reported for the barrel cortex of behaving
mice (Gentet et al., 2010) and other cortical areas (Mongillo et al.,
2018). Moreover, the rates have a non-monotonic behavior with
K with a maximum at K ≃ 450 (K ≃ 2,500) for excitatory
(inhibitory) neurons. As expected, the balanced state solutions

R
(e)
0 = 3.18 Hz and R

(i)
0 ≃ 11.28 Hz (dashed horizontal lines) are

approached only for sufficiently large K >> 1. In Figures 1A,B

are reported also the first (second) order approximation R
(e)
0 +

εR
(e)
1 (R

(e)
0 + εR

(e)
1 + ε2R

(e)
2 ) given by Equation (10). These

approximations reproduce quite well the complete solutions
already at K ≥ 104.

Let us now consider the effective input currents (Equation
13), these are reported in Figure 2C vs. the median in-degree.

As expected, for increasing K, the MF estimations of the
effective currents (solid lines) converge to the asymptotic

values I
(e)
a ≃ 0.0284 and I

(i)
a ≃ 0.4791 (dashed lines) for

our choice of parameters. For the excitatory population, the
asymptotic value of the effective input current is essentially
zero, while for the inhibitory population it is positive. These
results suggest that for the considered choice of parameters
the dynamics of both populations will be balanced, since the

quantities I
(e)
a and I

(i)
a do not diverge with K, however, at

a macroscopic level, the excitatory population will be at the
threshold, while the inhibitory one will be supra-threshold. For

comparison, we have estimated I
(α)
eff

also from the direct the

network simulations (circles) for 16 ≤ K ≤ 16,384. These
estimations disagree with the MF results already for K > 1,000.
This is despite the fact that the population firing rates in the
network are very well captured by the MF estimations at large
K, as shown in Figures 2A,B. These large differences in the
effective input currents are the effect of small discrepancies at
the level of firing rates enhanced by the multiplicative factor√
K appearing in Equations (13). However, from the network

simulations, we observe that the effective currents approach

values smaller than the asymptotic ones I
(e)
a and I

(i)
a obtained

from the neural mass model. In particular, despite the fact
that from finite K simulations, it is difficult to extrapolate the

asymptotic behaviors, it appears that I
(e)
eff

approaches a small

negative value for K >> 1, while I
(i)
eff

converges to some

finite positive value. In the following, we will see the effect of
these different behaviors on microscopic dynamics. The origin
of the reported discrepancies should be related to the presence
of current fluctuations in the network that are neglected in the
MF formulation.

The relevance of the current fluctuations for the network
dynamics can be appreciated by estimating their amplitudes
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FIGURE 2 | Asynchronous dynamics: Instantaneous population rate R(e) (R(i))

of excitatory (inhibitory) neurons in function of the median in-degree K are

shown in (A,B). The effective input currents I
(e)
eff (I

(i)
eff ) given by Equations (13) are

reported in (C) and the fluctuations of the input currents 1I
(e)
eff (1I

(i)
eff ), as

obtained from Equations (20), in (D). Red (blue) color refers to excitatory

inhibitory population. The solid continuous lines represent the value obtained

by employing the exact MF solutions R
(x)

of Equation (8), the dotted

(dash-dotted) lines correspond to the first (second) order approximation

R
(x)

0 + εR
(x)

1 (R
(x)

0 + εR
(x)

1 + ε2R
(x)

2 ) and the dashed horizontal lines to the

zeroth-order one R
(x)

0 in (A,B,D), and to I
(x)
a in (C) with x = e, i. The circles

correspond to data obtained from numerical simulations of N(e) = N(i) =10,000

neurons for K < 4,096, N(e) = N(i) =20,000 for K =4,096,8,192 and

N(e) = N(i) =30,000 for K > 8, 192, averaging the population rates over a

window of T = 40 s, after discarding a transient of T = 60 s. The error bars in

(A,B) are obtained as the SD (over the time window T ) of the population rates,

while the average CV of neurons is around 0.15 for all the reported

simulations. Synaptic couplings and the ratio between the currents are fixed as

stated in sub-section 3.1, other parameters are 1
(ii)
0 = 1, 1

(ee)
0 = 2.5, and

I
(e)
0 = 0.2. The values of the asymptotic solutions (dashed lines) are : in (A,B)

R
(e)

0 = 3.18 Hz and R
(i)

0 = 11.28 Hz, respectively; in (C) I
(e)
a = 0.0284 and

I
(i)
a ≃ 0.4791; in (D) 1I

(e)
eff = 0.4623 and 1I

(i)
eff = 0.4593.

within a Poissonian approximation, as follows

1I
(e)
eff

=

√

τm

[

(

g
(ee)
0

)2
R(e) +

(

g
(ei)
0

)2
R(i)
]

1I
(i)
eff

=

√

τm

[

(

g
(ie)
0

)2
R(e) +

(

g
(ii)
0

)2
R(i)
]

(20)

These have been evaluated by assuming that each neuron receives
on average K excitatory and inhibitory spike trains characterized
by Poissonian statistics with average rates R(e) and R(i). However,
we have neglected in the above estimation the variability of
the in-degrees of each neuron. As shown in Figure 2D, these
fluctuations are essentially identical for excitatory and inhibitory
neurons and coincide with the MF results. In the limit K >>

1, they converge to the asymptotic values 1I
(e)
eff

≃ 0.4623 and

1I
(i)
eff

≃ 0.4593 (green dashed lines). It is evident that already for

K > 1,000, the amplitudes of the fluctuations are of the same
order or larger than the effective input currents. Thus, suggesting
that the fluctuations have indeed a relevant role in determining

the network dynamics and that one would observe Poissonian

or sub-Poissonian dynamics for the neurons, whenever I
(α)
a is

sub-threshold or supra-threshold (Lerchner et al., 2006).
In order to understand how the in-degree heterogeneity

influences the network dynamics at a microscopic level, we
examine the dynamics of active neurons in the function of their

total in-degree k
(tot)
j . This is defined for excitatory (inhibitory)

neurons as k
(tot)
j = k

(ee)
j + k

(ei)
j (k

(tot)
j = k

(ii)
j + k

(ie)
j ).

Furthermore, a neuron is considered as active if it has fired at
least once during the whole simulation time Tt + Ts = 100 s,
therefore, if it has a firing rate larger than 0.01 Hz. As shown
in Figures 3A,B, the probability distribution function (PDF) of

active neurons is skewed toward values k
(tot)
j > 2K (k

(tot)
j < 2K)

for excitatory (inhibitory) neurons. These results reflect the fact
that the excitatory (inhibitory) neurons with low (high) recurrent

in-degrees k
(ee)
j << K (k

(ii)
j >> K) are driven below the

threshold by the inhibitory activity, that is predominant in the

network since R(i) > R(e), g
(ei)
0 > g

(ee)
0 , and g

(ii)
0 > g

(ie)
0 . The

number of silent neurons for K >1,024 is of the order of 6-
10% for both inhibitory and excitatory populations, in agreement
with experimental results for the barrel cortex of mice (O’Connor
et al., 2010), where a fraction of 10% of neurons was identified
as silent with a firing rate slower than 0.0083 Hz. It should be
remarked that all the population averages we report include the
silent neurons.

Let us now examine how the firing rates of active neurons
will modify by increasing the value of the median in-degree K.
The single neuron firing rates as a function of their total in-

degrees k
(tot)
j are reported in Figures 3C,D for K =1,024, 4,096

and 16,384. A common characteristic is that the bulk neurons,
those with k

(tot)
j ≃ 2K, tend to approach the firing rate values

(R
(e)
0 ,R

(i)
0 ) (magenta dashed lines) corresponding to the expected

solutions for a balanced network in the limit N >> K → ∞
(van Vreeswijk, 1996). This is confirmed by the analysis of their
coefficient of variations cvj, whose values are of order one, as
expected for fluctuation driven dynamics. On the other hand,

the outlier neurons, i.e., those with k
(tot)
j far from 2K, are all

characterized by low values of the coefficient of variation cvj
indicating a mean driven dynamics. However, there is a striking
difference between excitatory and inhibitory neurons. For the
excitatory ones, we observe that the firing rates of the outliers

with k
(tot)
j >> 2K decrease for increasing K, while for the

inhibitory population the increase of K leads to the emergence

of outliers at k
(tot)
j << 2K with higher and higher firing rates

(refer to the inset in Figure 3D). This difference can be explained

by the different values measured for I
(e)
eff

and I
(i)
eff

in the network

(refer to Figure 2C). The increase of K leads for the excitatory
(inhibitory) population to the emergence of neurons with very

large k
(ee)
j >> K (very small k

(ii)
j << K) whose dynamics

should be supra-threshold. However, this is compensated in the

excitatory case by the rapid drop of I
(e)
eff

toward zero or negative

values, while for the inhibitory population I
(i)
eff

remains positive

even at the largest K we have examined.
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FIGURE 3 | Asynchronous dynamics: Probability distribution functions (PDFs) of the total in-degrees k
(tot)
j for excitatory (A) and inhibitory (B) active neurons for

K = 16, 384. (C,D) Firing rates of the excitatory (inhibitory) neurons r
(e)
j (r

(i)
j ) vs. their total in-degrees k

(tot)
j − 2K symbols refer to K =1,024 (red), K =4,096 (blue), and

K =16,384 (green). The inset in (D) is an enlargement of the panel displaying the firing rates over the entire scale k
(tot)
j − 2K. The magenta dashed lines in (C,D)

represent the balanced state solution (R
(e)

0 ,R
(i)

0 ). (E,F) PDF of the excitatory (inhibitory) firing rates r
(e)
j (r

(i)
j ) for K = 16, 384, the solid (dashed) line refers to the MF results

R
(x)

(R
(x)

0 ) with x = e, i. The red (blue) solid line refers to a log-normal fit to the excitatory (inhibitory) PDF with mean 8.8 Hz (17.5 Hz) and SD of 3.8 Hz (2.3 Hz). The

parameters are the same as in Figure 1, the firing rates have been estimated by simulating the networks for a total time Ts = 60 s, after discarding a

transient Tt = 40 s.

These outliers seem to have a negligible influence on the
population dynamics, as suggested by the fact that the mean
firing rates are reasonably well approximated by the balanced

solutions R
(e)
0 and R

(i)
0 and as also confirmed by examining

the PDFs of the firing rates for K =16,384. As shown in
Figures 3E,F, the excitatory (inhibitory) PDF can be well fitted
by a log-normal distribution with a mean 8.8 Hz (17.5 Hz) and
SD of 3.8 Hz (2.3 Hz). This is considered a clear indication
that the network dynamics is fluctuation driven (Roxin et al.,
2011) as confirmed by recent investigations in the hippocampus
and the cortex (Wohrer et al., 2013; Buzsáki and Mizuseki,
2014; Mongillo et al., 2018), as well as in the spinal motor
networks (Petersen and Berg, 2016). However, the relative
widths of our distributions are narrower than those reported in
Mongillo et al. (2018). This difference can find an explanation
in the theoretical analysis reported in Roxin et al. (2011),
where the authors have shown that quite counter intuitively
a wider distribution of the synaptic heterogeneities can lead
to a narrower distribution of the firing rates. Indeed, in this
study, we consider Lorentzian distributed in-degrees, while in
Mongillo et al. (2018) Erdös-Renyi networks have been analyzed.
As a further aspect, we have estimated the number of inhibitory
neurons firing faster than a certain threshold νth, this number
does not depend on the median in-degree for sufficiently large
K >5,000, however, it grows proportionally to N. In the
considered cases, the fraction of these neurons is ≃ 1% for
νth = 50 Hz.

From this analysis, we can conclude that at any finite K and
for finite observation times, we have at a macroscopic scale
an essentially balanced regime sustained by the bulk of active
neurons, whose dynamics are fluctuation-driven. Furthermore,
we also have a large body of silent neurons and a small fraction
of mean driven outliers. These should be considered as typical
features of finite heterogeneous neural circuits as shown in
various experiments (O’Connor et al., 2010; Landau et al., 2016).
Moreover, in the present case, we report quite different behaviors
for outliers whosemacroscopic effective input currents are supra-
or sub-threshold.

3.3. Collective Oscillations
We will now characterize the different types of COs observable
by first following a route to coherent chaos for the E-I balanced
network and successively we will examine how oscillations
exhibiting an abnormal level of synchronization, somehow
similar to those observable during an ictal state in the brain
(Lehnertz et al., 2009), can emerge in our system. Furthermore,
we will consider the phenomenon of quasi-periodicity and
frequency locking occurring for fluctuation driven oscillations.
As the last issue, the scaling of the frequencies and amplitudes
of COs with the in-degree and as a function of the external DC
current is reported.

3.3.1. A Period Doubling Route to Coherent Chaos
As a first case, we will follow the path in the parameter space
denoted as a dashed black line in Figure 1A. In particular,
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FIGURE 4 | Coherent chaos. (a,b) First (red) λ1 and second λ2 (blue) (LEs) for

the MF vs. the DC current I
(e)
0 for the parameter cut corresponding to the

dashed black line in Figure 1A. The dashed vertical lines in (a) indicate a

super-critical Hopf bifurcation (HB) from a stable focus to periodic COs and the

region of the period doubling (PD) cascade. The symbols denote three

different types of MF solutions: namely, stable focus (green triangle); periodic

oscillations (blue square) and chaotic oscillations (red circle). (c,d) Bifurcation

diagrams for the same region obtained by reporting the maximal value of the

instantaneous firing rate R(e) measured from MF simulations. The parameters

are the same as in Figure 1, other parameters set as 1
(ii)
0 = 0.3, 1

(ee)
0 = 2.0, K

= 1,000.

in order to characterize the different dynamical regimes, we
have estimated the LS {λi} associated the MF equations. As
shown in Figure 4, this analysis has allowed us to identify a
period doubling cascade toward a chaotic region, characterized
by periodic and chaotic windows. In particular, we observe a

focus region (II) for 0.0015 < I
(e)
0 < 50.6105, the focus loses

stability via a super-critical HB at Ie0 ≃ 0.0015 giving rise
to COs. One observes a period doubling cascade [regime (V)]

taking place in the interval I
(e)
0 ∈ [0.00006177; 0.00047297]

followed by a regime of COs at lower values of I
(e)
0 . The

chaotic dynamics refer to the MF evolution, and it can be,
therefore, definitely identified as collective chaos (Nakagawa
and Kuramoto, 1993; Shibata and Kaneko, 1998; Olmi et al.,
2011). A peculiar aspect of this period doubling cascade is that
the chaotic dynamics remain always confined in four distinct
regions without merging in a unique interval as it happens
e.g., for the logistic map at the Ulam point (Ott, 2002). This
is due to the fact that the population dynamics display period
four oscillations characterized by four successive bursts, whose

amplitudes (measured by R
(e)
max) varies chaotically but each

one remains restricted in an interval not overlapping with the
other ones.

Let us now examine the network dynamics for the three
peculiar MF solutions indicated in Figure 4a corresponding
to a stable focus (II) characterized by LE (λ1 = λ2 =
−0.0299, λ3 = λ4 = −0.101) for I

(e)
0 = 0.006

(green triangle), to a stable oscillation (IV) with (λ1 =
0.0, λ2 = −0.0343, λ3 = −0.0555, λ4 = −0.1732) for

I
(e)
0 = 0.0009 (blue square), and to collective chaos (v)
with (λ1 = 0.0033, λ2 = 0.0, λ3 = −0.0809, λ4 =
−0.1855) for I

(e)
0 = 0.00021 (red circle). As shown in

Figure 5, for all these three cases, the network dynamics is
always characterized by oscillations: namely, OP for the regimes
(IV) and (V) and fluctuation induced OF for to the stable
MF focus.

A typical feature of the OP oscillations is that the excitatory
neurons start to fire followed by the inhibitory ones, furthermore,
the peak of activity of the excitatory population usually precedes
that of the inhibitory neurons of a time interval 1t. Then the
inhibitory burst silences the excitatory population for the time
needed to recover toward the firing threshold. This recovering
time sets the frequency νCO of the COs. In our set-up, the
excitatory bursts are wider than the inhibitory ones due to the fact

that 1
(ee)
0 > 1

(ii)
0 . All these features are quite evident from the

population firing rates shown in Figures 5a1,b1 and the raster
plots in panels Figures 5a3,b3. These are typical characteristics
of a PING-like mechanism reported for the generation of
γ oscillations in the cortex (Tiesinga and Sejnowski, 2009),
despite the fact that the frequencies of the COs shown in
panels (a) and (d) are of the order of few Hz. Fluctuation
driven oscillations OF emerging in the network are radically
different, as shown in Figure 5c1, in this case, the excitatory
and inhibitory populations deliver almost simultaneous bursts.
Further differences among OP and OF oscillations can be
identified at the level of single neuron activity. These can be
appreciated by considering the PDFs of the excitatory firing

rates r
(e)
j reported in the fourth column of Figure 5. As shown

in Figure 5c4 these firing rates are log-normally distributed for
OF oscillations, thus, confirming their fluctuation driven origin
(Roxin et al., 2011; Petersen and Berg, 2016). On the other
hand, for OP oscillations, we observe with respect to a log-
normal distribution an excess of high firing neurons and a
lack of low firing ones (refer to Figures 5a4,b4). This seems
to indicate the presence of a larger number of mean driven

excitatory neurons. Indeed this is the case, for I
(e)
0 = 0.00021

and I
(e)
0 = 0.0009, the percentage of active excitatory neurons

driven by average effective currents supra-threshold i
(e)
eff ,j

is

≃ 1.7 − 1.2%, while for I
(e)
0 =0.006, it drops to ≃ 0.6%.

The percentage of active inhibitory neurons on average supra-
threshold is quite limited in both cases being of the order of
0.25–0.13%. Another interesting feature distinguishing the two
kinds of oscillations is the fact that for OP, the excitatory supra-

threshold neurons have a firing rate r
(e)
j > νCO and that the

few neurons with firing rates locked to νCO are on average

exactly balanced, i.e., they have i
(e)
eff ,j

≃ 0. The situation is

different for the OF oscillations, where we observe a group of sub-
threshold excitatory and inhibitory neurons firing locked with
the population bursts. In both cases, most parts of neurons are
definitely sub-threshold firing at frequencies smaller than νCO,
as expected for an E-I balanced network displaying fast network
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FIGURE 5 | Different types of collective oscillations(COs). Row (a) refers to the chaotic state observable for I
(e)
0 = 0.00021 in the MF denoted by a red circle in

Figure 4a; row (b) to the oscillatory state of the MF observable for I
(e)
0 = 0.0009 denoted by a blue square in Figure 4a; row (c) to the stable focus for the MF

observable for I
(e)
0 = 0.006 denoted by a green triangle in Figure 4a. The first column displays the population firing rates vs. time obtained from the network dynamics,

the second, the corresponding MF attractors in the planes identified by (R(e),V (e) ) and (R(i),V (i)), the third, the raster plots, and the fourth, the PDFs of the excitatory

firing rates r
(e)
j . Red (blue) color refers to excitatory (inhibitory) populations, the solid vertical lines in column 4 to the mean firing rate and the blue solid line to a fit to a

log-normal distribution. Parameters as in Figure 2, apart from 1
(ii)
0 = 0.3, 1

(ee)
0 = 2.0, K =1,000. For the estimation of the firing rates we employed N(e)=40,000 and

N(i)=10,000, while for the raster plots, N(e)=10,000 and N(i)=2,500. The total integration time has been of 120 s after discarding a transient of 80 s.

oscillations associated with irregular neural discharges (Brunel
and Wang, 2003).

In order to understand the differentmechanisms at the basis of
OP and OF oscillations, let us examine how the delay 1t between
excitatory and inhibitory bursts, observed for OP oscillations,
modifies as a function of the membrane time constant of the
inhibitory population τ

(i)
m . An increase of τ

(i)
m of ≃ 5 ms has

the effect of reducing the delay of almost a factor six from
1t ≃ 28 ms to 1t ≃ 5 ms, as shown in Figure 6A. The

increase of τ
(i)
m leads to an enhanced inhibitory action since

the integration of the inhibitory membrane potentials occurs
on longer time scales, and this promotes a higher activity of
the inhibitory population. Indeed, this is confirmed from the
drop of the effective input currents from an almost balanced

situation where the average I
(e)
eff

and I
(i)
eff

are almost zero to a

situation where they are definitely negative (refer to Figure 6B).

Thus, for increasing τ
(i)
m , the percentage of neurons below

threshold also increases and as a consequence the dynamics
become more and more noise driven, as testified by the increase

of the current fluctuations 1I
(e,i)
eff

as shown in Figure 6C. In

summary, the delay is due to the fact that despite the effective
inhibitory and excitatory currents are essentially equal, as shown
in Figure 6B, the wider distribution of the excitatory in-degrees
promotes the presence of excitatory neurons supra-threshold that
are the ones igniting the excitatory burst before the inhibitory
one. The delay 1t decreases whenever the number of these
supra-threshold neurons decreases, and it will vanish when the
dynamics will become essentially fluctuation driven as in the case
of OF oscillations.

3.3.2. From Fluctuation Driven to Abnormally

Synchronized Oscillations
As the second range of parameters, we consider the cut in the
parameter plane shown in Figure 1A as a purple dashed line. For
these parameters, we report in Figures 7a,b the average in time
of the excitatory and inhibitory population rate as a function of

the excitatory DC current I
(e)
0 . In particular, we compare network

simulations (red and blue circles) with the MF results (red and

blue lines). These predict a stable focus (solid lines) up to I
(e)
0 =

74.1709, where a sub-critical HB destabilizes such solution giving
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FIGURE 6 | Pyramidal-interneuron gamma (PING)-like OP COs. (A) Firing delays 1t between the excitatory population peak and the inhibitory one vs. τ
(i)
m . Effective

mean input currents (Equation 13) (B) and current fluctuations (Equation 20) (C) vs. τ
(i)
m , the excitatory (inhibitory) population are denoted by red (blue) circles. All the

data reported in this study refer to MF simulations. The parameters are I
(e)
0 = 0.0009, 1

(ii)
0 = 0.3, 1

(ee)
0 = 2.0, K =1,000, and τ

(e)
m = 20 ms.

rise to an unstable focus (dashed lines). In panel (a), and (b), we
have also reported as green dot-dashed lines the extrema of R(e)

and R(i) corresponding to the unstable oscillations emerging at
the HB. For currents below the HB, we observe a good agreement
among the average network activity and the MF results.

In particular, below the HB, while the MF predicts only
the existence of a stable focus, the network dynamics reveals
quite interesting features. As shown in Figure 7d1, the system
dynamics is indeed asynchronous for intermediate current

values, in this study, I
(e)
0 = 1.024, however, at lower currents,

we observe fluctuation driven oscillations OF as evident from the
raster plot displayed in Figure 7c1 for I

(e)
0 = 0.128. As shown

in Figures 7c2,d2, both these regimes are characterized by log-
normal distributions of the firing rates, thus, indicating that the
dynamics are fluctuation driven.

As reported in Montbrió et al. (2015), when the network
dynamics become strongly synchronous (as expected for very
high excitatory DC external current), the MF formulation fails
since the population rates predicted within the MF formulation
diverge. However, as shown in Figures 7e1,e2, due to finite size
effects, we observe in the network a strong synchronous COs of
type OS corresponding to the MF region (I) where the MF model
predicts no stable solution. These abnormally synchronized
oscillations are also characterized by a quite fast frequency of
oscillation νCO ≃ 800−1,000 Hz. Furthermore, similarly to the
OP oscillations, they emerge due to a PING-like mechanism. This
is evident from the raster plot in Figure 7e1, where excitatory
neurons fire almost synchronously followed, after an extremely
short delay, by the inhibitory ones whose activity silence all the
network until the next excitatory burst. Quite astonishingly, the
mean population rates measured in the network are reasonably
well captured by the MF solutions associated with the unstable
focus even beyond the HB, despite the network is now displaying
COs (as shown in Figures 7a,b).

The emergence of COs in the network can be characterized
in terms of the coherence indicator ρ (Equation 4) for the whole
population of neurons. This indicator is reported in Figure 8A

as a function of I
(e)
0 for the same parameters previously discussed

in Figure 7 and for two different values of the median in-degree

: K = 100 (red circles) and K =4,000 (blue circles). For both
values of K, we observe an almost discontinuous transition in
the value of the coherence indicator at the sub-critical HB from
ρ ≃ 1/

√
N, expected for an asynchronous dynamics, to values

ρ ≃ 1 corresponding to full synchronization. This discontinuous
transition leads to the emergence of abnormally synchronized
oscillations OS in the network. Moreover, at sufficiently high in-
degrees, we observe the emergence of a new coherent state for

low DC currents I
(e)
0 < 1.024 characterized by a finite value

of the coherence indicator, namely, ρ ≃ 0.3. The origin of
these oscillations can be better understood by examining the
coefficient of variation CV averaged over the whole population,
this is reported in Figure 8C for the same interval of excitatory
DC current and the same in-degrees as in Figure 8A. It is
evident that the CV assumes finite values only for small input

currents, namely I
(e)
0 < 1.024, indicating the presence of not

negligible fluctuations in the network dynamics. Furthermore, by
increasing K, these fluctuations, as measured by the CV , increase
as expected for a balanced network. This analysis suggests that
these oscillations cannot exist in absence of fluctuations in the
network, and therefore, they are of the OF type. Furthermore,
the network should be sufficiently connected in order to sustain
these COs, as one can understand from Figures 8B,D, where ρ

and CV are reported as a function of K for three different values

of I
(e)
0 . Indeed, for these parameter values, no OF oscillation is

observable for K < 400, even in presence of finite values of
the CV .

As previously discussed in di Volo and Torcini (2018), the
balance between excitation and inhibition generates endogenous
fluctuations that modify the collective dynamics with respect
to that predicted by the MF model, where the heterogeneity
of the input currents, due to distributed in-degrees, is taken
in account only as a quenched form of disorder and not as a
dynamical source of the noise. However, also from this simplified
MF formulation, one can obtain relevant information on the
OF oscillations, indeed as we will see in the next sub-section,
the relaxation frequencies toward the stable MF focus represent
a good estimation of the oscillation frequencies measured in
the network. This suggests that the fluctuations present at the
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FIGURE 7 | From fluctuation driven to abnormally synchronized oscillations. Firing rates R(e) (a) and R(i) (b) as a function of I
(e)
0 for E-I network (circles) and neural mass

model (lines) for the parameter cut corresponding to the dashed purple line in Figure 1A. For the neural mass model: solid (dashed) line shows stable (unstable) focus

solution R
(e)

and R
(i)
; green dot-dashed lines refer to the extrema of R(e)(R(i)) for the unstable LC present in region (II). The unstable LC emerges at the sub-critical HB

for I
(e)
0 = 74.1709 separating region (II) from (I), where the focus becomes unstable. Raster plots and PDFs of the excitatory firing rates r

(e)
j are reported for specific

cases: namely, I
(e)
0 = 0.128 (c1,c2), I

(e)
0 = 1.024 (d1,d2), and I

(e)
0 = 100 (e1,e2). The solid vertical lines in (c2,d2,e2) refer to the mean firing rate. Parameters as in

Figure 1, other parameters are set as 1
(ii)
0 = 0.3, 1

(ee)
0 = 1.58, K =1,000 N(e) =10,000, and N(i) =2,500.

network level can sustain COs by continuously exciting the focus
observed in the effective MF model with quenched disorder.

3.3.3. Fluctuation Driven Oscillations: From

Quasi-Periodicity to Frequency Locking
As announced, this sub-section will be devoted to the
characterization of the fluctuation driven oscillations OF

emerging in the region (II) reported in Figure 1. As the MF
is now characterized by a stable focus with two couples of
complex conjugate eigenvalues, there are two frequencies that
can be excited by the irregular firing of neurons. Accordingly, as
reported in di Volo and Torcini (2018), we expect the collective
dynamics to be characterized by quasi-periodic dynamics with
two (incommensurable) frequencies. These frequencies can be
estimated by computing the power spectrum S(ν) of global
quantities, e.g., the mean membrane potential V(t). In the case
of periodic dynamics, S(ν) is characterized by one main peak
in correspondence of the CO frequency and minor peaks at its
harmonics, while in the quasi-periodic case, the power spectrum
shows peaks located at the two fundamental frequencies and
all their linear combinations. Indeed, as shown in Figure 9A,
the power spectrum exhibit several peaks over a continuous
profile and the peak frequencies can be obtained as a linear
combination of two fundamental frequencies (ν1, ν2). As already
mentioned, the noisy background is due to the fluctuations
present in the balanced network. It is evident from Figure 9B,
that these two fundamental frequencies are well reproduced by
the two relaxation frequencies νR1 and νR2 toward the MF focus, in

particular for I
(e)
0 ≥ 0.256. At smaller currents, while the first

frequency is well reproduced by νR1 , the second one is under-
estimated by νR2 . This is due to the phenomenon of frequency
locking among the two collective rhythms present in the system:
when the two frequencies become commensurable, we observe
a common periodic CO. The locking order can be estimated
by plotting the ratio between the two frequencies, indeed for
low currents and K = 8, 192, the ratio is almost constant and
equal to four denoting a 1:4 frequency locking (see Figure 9C).

Furthermore, by fixing I
(e)
0 = 0.128 and by varying K the ratio

ν1/ν2 can display different locked states, passing from locking of
type 1 : 2 at low K, to 1 : 4 at larger values, as shown in the inset of
Figure 9C.

As evident from Figures 9B,C, the locking phenomenon arises
only in the network simulations and is not captured by the MF
model. Furthermore, frequency locking occurs at low currents

I
(e)
0 < 0.1 where the dynamics of the neurons are driven by the
intrinsic current fluctuations present in the network but not in
the MF. Indeed for low DC currents the level of synchronization

within the populations measured by ρ decreases with I
(e)
0 ,

while the CV increases (as shown in Figure 9D). These features
suggest that this phenomenon is somehow similar to what was
reported in Meng and Riecke (2018) for two coupled inhibitory
neural populations subject to external uncorrelated noise. Meng
and Riecke (2018) observed an increase of the locking region
among collective rhythms by increasing the amplitude of the
additive noise terms, this joined to a counter-intuitive decrease
of the level of synchronization among the neurons within each
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FIGURE 8 | From fluctuation driven to abnormally synchronized oscillations.

Coherence indicator ρ (Equation 4) for the whole network of excitatory and

inhibitory neurons vs. the excitatory DC current I
(e)
0 (A) and the median

in-degree K (C). Coefficient of variation CV for the whole network vs. I
(e)
0 (B)

and K (D). In (A,C), the symbols refer to different values of the median

in-degree:namely, K = 100 (red circles) and K=4,000 (blue circles). In (B,D),

the symbols refer to different excitatory DC currents: namely, I
(e)
0 = 0.01 (green

circles), I
(e)
0 = 0.1 (purple circles), and I

(e)
0 = 1.0 (orange circles). Parameters as

in Figure 1, other parameters 1
(ii)
0 = 0.3, 1

(ee)
0 = 1.58, N(e) =40,000, and

N(i) =10,000.

FIGURE 9 | From quasi-periodicity to frequency locking. (A) Power spectra

S(ν) of the mean membrane potential obtained from network simulations. (B)

The two fundamental frequencies ν1(ν2) vs. I
(e)
0 . (C) Frequency ratio ν1/ν2 vs.

I
(e)
0 , in the inset ν1/ν2 is shown vs. K. (D) Coherence parameter ρ vs. I

(e)
0 , in the

inset the corresponding CV is reported. In (B,C), the symbols (solid lines) refer

to ν1 and ν2 as obtained from the peaks of the power spectra S(ν) for V (t)

obtained from the network dynamics (to the two relaxation frequencies νR1 and

νR2 associated to the stable focus solution for the MF). Parameters as in

Figure 1, other parameters are set as 1
(ii)
0 = 0.3, 1

(ee)
0 = 1.58,N(e) =80,000,

N(i) =20,000, K =8,192, and I
(e)
0 = 0.128 in the inset of (C).

population. However, in Meng and Riecke (2018), the neurons
are subject to independent external noise sources, while in our
case, the sources of fluctuations are intrinsic to the system and

FIGURE 10 | Frequencies and amplitudes of OF oscillations. The two

fundamental frequencies ν1 and ν2 vs. I
(e)
0 (A) and K (C) and the average firing

rates vs. I
(e)
0 (B) and K (D) for the excitatory (red) and inhibitory (blue)

populations. In the inset in (C), the effective mean input currents I
(e)
eff (I

(i)
eff ) of the

excitatory (inhibitory) population are shown vs. K. The dashed line in (A,C)

corresponds to a power law-scaling ∝ I
(e)
0

1/2
(∝ K1/4) for the frequencies of the

COs. The solid red (blue) line in (B,D) denotes the asymptotic MF result R
(e)

(R
(i)
). Network (MF) simulations are denoted as stars (circles). The MF data

refer to the stable focus, in particular, in (A,C), these are the two relaxation

frequencies νR1 and νR2 . Parameters as in Figure 1, other parameters: (A,B)

K = 1, 000, 1
(ee)
0 = 1.58, 1

(ii)
0 = 0.3; (C,D) I

(e)
0 = 0.001, 1

(ee)
0 = 1.3, 1

(ii)
0 = 0.3;

for the network simulations, we employed N(e) =80,000 and N(i) =20,000.

induced by the structural heterogeneity. Due to the network
sparseness, the current fluctuations experienced by each neuron
can be assumed to be indeed uncorrelated (Brunel and Hakim,
1999). Therefore, we are facing a new phenomenon that we can
identify as a frequency locking of collective rhythms promoted
by self-induced uncorrelated fluctuations. Indeed, the locking

disappears for increasing external DC currents I
(e)
0 > 0.1, when

the coherence parameter ρ displays an abrupt jump toward
higher values and the CV ≃ 0, thus, indicating that in this
regime, the neuron dynamics becomes essentially mean driven
and highly synchronized.

3.3.4. Features of COs for Large In-degrees and DC

Currents
The dynamics of balanced networks are usually characterized
in the limit N >> K >> 1 by the emergence of a self-
sustained asynchronous regime. However, LC solutions have
been already reported for balanced networks in the seminal
article van Vreeswijk and Sompolinsky (1996). These solutions
can be either unbalanced or balanced, however, in this latter
case, they were characterized by oscillations of vanishing small
amplitude. van Vreeswijk and Sompolinsky (1996) have shown
that balanced COs are not observable in their model in the limit
N >> K → ∞ but only for finite K. Therefore, it is important
to address in our case if COs can still be observable in the limit
N >> K >> 1. Thus, in the following, we will investigate the
dependence of COs features on the median in-degree K and the
external DC currents.
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Let us first consider fluctuation driven OF oscillations, in
this case, we have an analytical prediction (Equation 19) for the
scaling of the fundamental frequencies νR

k
associated with the

relaxation toward the macroscopic focus, which should grow

proportionally to
√
I(e). As shown in Figures 10A,C, indeed this

scaling is observable for sufficiently large K and I
(e)
0 . It is also

evident the extreme good agreement between results obtained
from the network simulations and the theoretical predictions
(Equation 19), at least for the values of K reachable with our
simulations. Furthermore, the frequencies of COs cover an
extremely large range of values from few Hz to KHz, and this
range of frequencies can be spanned by varying either K or the

external DC current I
(e)
0 as shown in Figures 10A,C.

To better characterize these regimes, we have also evaluated
the average firing rates R(e) and R(i). These quantities are
displayed for OF oscillations in Figures 10B,D as a function of

I
(e)
0 and K, respectively. From the network simulations (stars),

we observe that R(e) and R(i) grow with I
(e)
0 , and they are

astonishingly quite well reproduced by the MF data (circles)
for sufficiently large DC currents, despite the MF results refer
to a stable focus and not to COs. Instead, at smaller currents
(namely, I

(e)
0 = 0.001), the network data overestimates the

MF results and the excitatory and inhibitory firing rates for
K >> 1 seem to converge to a common constant value larger
than those corresponding to the asynchronous regimes. For
sufficiently large K, due to the prevalence of inhibition over
excitation in the present model, we expect that the system will be
sub-threshold, since the average excitatory and inhibitory firing
rates are essentially coincident. Indeed this is confirmed by the

analysis of the mean effective input currents I
(e)
eff

and I
(i)
eff

shown

in the inset of Figure 10C. While for the MF focus, the dynamics
appear as almost exactly balanced for all the considered median

in-degree K since I
(e)
eff

≃ I
(i)
eff

≃ 0, for the network dynamics

I
(e)
eff

and I
(i)
eff

are definitely negative for K > 1, 000. This does not

prevent the emergence of COs driven by fluctuations at large K,
as indeed observed.

These results seem to indicate that for N >> K → ∞,
the network will not converge in this case toward a balanced
regime characterized by constant effective input currents. On
the contrary from our analysis, it emerges that the system will
become more and more sub-threshold for increasing K > 1,000.
However, the system always exhibits fluctuation driven dynamics,
since we measured CV ≃ 0.6-0.8 at least in the range K ≃
100− 10000 accessible to network simulations.

Let us now examine the OP oscillations. As shown in
Figures 11A,C, the frequencies νCO as estimated from the
MF model (open circles) reveal an almost perfect increase

proportional to
√
I(e) analogous to the one reported for OF

oscillations. The data obtained from network simulations (stars)

converge toward the MF results for sufficiently large K and I
(e)
0 .

The mean firing rates R(e) and R(i) grow with I
(e)
0 for fixed K

and appear to converge toward a constant value for sufficiently

large K for fixed I
(e)
0 , refer to Figures 11B,D. Moreover, the

network simulations (stars) approach the MF results (open

FIGURE 11 | Frequencies and amplitudes of OP oscillations. COs’ frequency

νCO vs. I
(e)
0 (A) and K (C) and mean firing rates vs. I

(e)
0 (B) and K (D) for the

excitatory (red) and inhibitory (blue) populations. The dashed line in (A,C)

corresponds to a power law-scaling ∝ I
(e)
0

1/2
(∝ K1/4) for the frequencies. In

the inset in (c), the effective mean input currents I
(e)
eff (I

(i)
eff ) of the excitatory

(inhibitory) population are shown vs. K. The solid red (blue) line in (B,D)

denotes the asymptotic MF result R
(e)

(R
(i)
). The data obtained from network

(MF) simulations are denoted as stars (circles). The data reported in (A–D) refer

to the open circles in Figures 1A,B, respectively. For network simulations, we

employed N(e) =80,000 and N(i) =20,000.

circles) at large DC currents and median in-degrees. However,
while in the MF the asymptotic values of R(e) and R(i) remain
distinct even at large K, these seem to become identical in the
network simulations. This reflects in the fact that while the MF
is perfectly balanced in the whole range of examined in-degrees,

since I
(e)
eff

≃ I
(i)
eff

≃ 0, the network simulations reveal almost

balanced effective input currents up to K ≃ 1,000 and above such
median in-degree a prevalence of the inhibitory drive (refer to
inset of Figure 11C).

For both kinds of COs, we observe that while νCO diverges
with K, the mean firing rates approach a constant value, thus,
suggesting that the percentage of neurons participating in each
population burst should vanish in the limit K → ∞. This result
indicates that COs will finally disappear, however, more refined
analyses are needed to derive the asymptotic behavior of the
system in the large K limit, ref to di Volo et al. (2021) for a
detailed discussion of this aspect for purely inhibitory networks.

4. DISCUSSION

We have extensively characterized the macroscopic regimes
emerging in a sparse balanced E-I network made of spiking QIF
neurons with Lorentzian distributed in-degrees. The considered
neuronal model joined to the peculiar choice of the distribution
has allowed us to derive an exact low dimensional neural mass
model describing theMF dynamics of the network in terms of the
meanmembrane potentials and of the population rates of the two
populations (Montbrió et al., 2015; di Volo and Torcini, 2018).
The low-dimensionality of the MF equations enabled us to study
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analytically the stationary solutions and their stability as well as
to obtain the bifurcation diagrams associated with the model and
to identify the possible macroscopic states.

4.1. Asynchronous Regimes
The stationary solutions of the MF correspond to the
asynchronous regime, which is the regime usually analyzed in the
context of balanced dynamics (van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010; Litwin-Kumar and Doiron, 2012). In
the present case, we have analytically obtained the stationary
solutions for the mean membrane potentials and average firing
rates for Lorentzian distributed in-degrees for any finite value of

the median K and an HWHM scaling as 1
(αα)
k

= 1
(αα)
0 (K)η

with η = 1/2. The MF estimations for the population firing
rates are pretty well reproduced by the network simulations in
the examined range of in-degrees K. Furthermore, from the
analytic expression of the stationary firing rates (Equation 8),
it is evident that for K >> 1, the asymptotic rates would
not depend on the structural heterogeneity and correspond to
those usually found for balanced homogeneous or Erdös-Renyi
networks (vanVreeswijk and Sompolinsky, 1996;Monteforte and

Wolf, 2010). This is due to the fact that the ratio
(

1
(αα)
k

)2
/K

remains constant for K → ∞. The final scenario will depend
on the scaling exponent η, in particular, by assuming η =
3/4, the asymptotic firing rates R

(α)
0 will explicitly depend on

the parameters 1
(αα)
0 controlling the structural heterogeneity.

Whenever η > 3/4, the balanced state breaks down, and we face
a situation similar to those investigated in Landau et al. (2016)
and Pyle and Rosenbaum (2016)1.

However, despite the system approaching a balanced state,
as testified by the fact that the effective input currents converge

to finite values I
(α)
a , and the current fluctuations stay finite

for K → ∞, the balanced regime is not necessarily a sub-
threshold one. Indeed, we have observed that we can have
either sub-threshold or supra-threshold situations depending on
the model parameters in agreement with the results previously
reported in Lerchner et al. (2006). Moreover, the excitatory
and inhibitory populations can achieve balanced regimes

characterized by different asymptotic dynamics, where I
(i)
a and

I
(e)
a have opposite signs.
While at a macroscopic level, the population activity for

N >> K >> 1 approach is essentially that of a homogeneous
balanced system, as shown in Figures 2A,B, the structural
heterogeneity has a large influence on the single neuron
dynamics, at least at finite K and finite investigation times. In
particular, in analogy with experiments (Gentet et al., 2010;
Mongillo et al., 2018), we considered a situation where the
inhibitory drive prevails on the excitatory one. In this condition,
microscopically the neural populations split into three groups:
silent neurons, definitely sub-threshold; bulk neurons, which
are fluctuation driven; and mean driven outlier neurons. In

1In such cases, balance has been recovered either by rewiring the post-synaptic

connections (Pyle and Rosenbaum, 2016) or by introducing some sort of

homeostatic plasticity or of spike-frequency adaptation (Landau et al., 2016).

particular, excitatory (inhibitory) neurons with low (high) intra-
population in-degrees are silenced due to the prevalence of
synaptic inhibition. The silent neurons represent 6-10% of the
whole population in agreement with experimental results for
the mice cortex (O’Connor et al., 2010). Bulk neurons have in-
degrees in the proximity of the median, and their firing rates

approach the MF solution R
(α)
0 for increasing K. Outlier neurons

represent a minority group almost disconnected from their own
population, whose asymptotic behavior for K >> 1 is controlled
by the sign of the effective mean input current.

4.2. Coherent Dynamics
The emergence of COs is observable in this balanced network
whenever the level of heterogeneity in the inhibitory population
is not too large, thus, suggesting that the coherence among
inhibitory neurons is fundamental to support collective rhythms
(Whittington et al., 2000). Indeed we observed two main
mechanisms leading to COs: one that can be identified as
PING-like and another one as fluctuation driven. The PING-
like mechanism is present whenever the excitatory neurons are
able to deliver an almost synchronous excitatory volley that in
turn elicits a delayed inhibitory one. The period of the COs
is determined by the recovery time of the excitatory neurons
from the stimulus received from the inhibitory population. This
mechanism is characterized by a delay between the firing of
the pyramidal cells and the interneuronal burst as reported
also in many experiments (Buzsáki and Wang, 2012). We have
shown that this delay tends to vanish when the inhibitory action
increases leading the system from a balanced situation to a
definitely sub-threshold condition where the neural activity is
completely controlled by fluctuations. In this latter case, the
excitatory and inhibitory neurons fire almost simultaneously
driven by the current fluctuations. These transform the relaxation
dynamics toward a stable focus, observable in the MF, to
sustained COs via a mechanism previously reported for
inhibitory networks (di Volo and Torcini, 2018; Bi et al., 2020).

The PING-like COs undergo period doubling cascades

by varying K and/or I
(e)
0 finally leading to collective chaos

(Nakagawa and Kuramoto, 1993; Shibata and Kaneko, 1998).
The nature of this chaotic behavior is definitely macroscopic
since it is captured by the neural mass model obtained within
the MF formulation, as shown by analyzing the corresponding
LS. This kind of chaos implies irregular temporal fluctuations
joined to coherence at the spatial level over a large part of the
network resembling coherent fluctuations observed across spatial
scales in the neocortex (Smith and Kohn, 2008; Volgushev et al.,
2011; Okun et al., 2012; Achermann et al., 2016). Collective (or
coherent) chaos has been previously shown to be a ubiquitous
feature for balanced random spiking neural networks massively
coupled, where K is proportional to N (Politi et al., 2018; Ullner
et al., 2018). In this study, we have generalized such results to
balanced random networks with sparse connectivity, where K is
independent byN. Recently, it has been claimed that the presence
of structured feed-forward connectivity in a random network is
needed to observe coherent chaos (Landau and Sompolinsky,
2018). However, as evident from our results and those reported
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in Ullner et al. (2018) and Politi et al. (2018), coherent chaos can
naturally emerge in a recurrent neural network in absence of any
structured connectivity introduced ad hoc to promote collective
behaviors. Furthermore, we have shown that collective chaos
can emerge in random balanced networks with instantaneous
synapses and the absence of any delay, refer to Ullner et al. (2018).

Fluctuation driven COs are usually observable in our
system as quasi-periodic collective motions characterized by two
incommensurate frequencies. However, whenever the current
fluctuations become sufficiently strong, the two frequencies can
lock and give rise to a collective periodic motion. Furthermore,
the locking region is characterized by a low level of synchrony
in the network. These results resemble those reported in Meng
and Riecke (2018) for two interconnected inhibitory neural
networks subject to external uncorrelated noise. In particular,
the authors have shown that uncorrelated noise sources enhance
synchronization and frequency locking among the COs displayed
by the two networks, despite the reduced synchrony among
neurons within each network. At variance with Meng and Riecke
(2018), in our case, the noise sources are intrinsic to the neural
dynamics, but they can be as well considered as uncorrelated
due to the sparseness in the connections (Brunel and Hakim,
1999; Brunel, 2000). Therefore, we are reporting a new example
of frequency locking among collective rhythms promoted by
self-induced uncorrelated fluctuations.

According to analytical arguments, the frequencies of the
COs grow proportionally to the square root of the excitatory
DC current. This on one side allows simply by varying

the parameters I
(e)
0 or K, to cover with our model a

broad range of COs’ frequencies analogous to those found
experimentally in the cortex (Chen et al., 2017). On another
side, it implies that the frequencies of COs diverge as
K1/4, while the average firing rates seem to converge to a
common value for sufficiently large K. These results seem to
indicate that for large K, the network will become more and
more unbalanced, with a prevalence of inhibition, while the
amplitude of COs will tend to vanish. However, this analyses
is not conclusive and more detailed analysis are required to
capture the asymptotic behavior of the system in the limit
N >> K >> 1.

4.3. Future Developments
The examined neural mass model has been derived by taking
into account the random fluctuations due to the sparseness in the

network connectivity only as a quenched disorder affecting the
distribution of the effective synaptic couplings (Montbrió et al.,
2015; di Volo and Torcini, 2018). The current fluctuations can
be correctly incorporated in an MF formulation by developing
a Fokker-Planck formalism for the problem, however, this will
give rise to high (infinite) dimensional MF models (Brunel
and Hakim, 1999; Brunel, 2000). We are currently developing
reduction formalisms for the Fokker-Planck equation to obtain
low dimensional neural mass models which will include the
intrinsic current fluctuations (di Volo et al., 2021; Goldobin et al.,
2021).

Relevant topics to investigate in the future to assess the
generality of the reported results are their dependence on the
chosen spiking neuron model and network architecture. In
particular, for random networks, it is important to understand
the role played by the distribution of the in-degrees, this is also in
view of the recent findings reported in Klinshov et al. (2021).
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