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Editorial on the Research Topic

Information Processing in the Cerebellum

The cerebellum is involved in a wide range of behaviors including the coordination of reflex and
voluntary movements, postural adjustments to maintain balance, and the learning of new motor
skills. This is also increasing evidence that its role extends to cognition, affect and the control of the
autonomic system. Amazingly, the cerebellum contains more than four-fifths of the brain’s neurons
(Herculano-Houzel, 2009) and so it has an incredible amount of computing power. Considering the
cerebellum from a computational perspective has a long history going back to Albus (1971), Marr
and Thach (1991), and Ito (1984) and the goal of linking theory to experiment through detailed
modeling dates back to the early nineties (Tyrrell and Willshaw, 1992; De Schutter and Bower,
1994a,b). Now, new insights into the anatomy and physiology of cerebellar circuits are leading
to revised thinking about how these circuits may process information: multiple sites of plasticity;
heterogeneity in structure and function such as zebrin bands; variable complex spike wave form;
synchronous activity.

It seems possible that the cerebellum is specialized to perform some specific types of
computation. However, it is not known precisely what these might be and there are many, often
overlapping, ideas: perceptron learning (Albus, 1971; Ito, 1984; Marr and Thach, 1991), Kalman
filtering (Paulin, 1989; Tanaka et al., 2019), forward models (Miall and Wolpert, 1996), expansion
coding (Billings et al., 2014), the approximation of cortical feedback (Pemberton et al., 2020), and
computing with uncertainty (Palacios et al., 2021). Moreover, differences in cerebellar function
are likely to be reflected within regional variations in cerebellar cytoarchitecture (for a review see
Cerminara et al., 2015), that in turn reflect different computational roles. This is an important
area for studying models of computation: models of cerebellar computation could be effective
in describing not just the role of the cerebellum but could inspire universal theories of whole
brain function. With this ambition in mind, the scope of this Research Topic was to bring
together researchers to showcase recent experimental and computational studies exploring the
computational dynamics of the cerebellum at levels from ions and microcircuits.

A fruitful approach to the cerebellum is to describe it using language and ideas borrowed
from engineering control systems. Tanaka et al. reviews one such approach. A challenge in
designing a control system is that the motor controls need to be based on a current estimate of
position even though that estimate may not be available straight away because of the latency in
sensory processing. A potential solution is to use a forward model (Miall and Wolpert, 1996) to
predict the current position from the available, past, sensory data. This review describes evidence,
computational and experimental, that cerebellar computation is a forwardmodel. Holland et al. and
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Anderson et al. consider cerebellar control for the specific
example of image stabilization. Holland et al. presents a detailed
forward model and compares their simulation to experimental
data from mice. In a filter inputs are amplified or attenuated as
part of processing and Anderson et al. has a cerebellar model of
filter learning for an input, in this case the head velocity which
eye movements need to compensate.

The exquisite organization of the cerebellar microcircuits
and molecular architecture required to support computation
has been well-described, however the mechanisms that guide
developmental patterning of their afferent inputs is less well-
understood. Lackey and Sillitoe show that the effector molecules
ephrin-A2/A5 are needed for the parasagittal patterning of
spinocerebellar mossy fibers but not the Purkinje cell zonal
patterns themselves. Mossy fibers originate from a wide variety of
locations in the brain and spinal cord and provide the cerebellum
with a rich array of sensory and motor signals converging onto
single granule cells (Shimuta et al., 2020).Whether ephrin-A2/A5
is specific to subsets of spinocerebellar mossy fibers or whether
thismechanism is generalized across all types ofmossy fiber input
needs further exploration.

Many proposed mechanisms underlying cerebellar
computations require perfectly controlled time processing
to avoid any mismatch in comparisons, such as the comparison
of predictions with sensory feedback. The cerebellar cortex
integrates mossy fiber inputs at a very high frequency so
synaptic short-term plasticity properties are important. Notably,
Schmidt reviews recent reinvestigations of release properties
underlying short-term plasticity at the parallel fiber to Purkinje
cell synapse. He develops new hypotheses that can explain
how these, the most numerous synapses in the brain, reliably
handle inputs at very high frequency. Another critical issue
is to understand how local oscillatory activity in cerebellar
microcircuits influences incoming information channeling
across the cerebellar cortex. Levesque et al. recorded both
individual neurons and local field potential (LFP) in the
granule cell layer (GCL) of the rat and shows that input driven
oscillations in the GCL predict the timing of individual neurons
suggesting that LFP may have a preparatory role for cerebellar
computation. How this computation is communicated to the
rest of the brain remains uncertain. Using dual recordings
in the cerebellum and the prefrontal cortex, Tremblay et al.
demonstrate that cerebellar stimulation can influence LFP in

the prefrontal cortex and that frequency-dependent changes
in stimulation drive synchronization of cerebello-cortical and
cortico-cortical networks.

Central to cerebellar function are the climbing fibers and the
complex spikes they induce in Purkinje cell: cerebellar learning
theories suggest climbing fibers signal an error signal to drive
depression of the parallel fiber synapses. However, plasticity can
occur at multiple sites within the cerebellum and without the
need for complex spikes, calling into question the role of climbing
fibers in cerebellar learning. Additionally, multiple studies have
shown that complex spikes are inherent variability (Najafi et al.,
2014; Yang and Lisberger, 2014; Burroughs et al., 2017; Tang
et al., 2017). The review paper of Zang and De Schutter highlights
recent experimental and computational studies on how this
analog complex spike error signal could integrate with cerebellar
learning theories. Along similar lines, Yarden-Rabinowitz and
Yarom present evidence from previous classical conditioning
studies as well as original data that rather than encode an error
signal, complex spikes encode the timing of movement initiation
through the modification of cerebellar circuitry. Together, these
two papers present new views on cerebellar learning based on the
graded role of complex spikes.

Together these studies add weight to the notion that
the cerebellum has a multiplicity of information processing
capabilities. They also demonstrate a wide-diversity of novel
insight into the nature and purpose of cerebellar computation,
bringing us to the surprising realization that there is no dominant
theory of cerebellar function; whether the range of cerebellar
operations can be captured by a universal computational
algorithm remains a question for the field.
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