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The brain has the ability to reconstruct neural structures and functions to compensate
for the brain lesions caused by stroke, although it is highly limited in primates including
humans. Animal studies in which experimental lesions were induced in the brain have
contributed to the current understanding of the neural mechanisms underlying functional
recovery. Here, I have highlighted recent advances in non-human primate models
using primate species such as macaques and marmosets, most of which have been
developed to study the mechanisms underlying the recovery of motor functions after
stroke. Cortical lesion models have been used to investigate motor recovery after lesions
to the cortical areas involved in movements of specific body parts. Models of a focal
stroke at the posterior internal capsule have also been developed to bridge the gap
between the knowledge obtained by cortical lesion models and the development of
intervention strategies because the severity and outcome of motor deficits depend on
the degree of lesions to the region. This review will also introduce other stroke models
designed to study the plastic changes associated with development and recovery from
cognitive and sensory impairments. Although further validation and careful interpretation
are required, considering the differences between non-human primate brains and
human brains, studies using brain-lesioned non-human primates offer promise for
improving translational outcomes.

Keywords: brain lesions, functional recovery, macaque monkey, marmoset, pain, plasticity, rehabilitation,
voluntary movements

INTRODUCTION

The regeneration of lost neural circuitry after stroke, the most frequent cause of brain lesions,
is poor because mature neurons do not divide to replace the lost neurons and also because
the presence of inhibitory factors prevents functional and structural recovery of the lesioned
neuronal tissue (Buchli and Schwab, 2005; Galtrey and Fawcett, 2007). Nevertheless, functional
recovery often occurs in patients with stroke and physical and cognitive deficits. In addition
to the acute management of stroke to prevent the expansion of irreversible tissue lesions,
rehabilitation treatment during the subacute and chronic phases is important to promote functional
recovery. Plastic changes of the nervous system and functional compensation in the remaining
intact brain areas are thought to underlie the functional recovery after brain lesions, and the
concept of neurorehabilitation, which focuses on enhancing plasticity following brain lesions, has
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received considerable attention over the past decades. However,
for the development of effective neurorehabilitation strategies,
the functional compensation mechanisms should be elucidated
in detail. In addition to clinical studies in stroke patients,
studies using animal models in which lesions are experimentally
induced in the brain have made major contributions in this
research field. Experimental animals can be used to investigate
the micro- and macroscopic changes that occur during functional
recovery after stroke, including the changes involving gene and
protein expression, nervous system structures, and brain activity.
Rodents such as mice and rats are the most commonly used
vertebrates in biomedical research because of their low cost and
ease of genetic manipulation. However, in addition to studies
using rodents, investigations using non-human primates such
as macaques and marmosets are likely to facilitate translational
outcomes because of the proximity of these primates to
humans in terms of genetics, anatomy, physiology, and behavior
(Kuypers, 1982; Alstermark et al., 2004; Courtine et al., 2007; Isa
et al., 2007; Lemon, 2008; Yamamoto et al., 2013; Higo, 2014).
Especially, the similarity in the pattern of myelination (Van Essen
et al., 2019) is essential because the debris of myelin is produced
after stroke and they are toxic to neurons (Marin and Carmichael,
2019). Moreover, recent comparative transcriptomic studies
have reported higher genetic similarities in both neurons and
microglia among primates as compared to rodents (Geirsdottir
et al., 2019; Krienen et al., 2020). This review highlights recent
advances in the development of non-human primate models used
to explore the adaptive mechanisms after stroke.

PRIMATE SPECIES

Macaque monkeys, a genus of Old World monkeys that include
rhesus monkeys (Macaca mulatta), Japanese monkeys (Macaca
fuscata), and cynomolgus monkeys (Macaca fascicularis), are the
most commonly used group of primate species in this research
field, although other Old World monkeys, such as olive baboons
(Papio anubis) and vervet monkeys (Chlorocebus pygerythrus),
have also been used historically (Vilensky and Gilman, 2002).
Old World monkeys have a gyrencephalic brain, i.e., brains with
a highly folded cortex (Table 1), and cortical and subcortical
anatomy similar to that in humans. The neuronal structures
of the motor cortex and corticospinal tract of these monkeys
are especially more compatible with humans than the other
experimental primate species described below (Kuypers, 1982;
Alstermark et al., 2004; Courtine et al., 2007; Isa et al., 2007;
Lemon, 2008). The combination of this homology of the motor
system with the relatively large brains enables acquisition of
imaging data on par with those evaluated in clinical research.
Macaque monkeys and other Old World monkeys are highly
dexterous and capable of precision grip, which is exemplified by
the ability to hold small objects between the tips of the index
finger and the thumb (Table 1) (Heffner and Masterton, 1975).
The common marmoset (Callithrix jacchus), a small New World
monkey species, has also been used as an animal model. Although
common marmosets show a lower degree of dexterity than
macaque monkeys, as characterized by the absence of a precision

TABLE 1 | Non-human primate species used to investigate adaptive
mechanisms after stroke.

Species Body weight (kg)* Gyrification** Precision grip

Rhesus monkey 8.3 Gyrencephalic Capable

Japanese monkey 9.9 Gyrencephalic Capable

Cynomolgus monkey 4.7 Gyrencephalic Capable

Olive baboon 25.0 Gyrencephalic Capable

Vervet monkey 4.0 Gyrencephalic Capable

Common marmoset 0.4 Lissencephalic Incapable

Squirrel monkey 0.8 Lissencephalic Incapable

Capuchin monkey 1.3 Gyrencephalic Capable

*The information of the average body weight is referred from the articles (Heffner
and Masterton, 1975; Bonadio, 2000; Fooden and Aimi, 2005).
**Images of cerebral cortex of the non-human primates can be viewed in the article
(Gonzales et al., 2015).

grip (Table 1) (Heffner and Masterton, 1975), their small body
size makes them easy to handle. In addition, the brain of common
marmosets has a smaller number of cortical sulci, which is
referred to as the lissencephalic brain. This characteristic provides
advantages over the macaque monkey in experiments such
as electrophysiological recording and cortical surface imaging.
Moreover, genetic engineering techniques have gradually become
applicable to common marmosets (Sasaki et al., 2009). Squirrel
monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella)
are New World monkey species classified as lissencephalic and
gyrencephalic primates, respectively (Table 1). Their body sizes
are larger than those of common marmosets and smaller than
those of macaques. Capuchin monkeys are highly dexterous
and use a precision grip, whereas squirrel monkeys have
moderately dexterous hands with pseudo-opposable thumbs that
can be opposed to the side of the index finger (Heffner and
Masterton, 1975). Differences in the extent of corticospinal
terminations within the ventral horn are thought to underlie
the differences in dexterity between squirrel and capuchin
monkeys (Bortoff and Strick, 1993). The species of non-human
primates should be selected depending on the purpose of the
research. Comparison of the recovery after brain lesions among
the different primate species will provide information on how
difference in neuronal structures affects the adaptability, which is
essential for extrapolating findings obtained by animal studies to
human patients. The comparison is, however, difficult at present
because the size and location of lesions are highly variable among
studies depending on methods of lesion induction as described in
the next section. Induction of controlled focal lesions to a specific
brain region will enable the comparison among different species.

METHODS OF LESION INDUCTION

Since more than 100 years ago, experimental lesions have
been made in the motor cortex of macaque monkeys by
using various methods such as subpial aspiration, electric
thermocautery, and excision with scalpel, and subsequent
motor recovery has been investigated (Ogden and Franz,
1917; Travis and Woolsey, 1956; Passingham et al., 1983;
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Liu and Rouiller, 1999; Vilensky and Gilman, 2002). Because of
the presence of a topographically organized map of body parts
in the primary motor cortex, which is often identified by
intracortical microstimulation techniques (Stoney et al., 1968;
Kwan et al., 1978; Higo et al., 2016), it is possible to create a
lesion in the cortical areas involved in movements of specific
body parts. In recent decades, ibotenic acid, which selectively
excites and destroys cell bodies (Curtis et al., 1979), has also been
used to create specific gray matter lesions without damaging the
white matter (Liu and Rouiller, 1999; Murata et al., 2008, 2015a,b;
Yamamoto et al., 2019). However, the pathophysiology of these
lesion models may differ from that of stroke patients because the
stroke is caused by a blood clot or bleeding, i.e., ischemic and
hemorrhagic strokes, respectively. To imitate ischemic stroke,
electrocoagulation techniques have been used to occlude the
superficial blood vessels supplying the motor cortex (Nudo
et al., 1996; Frost et al., 2003; Dancause et al., 2005, 2006).
Photothrombotic stroke is another model of superficial blood
vessel occlusion (Ikeda et al., 2013; Khateeb et al., 2019). In this
method, hydrophilic dyes, such as Rose Bengal, induce platelet
aggregation and occlusion of microvessels by light exposure,
impairing blood flow within the area exposed to light (Jourdan
et al., 1995; Saniabadi et al., 1995). In addition, focal cerebral
ischemia was induced in the visual cortex of marmoset through
intracortical injections of endothelin-1 (Teo and Bourne, 2014),
a vasoconstrictor peptide (Yanagisawa et al., 1988).

Clinically, the middle cerebral artery (MCA) is the most
common artery involved in stroke (Nogles and Galuska, 2021).
To reproduce the pathology of MCA occlusion, arterial blockade
can be induced in the MCA of macaque monkeys by using various
methods, including occlusion by a clip or ligature, intra-arterial
insertion of filaments or catheters, injection of endothelin-1,
or electrocoagulation (Frykholm et al., 2000; Enblad et al.,
2001; Virley et al., 2004; Sasaki et al., 2011; Yin et al., 2013;
Mcentire et al., 2016; Fan et al., 2017; Yeo et al., 2019). These
MCA occlusion models show behavioral and motor function
deficits that resemble those seen in stroke patients and are
characterized by a relatively large volume of brain lesions,
although the volume of lesions differs depending on the nature
(permanent or transient), duration, and position of the occlusion.
Therefore, MCA occlusion models are associated with a high
risk of mortality, and even if the animals do not die, their
functional recovery is generally limited because of the severe
brain lesions. Although these MCA occlusion models have
contributed to the development of strategies for preventing the
expansion of irreversible tissue lesions in the acute phase of
cerebral infarction, most MCA occlusion models are not ideal
for investigating the plastic changes associated with recovery of
function by rehabilitation treatments. To investigate the recovery
mechanisms after stroke, a smaller focal stroke was induced in
the posterior internal capsule, which carries the corticospinal
tracts. In comparison with models involving motor cortex lesions,
capsular infarct models are expected to be useful for exploring
key factors that regulate motor recovery after infarcts in stroke
patients because the severity and outcome of motor deficits
depend on the degree of lesions to the region (Wenzelburger
et al., 2005; Schiemanck et al., 2008; Rosso et al., 2011). In

FIGURE 1 | (A) T2-weighted MRI showing the location of infarcts in the
posterior internal capsule one day after endothelin-1 injection (coronal, axial,
and sagittal images). The arrows indicate the infarct. Scale bars = 10 mm.
Reproduced from Figure 1 of the study by Murata and Higo (2016). (B–E)
Brain activation during voluntary hand movements before infarcts (B,D) and
after motor recovery from the internal capsular infarcts. Before infarcts, focal
activation was observed in the hand area of the primary motor cortex
(arrowhead in B,D). After motor recovery, increased activation of the premotor
area was identified (arrowhead in C,E). The cortex contralateral to the stroke
plays a greater role in recovery when lesions are more severe (E). Reproduced
from Figures 2, 4 of the study by Kato et al. (2020b).

the marmoset capsular infarct model, electrocoagulation was
performed in the anterior choroidal artery, which irrigates the
internal capsule (Puentes et al., 2015). On the other hand, in
the macaque model, focal infarcts were induced at the posterior
internal capsule by injection of endothelin-1 (Figure 1A) (Murata
and Higo, 2016). Hemorrhage, another major cause of stroke, has
also been induced by the injection of collagenase type IV, which
disrupts the basal lamina of blood vessels (Rosenberg et al., 1990),
into the posterior internal capsule of macaque monkeys.

MOTOR DYSFUNCTION AND RECOVERY

Most brain-lesioned non-human primates have been used to
study the mechanisms underlying deficits and recovery of motor
function after stroke. This is because severe motor deficits
are the predominant cause of long-term disability, and motor
recovery is the most crucial aspect influencing the quality of
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life of stroke survivors. Another reason is the experimental ease;
objective evaluations of motor performance are more accessible
than those of other brain functions. Studies using the motor
cortex lesion models described above have indicated recovery
of motor performance after paralysis, and therefore the models
have been used to investigate mechanisms of motor recovery after
lesions to specific brain regions. To date, compensatory changes
in brain activity during voluntary movements, movement
representations, projections, and gene expression in the motor
cortex are reported in such motor cortex lesioned models (Nudo
et al., 1996; Liu and Rouiller, 1999; Frost et al., 2003; Dancause
et al., 2005, 2006 #17; Murata et al., 2008, 2015a,b; Yamamoto
et al., 2019).

A recent study used the macaque model of internal capsular
infarcts to report compensatory changes in motor cortical
activity during voluntary movements (Figures 1B,C) (Kato et al.,
2020b). Similar changes in motor cortical activity have also been
reported in stroke patients during motor recovery (Loubinoux
et al., 2007; Horn et al., 2016); therefore, the macaque internal
capsular infarct model is thought to reproduce the plastic neural
changes that occur in stroke patients. Especially, the results of
the macaque model of internal capsular infarcts are consistent
with stroke patients in that the cortex contralateral to stroke

plays a greater role in recovery when lesions are more severe
(Figures 1D,E) (Johansen-Berg et al., 2002; Schaechter and
Perdue, 2008; Bestmann et al., 2010; Rehme et al., 2011; Bradnam
et al., 2012; Kantak et al., 2012; Bajaj et al., 2016; Touvykine et al.,
2016; Dodd et al., 2017). Uncovering compensatory mechanisms
that occur in the contralesional hemisphere will contribute to
understanding hyper-adaptability of the brain, i.e., dynamic
reconstruction of the neural structure to compensate for the
loss of neural function due to brain lesions. Moreover, brain
imaging technologies to monitor brain activity changes in both
hemispheres after stroke will be useful to estimate the progress of
rehabilitation on functional recovery of stroke patients.

COGNITIVE AND SENSORY
DYSFUNCTIONS

Stroke patients usually show deficits in multiple functions,
including cognitive and sensory functions; therefore,
development of relevant animal models that reproduce these
deficits is desirable. The anatomical structures and functions
involved in cognitive processing in non-human primates are
also more similar to those in humans than in rodents. For

FIGURE 2 | (A) T2-weighted MRI showing the time course of hemorrhagic stroke after collagenase type IV induction (coronal images). A hematoma and edema
were seen as the hypointense stroke core in the VPL of the thalamus (arrows) and the surrounding hyperintense rim. Reproduced from Figure 1 of the study by
Nagasaka et al. (2017). (B,C) Brain activity changes associated with CPSP. Brain activity associated with mechanical stimulation to the hand contralateral to the
lesioned hemisphere (or the corresponding hand before stroke) during the pre-lesion and post-lesion periods when CPSP was developed. ACC, anterior cingulate
cortex; Am, amygdala; MC, primary motor cortex; PGa, anterior subdivisions of the angular gyrus; PIC, posterior insular cortex; SC, primary somatosensory cortex;
SII, secondary somatosensory cortex; TPO, temporo-parieto-occipital junction. Reproduced from Figure 3 of the study by Nagasaka et al. (2020).
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example, macaques and humans share homologous anatomical
and physiological features of the prefrontal cortex, whereas no
obvious homologous areas of the prefrontal cortex are found
in rodents (Preuss, 1995; Ongur and Price, 2000). The sensory
processing system of non-human primates is also more similar to
that of humans than those of rodents; for example, the primary
somatosensory cortex is well developed in macaque monkeys and
clearly differentiated into four subdivisions (areas 3a, 3b, 1, and
2), which are not observed in rodents (Kaas, 2004). Therefore,
brain-lesioned non-human primate models designed to study
plastic changes associated with the development of and recovery
from both cognitive and sensory impairments have also been
sought to improve translational outcomes of treating cognitive
disorders after physical brain lesions.

In comparison with rodents, non-human primates have a
higher potential to perform complex tasks requiring higher
cognitive skills, such as planning, decision-making, and problem-
solving, and cognitive dysfunction after stroke can be assessed by
the performance on cognitive tasks using apparatus such as the
touchscreen-equipped operant chamber. To date, cognitive and
motor dysfunctions have been assessed in MCA occlusion models
with a relatively large volume of brain lesions. One study using an
MCA occlusion model in macaque monkeys reported a decline
in motor-planning ability for the non-paretic extremity (Roitberg
et al., 2003). The marmoset MCA occlusion model also exhibited
a neglect of the contralesional side of space (Marshall and Ridley,
2003), which is similar to hemispatial neglect syndrome seen in
stroke patients. Hemispatial neglect has also been reproduced in
macaque monkeys by inducing reversible lesions of the parietal
cortex using the GABAA receptor agonist muscimol (Kubanek
et al., 2015). These models are important for developing effective
neurorehabilitation strategies because hemispatial neglect is a
common disabling condition following stroke. However, the
studies to date have not addressed the neurological mechanisms
underlying both development of and recovery from hemispatial
neglect, necessitating further investigation to obtain knowledge
for treating cognitive impairment in stroke patients.

Pain is a complex phenomenon that involves sensory,
cognitive, and emotional neuronal processing. Pathological pain
commonly occurs after stroke and is referred to as central
post-stroke pain (CPSP). CPSP occurs over a variable period,
usually weeks to months, after stroke in the thalamic nucleus
and other areas involved in the somatosensory pathways (Kumar
et al., 2009; Hosomi et al., 2015). A dominant theory of
the pathophysiology underlying this pain condition is the
maladaptive plasticity of the central nervous system, which
constitutes a pain-related network. Identification of CPSP-
associated plastic changes in the brain can therefore facilitate
an understanding of both the pathogenetic mechanism and the
therapeutic strategy. In the macaque model of CPSP (Nagasaka
et al., 2017), a hemorrhagic stroke lesion was created by
injection of collagenase type IV into the ventral posterolateral
nucleus (VPL) of the thalamus, which relays somatosensory
information (Figure 2A). Behavioral analysis indicated that this
model reproduces late-onset allodynia and hyperalgesia similar
to those observed in human patients over several weeks and
more following the stroke, and both the withdrawal threshold for

mechanical stimulation and the withdrawal latency for thermal
stimulation on the hand contralateral to the lesioned hemisphere
are significantly decreased relative to those before the stroke
induction (Nagasaka et al., 2017). A functional MRI study in the
macaque CPSP model showed changes in somatosensory stimuli-
induced brain activation, which is similar to the findings observed
in CPSP patients (Figures 2B,C) (Peyron et al., 1998; Seghier
et al., 2005; Ducreux et al., 2006; Ohn et al., 2012; Nagasaka
et al., 2020). The brain activation, combined with behavioral
results, indicated that the macaque CPSP model faithfully
reproduces the pain in CPSP patients. Using the macaque CPSP
model, a recent study indicated that a significant reduction in
synaptic terminals in pain-related cortical areas is associated
with the development of CPSP (Nagasaka et al., 2021). Another
recent study using the macaque CPSP model showed that
functional connectivity is inappropriately strengthened between
the mediodorsal nucleus of the thalamus and the amygdala,
which are thought to be involved in the emotional aspects of pain,
and that repetitive transcranial magnetic stimulation (rTMS)
over the primary motor cortex normalizes this strengthened
connectivity (Kadono et al., 2021).

CONCLUDING REMARKS

Investigations of the adaptive mechanisms after stroke using non-
human primate models are ongoing, as described above. Further
elucidation of these mechanisms may facilitate the development
of novel and innovative therapeutic approaches for stroke
patients. Non-human primate models are also used to evaluate
the clinical efficacy of existing drugs and other therapeutic
interventions. Although rodents are the most commonly used
vertebrate species in biomedical research, drugs and therapeutics
that were proven to be effective in rodent models frequently failed
clinical trials (Endres et al., 2008). In addition to the previously
described differences in the anatomical structures and functions
of the brain between primates and rodents, these models have
also shown differences in the post-lesion responses in studies
using brain-lesioned animals. For example, the time course of the
proliferation of macrophages/microglia after brain lesions as well
as their function has been suggested to differ between macaques
and rodents (Wang et al., 2013; Nagasaka et al., 2017; Yeo et al.,
2019; Yew et al., 2019; Kato et al., 2020a). Moreover, neurogenesis
is robustly induced in response to stroke in rodents, whereas
neurogenesis after stroke is much lower in non-human primates
(Liu et al., 1998; Kee et al., 2001; Tonchev et al., 2003). The time
course of macrophage/microglia proliferation as well as the low
rates of neurogenesis after brain lesions in non-human primates
are consistent with those reported in human stroke patients
(Thiel et al., 2010; Huttner et al., 2014). A recent study also
reported that responses of astrocytes, another crucial player in
the pathogenesis of brain lesions, to stroke differ between rodents
and primates (Boghdadi et al., 2020). These differences between
rodents and primates may underlie failures in clinical trials.

The results of brain imaging studies, in which activity changes
during motor recovery and CPSP development are consistent
between macaque stroke models and stroke patients as described
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above (Loubinoux et al., 2007; Horn et al., 2016; Kato
et al., 2020b), may indicate the high translational potential
of the primate models. Notably, however, the brains of
non-human primates are still different from human brains.
For example, MRI tractography analysis showed differences
in the frontal network anatomy between humans and
non-human primate species, including macaque monkeys
(Barrett et al., 2020), and transcriptome analyses have
indicated differences in gene expression between human
and non-human primate brains (Bakken et al., 2016;
He et al., 2017). Although further validation and careful
interpretation of these findings are required, studies using brain-
lesioned non-human primates have the potential to improve
translational outcomes.
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