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Humans and animals learn the internal model of bodies and environments from their
experience and stabilize posture against disturbances based on the predicted future
states according to the internal model. We evaluated the mechanism of predictive
control during standing, by using rats to construct a novel experimental system and
comparing their behaviors with a mathematical model. In the experiments, rats (n = 6)
that were standing upright using their hindlimbs were given a sensory input of light,
after a certain period, the floor under them tilted backward. Initially, this disturbance
induced a large postural response, including backward rotation of the center-of-mass
angle and hindlimb segments. However, the rats gradually adjusted to the disturbance
after experiencing 70 sequential trials, and a reduction in the amplitude of postural
response was noted. We simulated the postural control of the rats under disturbance
using an inverted pendulum model and model predictive control (MPC). MPC is a
control method for predicting the future state using an internal model of the control
target. It provides control inputs that optimize the predicted future states. Identification
of the predictive and physiological parameters so that the simulation corresponds to
the experiment, resulted in a value of predictive horizon (0.96 s) close to the interval
time in the experiment (0.9-1.15 s). These results suggest that the rats predict posture
dynamics under disturbance based on the timing of the sensory input and that the
central nervous system provides plasticity mechanisms to acquire the internal model for
MPC.

Keywords: predictive postural control, bipedal rats, motor learning, model predictive control, simulation

INTRODUCTION

Most daily activities and skillful motor performance require predictive postural control to stabilize
the posture against internal and external disturbances. Predictive postural controls are based on
neuroplasticity, which enables learning of the internal models, namely, the relationship between
motor output and the resulting posture changes in a certain environment. Although a wide range of
nervous system areas, centered in the cerebellum, have been suggested to be involved in predictive
postural control (Diener et al., 1992; Yakovenko et al., 2011; Ng et al., 2013; Yanagihara, 2014;
Bolzoni et al., 2015), the detailed mechanisms remain unclear.

In humans, one of the most important and challenging tasks in postural control is to maintain
an upright standing posture against gravity. Disturbance systems, in which a floor tilts backward
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while participants maintain a static standing posture, greatly
contribute to understanding the stabilization mechanisms of the
upright posture and finding automatic responses with a latency
of approximately 100 ms (Nashner, 1976; Carpenter et al., 1999).
Several studies have examined predictive postural controls for
external disturbances while incorporating classical conditioning
into floor-tilting systems. In the association between floor tiles
and the preceding sensory inputs, muscle activities around the
leg joints and center of pressure (CoP) started to fluctuate just
before the tilt (Kolb et al., 2002). In addition, even without the
floor tilt, the sensory input alone evoked predictive movement
to cancel the upcoming postural response and suppress the
excessive stretch reflex as a result of this association (Campbell
et al, 2009). Furthermore, it has been found that patients
with cerebellar defects cannot establish these predictive controls
(Kolb et al., 2004).

Neuroscience has evolved as a result of powerful research
methods, these include recording neural activities, genetic
manipulation, and temporal and/or region-specific inactivation
in rodents. Developing experimental systems for predictive
postural control in rodents would greatly advance the
understanding of these mechanisms. We have developed a
system for evaluating predictive postural controls for voluntary
movements has been developed in mice (Yamaura et al., 2013).
Recent advances in the identification of the genetic basis of
hereditary cerebellar ataxias have made it possible to produce
mouse models for these diseases. Spinocerebellar ataxia is
a type of cerebellar disease associated with an autosomal
dominant pattern of inheritance. The most common type is
spinocerebellar ataxia type 3, also known as Machado-Joseph
disease. We generated a conditional transgenic mouse model
with spinocerebellar ataxia type 3 mice, which have defective
cerebellar Purkinje cells due to the induced expression of the
Purkinje cell-specific L7 promoter (Yamaura et al,, 2013). In
the voluntary reaching task, that performed dorsiflexion of the
neck as the prime movement, to reach and drink from a water
flask while standing, spinocerebellar ataxia type 3 mice showed
postural deficits that are characterized by considerable variation
in the trajectory of the mouth, terrible swaying posture, and
delayed electromyography activities in the hindlimb muscles.
This study demonstrated that predictive postural controls can
be kinematically and physiologically evaluated in rodents.
However, to our knowledge, an experimental system to evaluate
predictive controls against external disturbances has not yet been
established. To understand the neural basis of it, applying the
systems of upright standing and floor tilting in rodents could
be effective. We have previously established an experimental
environment in which rats maintained an upright posture using
hindlimbs on a static floor, confirming that the intersegmental
coordination and frequency characteristics of the CoP are
consistent with those of humans (Funato et al., 2017). In the
present study, we establish a novel experimental task in rats
by incorporating a floor tilting disturbance and a conditioning
paradigm into this system.

To approach the control mechanism for predictive behavior,
we used a mathematical model of postural control. In previous
studies, we developed a postural control model for bipedally

standing rats with lesions in the olivo-cerebellar system (Funato
et al., 2021), and showed that the decreased non-linear control,
possibly due to lesions in the internal model, caused instability.
The current experiment conducted on rats is based on this study,
thereby the mathematical model is also based on this study.
The same body model of rats can be used, and an additional
component for predictive behavior is needed. To model the
predictive behavior of rats, a mathematical model of postural
control requires prediction control. One such control system is
the model predictive control (MPC). MPC predicts the future
state using an internal model of the control target and determines
the control inputs so that the predicted state becomes optimal.
MPC has been used for the gait and postural control of humanoid
robots (Alcaraz-Jiménez et al., 2013; Scianca et al., 2020) and
has been used as a model for human quiet standing (Yao and
Levine, 2009), walking (Sun et al.,, 2018), and arm movement
during standing (Shen et al., 2021). Prediction time, which is the
extent to which future behavior is predicted for control, is a major
parameter for determining the behavior by MPC. By comparing
the behavior of the mathematical model with the simulation
and the behavior of rats in the experiment, we can evaluate
the prediction time of rats in the experiment. A comparison of
the estimated prediction time of the rats and the experimental
conditions will show the control characteristics of the prediction
behavior in rats.

In this study, we numerically evaluated the neural
mechanism of predictive postural controls against external
disturbances through a combination of experiments in rats and
simulation with MPC.

MATERIALS AND METHODS

Experimental Animals

Six Wistar rats (male, 19 & 2 weeks old, 404 + 28 g body weight)
supplied by CLEA (Tokyo, Japan) were used for this experiment.
They were kept in a room with a constant temperature and a light
and dark cycle of 12 h, with access to food and water ad libitum.
The experiment was approved by the Ethical Committee for
Animal Experiments at the University of Tokyo and was
conducted in accordance with the Guidelines for Research with
Experimental Animals of the University of Tokyo.

Experimental Protocols

Postural tasks were performed on a custom-made rotating floor
in a dark room (Figure 1A). The rats were habituated to the
experimental environment and learned to stand upright using
hindlimbs. This was followed by 70 sequential tilting trials
performed during 1 day. The paradigm of one trial was as follows
(Figure 1B). First, the lights installed in front of the rat were
turned on, simultaneously, 4% sucrose water was supplied as
a reward through a flexible tube suspended above the center
of the floor and accumulated at the tip. The rat stood upright
on the hindlimbs in the direction of light to drink the water.
The measurer entered an electrical trigger into the experimental
system after confirming that the rat was in the proper posture (the
body was stationary and the stomach was facing the light). This
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trigger turned the light off, and the floor began to rotate backward
(toes-up, Figure 1C) about 0.9 (0.91 £ 0.04) s later. This interval
time was within the range in which classical conditioning can be
established (Kolb et al., 2002). The floor rotated by 8.8 degrees
over 0.25 s, with a constant angular velocity.

The height of the water supply port was determined during
the habituation period for each rat, to ensure that the heel did not
float and the hip did not touch the floor in the upright position
(24.0 £ 0.3 cm).

Measurement of Kinematics

Prior to the measurements, the right-sided body surface of the
rats was shaved, and markers using black ink were applied to eight
body landmarks [4th metatarsophalangeal (MTP) joint, lateral
malleolus, knee joint, greater trochanter, iliac crest, scapula,
the midpoint between the iliac crest and scapula, and the
temporomandibular joint] under anesthesia with 2.5% isoflurane
gas. Six high-speed cameras (Prime 13 and 13 W, NaturalPoint
Inc., United States) recorded the movements of the right side of
their body, at 200 Hz in infrared mode, after the trigger.

Motion Analysis

The two-dimensional coordinates of nine markers (the above
eight markers and nose, black points in Figure 1D) on the image
were calculated using DeepLabCut, an image analysis software
based on deep learning (Mathis et al., 2018), for the video of each
camera in the trials. The three-dimensional coordinates of each
marker were calculated using the direct linear transformation
method (Abdel-Aziz and Karara, 2015). The coordinates were
then smoothed with a 15 Hz 4th-order Butterworth low-pass
filter. Sagittal plane motion analyses were performed using a
5-segment rigid link model consisting of the foot, leg, lower
trunk, upper trunk, and head segments (Figure 1D). The inertial
parameters of the segments were determined using the following
procedure. First, a rat was frozen in the upright position with the
markers applied as in the experiment and dismantled into the
segments. Then, for each segment, the mass was measured, and
the center of mass (CoM) was determined as a fulcrum, balancing
the segment when it was hung with a string. These procedures
were performed on three individuals, including those used for
the experiment (440 + 28 g body weight), and an average of the
parameters was used for the analysis (Table 1).

For each trial, the CoM angle (the angle of the vector from the
MTP joint to the whole-body CoM) and the angles and angular
velocities of the segments were calculated. These parameters are
shown as the angles with the perpendicular line and backward
rotation (Figure 1E).

In addition, the effects of segment rotations on the CoM angle

(E;) were estimated using the following formula:
03 mi r(t)-ri(t
E — / g™ rO-n® (1)
0 M |r (&) [ri (1]

where i is the segment of interest, m; is the mass of the body part
above the segment i (e.g., collection of the leg, lower trunk, upper
trunk, and head segments when i is the leg segment), M is the
mass of the whole body,r (t) is the vector from the MTP joint

to the whole body CoM, r;j(t) is the vector from the lower end
marker of the segment i (e.g., lateral malleolus when i is the leg
segment) to the CoM of the body part above segment i, and w;(f)
is the angular velocity of segment i. The integrand of this equation
was calculated for each frame based on the experimental data, and
a discrete-time integration was performed for the interval from
the start of floor tilt to 0.3 s later. It was assumed that the body
part above the segment of interest was a rigid body and rotated
around the lower end of the segment.

Model Predictive Control Model and

Simulation
We used a mathematical model to reproduce the behavior of the
rats to control with the prediction of future disturbances after
a light stimulus. A block diagram of the mathematical model is
presented in Figure 2.

The body of the rat was modeled as an inverted pendulum with
one link from the MTP joint to the CoM.

J6 = mghsind + t + tper + 0 (2)
where 0 is the angle of the body from the vertical (elevation
angle), J is the moment of inertia, and m, h, and g are the mass
of the rat, the length from the MTP joint to the CoM, and the
acceleration of gravity, respectively. The control torque is T, the
torque due to biological noise is o€, where time-variant function
£(t) is a Gaussian white noise and time-invariant coefficient o is
the intensity (Asai et al., 2009). Tgjy,, is the torque input to the
body according to the floor inclination and is explained below.

The stability of the rat’s body is partially supported by the
physical stiffness of the muscles around the MTP joint during
standing (Winter et al., 1998). The torque generated at this time
is modeled by the elasticity kp and viscosity kp of the muscles
around the MTP joint.

TRioor = —kp (0 — ¢) —kp (0 - ¢) (3)

where ¢ is the angle of the floor from the horizontal line. In
the stationary standing position, it is zero and acts to stabilize,
whereas when the floor is inclined, tg,,, acts as a disturbance
torque according to the inclination.

TABLE 1 | Inertial parameters of the segments.

Segments Mass (%) Ls (%) Lv (%)
Foot 1 32 -
Leg 9 68 -
Lower trunk 53 18 33
Upper trunk 29 40 10
Head 8 33 -7

The masses are shown as percentages of the whole body, and those of the foot and
leg segments are the sum of both hindlimbs. As shown in Figure 1D, the center of
mass of each segment is shown as coordinates in the coordinate systems formed
by the direction of the segment line and the direction orthogonal to it and as the
percentages of the line lengths (Ls and Lv, respectively). Because the foot and leg
segments were linear in shape and too small to hang with a string, the Lv was
assumed to be 0.
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FIGURE 1 | Experimental methods. (A) Experimental apparatus. (B) Paradigm of the floor tilting trial. (C) A rat maintaining upright posture and rotation direction of
the floor. (D) Definition of body segments. (E) Definitions of center-of-mass angle and segment angles.

and the control system is modeled with model predictive control.
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FIGURE 2 | Mathematical model of the postural motion of a rat with the prediction for tilting disturbance. The body is modeled with a single link inverted pendulum,

The control system with prediction was modeled with MPC.
MPC predicts the state from the current time to H, steps later,
based on the internal model. It also derives the control inputs
that optimize the predicted states by providing control inputs
with different values for H,, steps. MPC performs this prediction
and optimization in each time step and uses the input of only
the first step as the actual control input. Here, H, is called
prediction horizon, and H, is called control horizon. In our
model, the inverted pendulum model (Eq. 2) and the floor
model (Eq. 3) are used as the internal model for prediction,
assuming that the internal model has been created accurately by
sufficient learning. The target value of the predicted state 6 for
the state 0, is always set to zero. For optimization, an evaluation
function is set to minimize the sum of the squares of 6 for the
H, step interval.

The proposed model has five unknown parameters other than
the parameters determined by the physical properties of the
rat’s body: the prediction horizon Hp, the control horizon Hy,
the elastic and viscous coefficients kp and kp around the MTP

joint, and the noise magnitude ¢. By simulating the mathematical
model, we investigated the effects of these parameters on the
behavior of the model. In the simulation, we used the average
values of the body parameters of the rats (n = 6) used in the
experiment (m = 0.404 kg, h = 0.107 m). The sensory delay was
set to 40 ms based on a previous study on rats (Muramatsu et al.,
2009). The sampling time of the simulation and MPC is set to
0.001 s. Model Predictive Control Toolbox of Matlab/Simulnk is
used to implement the MPC.

To compare the behavior of proposed model with
conventional feedback control models, we further simulated
the conventional model with floor disturbance using Eq.
(3). The control models included the PD controller based
on the Peterkas gains [t — kpO — kpb, kp = 1.46mgh,
kp 0.3mgh; (Peterka, 2002)], and the non-linear PD
controller for standing rats [t — kpy0? — kpoO — kpb,
kpy, = 196mgh, kpy = 0.88mgh, kp = 0.11mgh; (Funato et al.,
2021)]. Here, the control gains were normalized with mgh to
eliminate differences in the body.
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Quantitative Evaluation of the Rats’

Behavior From the Mathematical Model

We compared the behavior of the constructed mathematical
model with that of the rat and examined the characteristics
of the controller that reproduces the behavior of the rat. For
this purpose, we identified the unknown parameters (prediction
horizon Hp, control horizon Hy, elastic coefficient around the
MTP joint kp, viscous coefficient kp, and noise magnitude
o) of the mathematical model that best reproduced the
behavior of the rat.

To identify the parameters, we compared the time series
of the CoM angle from the experiment with that of the body
angle 6 from the simulation, and searched for the parameters
that minimize the squared error. Specifically, the time sequences
of CoM angle from —0.35 s to 0.45 s (here, 0 s is the
start of floor tilt) of the terminal 3 trials in each rat are
extracted (18 in total), and are compared with the simulation
for identification. To reduce the effect of noise variation in the
parameter search, the simulation was repeated for five trials and
averaged for each evaluation. We used a genetic algorithm (GA)
for parameter searching. The “ga” function of Matlab Global
Optimization Toolbox was used for GA. In summary, MPC
searches were conducted to identify the optimal control input in
each simulation step (every 0.001 ms), and simulation with real-
time optimal input was repeated five times with same parameters.
Then, the average of the simulation result was compared
with the experiment for updating the parameter values once.
Subsequently, the next simulation with real-time optimization
was started for the next update of parameters. The parameters
were identified by repeating these sequences using the GA.

Statistical Analysis

Trials in which the rats lifted their feet off the floor during
the tilt were excluded from the analyses. Parameters calculated
based on marker coordinates that may not have been calculated
accurately by DeepLabCut (“likelihood” <0.9) were also excluded.
The results of the analysis are shown as the mean + standard
deviation of the six rats. For the displacements of CoM and
segment angles from the start of the tilt to 0.3 s later, the
differences in the average of the initial and terminal eight trials
were tested with the paired ¢-test using SPSS (IBM, United States),
in which p < 0.05 was considered as significant.

By comparing the experimental results and the simulation
results of the proposed model, the values for five unknown
parameters were identified. To validate the significance of
the identification results, we used a two-way ANOVA with
experimental sequences and parameters.

RESULTS

Experimental Results

In the initial trials, the rats experienced a significant response
of the whole body due to the floor tilt, but the amplitude
of this response was reduced in the later trials (Figure 3A).
Figure 3B shows the time series of the CoM angles of all trials

in a representative individual. The CoM angle monotonically
increased after the start of the tilt, but this fluctuation gradually
decreased with repeated trials. We quantified the increase in the
CoM angle from the start of the tilt to 0.3 s (Figures 3C,D). The
increase was significantly smaller in the terminal eight trials than
in the initial eight trials. The difference in the increase between
the first and 11th trial (9.9 deg in average) was larger than the
difference between the 11th and final trial (3.6 deg in average),
suggesting that the rats primarily learned to compensate for the
floor tilt in the initial 10 trials.

In the initial trials, the foot and leg segments rotated backward
along with the backward tilt of the floor, whereas the upper
trunk and head segments rotated forward (Figures 4A,B). These
rotations decreased significantly during the trials. We estimated
the effects of segment rotation on the CoM angle using Eq. (1).
It was found that, in the initial trials, the backward rotations of
the foot and leg segments largely affected the increase in the CoM
angle after the start of floor tilts (Figure 4C).

Simulation of the Proposed Model
To approach the mechanism of the rats’ predictive control for
tilt disturbance, we constructed a mathematical model using
MPC and investigated the behavior of the model by simulation.
Figure 5A shows the results of the CoM angle and torque in the
simulation. The blue line in the CoM angle of Figure 5A is the
result of the simulation, and the red line shows the rats’ CoM
angle from the experiment (the average of 17 sequences out of
the measured 18 sequences, excluding one sequence in which
the rat’s behavior was different from the other sequences [Rat
5 Sequence 1]; a comparison of the results for each sequence is
shown in Supplementary Figure 1). The unknown parameters
of the mathematical model used in the simulation were set to
the optimal values (Figure 6), which will be described later
in detail. The mean (SD) of the correlation coeflicient (cosine
correlation) between the CoM angle from the simulation and
from the experiment for all the 18 sequences were 0.99 (£ 0.01,
Supplementary Figure 1 shows the correlation coefficient for
each sequence). These results show that the proposed system
using MPC successfully reproduced the behavior of the rat.
Figure 5B shows the reaction of the conventional controller,
PD controller with Peterka’s gain parameters (Peterka, 2002) and
a non-linear PD controller for standing rats (Funato et al., 2021).
Both models could stabilize the body after floor disturbances,
but the behaviors were slightly different from the experiment.
When we focus on the control torque T, the control torque of
every controller gradually increases after the floor torque tgor
increased, and the control torque T becomes larger than the floor
torque Tgjoor- The disturbance via floor torque tpy,,, terminates
when time = 0.2 s and the CoM angle gradually returns
to the vertical position. Here, the controllers react differently
to the termination of the disturbance. The MPC controller
smoothly reacted to the change in the floor torque tpj,,,, while
conventional controllers drastically changed the control torque.
Next, we investigated the features of the proposed model to
reproduce the behavior of the rats. The proposed model has two
MPC parameters, that is, the prediction horizon H, and control
horizon H,,, and three parameters related to the body system, the
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FIGURE 3 | Reduction of postural response due to experience of tilting trials. (A) Stick pictures of first and last trials in a representative rat. The period from the start
of floor tilt to 0.28 s later was shown using black-point markers in Figure 1C. (B). Time series of center-of-mass (CoM) angles of all 70 trials in a representative
individual, with the start time of the tilting at time 0. (C) Fluctuation in CoM angle from the start of tilt to 0.3 s later for all individuals (gray line; n = 6) and the average
(black line, the averages of 3 peripheral trials). (D) Statistical comparison of fluctuation in CoM angle from the start of tilt to 0.3 s between the average of initial and

terminal eight trials by paired t-test (n = 6). **P < 0.01.
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MTP stiffness kp, the MTP viscosity kp, and the magnitude of the
noise . The effect of the two MPC parameters on the behavior is
shown in Figures 5C-G.

Figure 5C shows the CoM angle and control torque t of
the simulation with the prediction horizon H, from 30 ms to
1,300 ms. Here, the system became unstable when the prediction
horizon was lower than 30 ms and higher than 1,300 ms. Each
line in Figure 5C is the result of the simulation at each prediction
horizon (the average of ten simulations to reduce the CoM
variation due to noise). The CoM and torque patterns with
a different prediction horizon H, were similar to each other,
but there were differences in the peak values. Figure 5D shows
the maximum CoM angle, and Figure 5E shows the maximum
torque (Figures 5D,E show the result of one sequence (Rat 1
Sequence 1), and Supplementary Figure 2 shows the result of
whole sequences). These figures indicate that the maximum CoM
decreases while the maximum torque decreases as the prediction
horizon H, increases. In other words, as the prediction horizon
increases, the motion is designed to suppress the fluctuation
in the CoM with less torque. This characteristic of prediction
horizon Hj, was consistent for 16 of 18 sequences (see also
Supplementary Figure 2).

Following this, the control horizon H, was varied from
2 ms to 50 ms, as shown in Figure 5F. Each line in the
figure represents the simulation result according to each control
horizon H, (the average of ten simulations to reduce the

CoM variation due to noise). Subsequently, the pattern changes
gradually with increasing H,, values, and the fluctuation in the
CoM and maximum torque become smaller with higher control
horizon H,,. Figure 5G shows the correlation coefficient (cosine
correlation) between the time series of the CoM angle with a
control horizon of 50 ms and the time series of the CoM angle
with each control horizon H, (Figure 5G shows the result of
one sequence (Rat 1 Sequence 1), and Supplementary Figure 3
shows the result of whole sequences). Figure 5G shows that the
change in the time series of the CoM angle is obvious up to
20 ms, and becomes less obvious after 30 ms. This characteristic
of control horizon H, was consistent for all sequences (see also
Supplementary Figure 3).

In summary, the longer control and prediction horizons
suppressed the variation in the CoM angle with a smaller torque.
Furthermore, the prediction horizon H,, affected the peak value,
whereas the control horizon H, affected the pattern. Based on
the characteristics of these control parameters, we identified five
unknown parameters.

Identification Results of the Prediction

Behavior

We searched for model parameters (prediction horizon Hp,
control horizon H,, MTP stiffness kp, MTP viscosity kp,
and noise magnitude o) whose simulation reproduces the
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FIGURE 4 | Rotation of body segments due to perturbation. (A) Time series of segment angles in the initial (Ieft) and terminal (right) trials, with the start time of floor
tilting at time 0. Definitions of segment angles are in Figure 1E. (B) Rotation angles of segments from the start of floor tilt to 0.3 s later. (C) Effects of segment
rotations on the CoM angle calculated by Eq. (1). In (A=C), individual averages (n = 6) of trial averages (initial and terminal eight) are shown. *P < 0.05; **P < 0.01.

measured time series of the rats CoM angle. Figure 6 shows
the results, and the time series of the simulation with these
parameters is shown in Figure 5A. The significance of the
identified parameters was tested using a two-way ANOVA with
the parameters and experimental sequences. The results did
not show significant differences among experimental sequences
(P = 047, £ = 1.00, df = 17), but showed significant
differences with the parameters (P < 0.001, f = 474.0, df = 4),
implying the robustness of the identification results to different
experimental sequences.

The top row of Figure 6 shows the MPC parameters. The
mean (SD) of the result of the prediction horizon was 0.96
(£ 0.19) s. This result indicates that the postural control
can be predicted up to 0.96 s prior to the state. In the
experiment, the rats received a light stimulus 0.9 s before the
tilt disturbance of 0.25 s. The interval time between the sensory
input and the disturbance was 0.9-1.15 s, which is close to the
identified length of the prediction horizon. The mean (SD) of
the result of the control horizon was 24.4 (£ 8.6) ms. This
result indicates that the prediction of the control input could
change for 24.4 ms. Simulations with different control horizons
(Figures 5F,G) showed that the CoM angle hardly changed
when the control horizon was greater than 20 ms. This indicates

that the identified control horizon is long enough to produce
sufficiently complex inputs.

The lower portion of Figure 6 shows the parameters related
to the body model. The mean (SD) value of the MTP stiffness
kp was 0.34 (£ 0.13) mgh. This value is normalized with body
mass (m), acceleration of gravity (g), and the length from the
MTP joint to the CoM (h). Previous studies showed that ankle
stiffnesses in humans to be approximately 0.3 mgh (Hof, 1998)
to approximately 0.7 mgh (Morasso and Sanguineti, 2002). The
identified value was almost comparable, which supports the
validity of the identification results. The mean (SD) value of the
MTP viscosity kp was 0.03 (£ 0.02) mgh. Previous studies (Asai
et al., 2009; Suzuki et al., 2012) have assumed that the ankle
viscosity is less than a tenth of the stiffness. The mean (SD) value
of the noise magnitude ¢ was 0.50 (&= 0.23) mNm. This value was
in close agreement with the previously identified noise magnitude
in the quiet standing rats (Funato et al., 2021).

DISCUSSION

In this study, we constructed a floor-tilting task for upright
standing rats and compared these behaviors with a simulation
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FIGURE 5 | Behavior of the proposed mathematical model. (A) Simulation results of the model. The blue and red lines in the figure of CoM angle are the average of
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torque t and the floor torque tgoor, respectively. The blue, green and orange regions represent their SD. (C) Time series of the CoM angle and torque with different
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results for complete sequences.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 785366


https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles

Konosu et al.

Predictive Postural Control in Rats

Prediction
horizon H), (s)

Control
horizon Hy, (s)

1.5 0.15
1 T 0.1
0.5 0.05

0 0

[et—]

0.6 0.06

kp /mgh

1Noise c (MNm)

04 0.04

1 T

0.2 0.02
0 0

0.5

L 1

0

FIGURE 6 | Identified parameters of the proposed model. Resullts for the prediction horizon Hy, control horizon H,,, MTP stiffness kp, MTP viscosity kp, and noise
magnitude o are shown. Here, the results of MTP stiffness and viscosity are normalized with m body mass, g acceleration of gravity, and h length from MTP joint to
CoM. Blue bars and their error bars represent the average and standard deviation of the identified results for 18 experimental sequences of rats.

that was based on MPC. In the experiment, the postural
response of the rats due to disturbance dramatically reduced after
experiencing 70 sequential trials, indicating that they acquired
predictive control against the disturbance. The simulation
showed that prolonging the predictive and control horizons
allowed a reduction in the fluctuation of the CoM and peak
control torque. The predictive horizon identified to match the
simulation with the measured CoM data was close to the interval
time, from the light turning off to the disturbance, suggesting that
the rats predicted posture dynamics under the disturbance based
on the timing of the sensory input.

During the initial trials in the experiment, the foot and leg
segments rotated backward, contributing to increase in the CoM
angle (Figures 3, 4). Similarly, in the bipedal standing of humans,
the backward tilt of the floor displaces the CoP backward and
rotates the shank backward (Diener et al., 1992; Carpenter et al.,
1999; Kolb et al., 2002; Campbell et al.,, 2009). Regarding the
movement of the segments above the trunk, the lower trunk
did not significantly rotate on average, but the upper trunk and
head rotated forward (Figure 4B). In human studies, the trunk
is simplified into one segment. However, as it has been reported
to rotate forward with the backward tilt of floors (Carpenter
et al., 1999), the overall direction of rotation is consistent with
this study. In rodents, the mass and length of the trunk account
for greater proportions of the whole body than in humans
(Table 1; Winter, 2009), and the trunk is not adapted to maintain
upright positions as in humans. These characteristics seem to
have led to the bending of the trunk as a result of the disturbance
(Figure 3A). In any case, the overall mechanics by which a
floor rotation evokes postural response is by the transmission
of the rotation to the legs, giving backward momentum to
the pelvis and lower trunk. This is common between bipedal
humans and rodents.

The experience of 70 sequential disturbance trials dramatically
reduced postural response, including backward rotation of the
foot and the leg segments (Figures 3, 4). These results indicate
that flexing of the ankle and the MTP joints at proper timing
and amplitudes according to the floor tilt contributed to a
reduction in the response. During the tilting tasks for humans,
the entire sole was in contact with the floor, and the joints
above the ankle determined the postural movement. On the
other hand, it seems relatively easy for rodents to tiptoe on the
hindlimbs (Funato et al.,, 2017), indicating that movements of
the MTP joints can be significantly involved in postural control.
Therefore, we used an inverted pendulum model around the
MTP joint in this simulation. In humans, under the association
of tilting disturbance and preceding sensory input, fluctuation of
activities immediately before the tilting, suppression of stretch
reflexes, and automatic postural response with a latency of
approximately 100 ms are evoked at muscles around the ankle,
knee, and hip joints (Kolb et al., 2002; Campbell et al., 2009).
Although the present study is limited to measuring kinematics,
similar adjustments are likely to be evoked in the muscles
around the MTP joints.

We modeled the behavior of predictive postural control
of rats using MPC. The postural control system of quiet
standing has been modeled using feedback control such as
proportional-integral-derivative (PID) control (Peterka, 2000,
2002) or intermittent control considering the dead zone of the
sensory system (Asai et al.,, 2009; Gawthrop et al., 2014). The
bipedal standing of the rats was also modeled using PID-based
feedback control. To model the prediction of disturbances, the
control needs to include a prediction mechanism. However, the
postural control model with prediction has hardly been discussed.
One study adopted MPC to model human postural control from
the viewpoint of optimal control (Yao and Levine, 2009) and
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showed the time correlation of the body sway (estimated by
Stabilogram-Diffusion Function) and the amplitude of the body
sway were reproduced by the model with MPC. More recent
research used MPC to model arm movement during a standing
position and showed the contribution of the arm to achieve
stabilization (Shen et al., 2021). MPC consists of the prediction of
future states based on internal models and the optimization of the
predicted states. Researches have demonstrated that the internal
forward model (Miall and Wolpert, 1996) can be produced as
the activity of Purkinje cells (Laurens et al., 2013; Herzfeld and
Shadmehr, 2014), thus proving that prediction of the state could
be possible. It is also possible to control optimization in the
nervous system (Scott, 2004; Todorov, 2004). Therefore, the
nervous system is equipped with a mechanism that enables MPC,
and it is reasonable to model postural control with prediction
using MPC. Our simulation results successfully reproduced the
predictive behavior of rats, and the identification results for
the MPC parameters were consistent with the experimental
conditions and past identification results for postural control.

One of the advantages of our MPC model over the
conventional PID-based feedback control models is that our
model explicitly considers the internal model for prediction. This
enables us to discuss the effect of learning the internal model
on posture control. However, at the same time, flexibility in
the internal model causes uncertainty. The internal model is
composed of learning; thus, it could cause a large uncertainty,
particularly during the learning process. Only one point that can
determine the property of the internal model is after learning.
After complete learning, the internal model is assumed to be a
good copy of the actual body and environment. Therefore, in
this study, we used them as an internal model. As a limitation,
this system model can simulate only the behavior of rats after
learning, and thus, we compared simulation results with the
experimental results after learning. This model minimizes the
uncertainty in the internal model and succeeds in the discussion
of prediction control. However, the learning process in rats
could not be discussed using the current model. To overcome
this limitation, the internal model should include learning. The
internal model used in our model is based on the equation of
motion of the body and environment, and these equations can
be learned by machine learning. Therefore, by including machine
learning in our model, approaching the learning mechanism of
rats using the model will become possible.

The interval time between the sensory input of light and
the floor tilting was set within the range, allowing classical
conditioning (Kolb et al, 2002) and our simulation results
support the establishment of these associations. However, non-
associative processes, such as habituation or adaptation, may
also have contributed to the reduction in the amplitude of
postural response due to disturbance (Nashner, 1976; Kolb et al.,
2002, 2004). It will be important to experimentally distinguish
between associative and non-associative learning in the future.
The first strategy is to focus on preparatory activities before
the disturbance (Kolb et al., 2002). In the experiment, a rat
trembled in the interval time of several trials in the middle of
learning (data not shown), suggesting that an association was
about to be established. As a previous study pointed out that

movement before floor tilt can be disadvantageous to postural
stabilization (Kolb et al,, 2002), it may be difficult to detect
preparatory movements before disturbance at a kinematic level.
However, examining muscle activities in antagonist muscles may
capture these activities. The second strategy was to conduct
control experiments. Experimental conditions without sensory
input would quantify the rate of learning that is based on only
non-associative learning, and conversely, giving sensory input
alone under association would induce canceling movements
at the time of the disturbance, which is based on association
(Clark et al., 2002; Campbell et al., 2009). These refinements
in experiments will play an important role in neuroscientific
research on predictive postural control in the future. That is,
the inactivation of specific areas in the nervous system clarifies
the responsibilities for associative and non-associative learning,
and identifying neural activities synchronizing with sensory
input, disturbance, and muscle activities will help understand
the coding and processing mechanisms of predictive postural
controls in the nervous system.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by the Ethical
Committee for Animal Experiments at the University of Tokyo.

AUTHOR CONTRIBUTIONS

AK, DY, YM, and AF designed and conducted the experiment.
TE YM, and AF designed and executed the simulation. RS
contributed to programming for the simulation. DY and TF
conceptualized and supervised the whole study. AK, TE and DY
wrote the manuscript. All authors reviewed the manuscript.

FUNDING

This study was partially supported by Grants-in-Aid for Scientific
Research on Innovative Areas (No. 19H05728), for Scientific
Research (C) (Nos. 18K10955 and 21K03932), for Young
Scientists (No. 20K19592), and for the Promotion of Joint
International Research [Fostering Joint International Research
(B)] (No. 20KK0226) funded by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnsys.2021.
785366/full#supplementary-material

Frontiers in Systems Neuroscience | www.frontiersin.org

November 2021 | Volume 15 | Article 785366


https://www.frontiersin.org/articles/10.3389/fnsys.2021.785366/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnsys.2021.785366/full#supplementary-material
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles

Konosu et al.

Predictive Postural Control in Rats

REFERENCES

Abdel-Aziz, Y. I, and Karara, H. M. (2015). Direct linear transformation
from comparator coordinates into object space coordinates in close-range
photogrammetry. Photogramm. Eng. Remote Sensing 81, 103-107. doi: 10.
14358/pers.81.2.103

Alcaraz-Jiménez, J. ]., Herrero-Pérez, D., and Martinez-Barber4, H. (2013). Robust
feedback control of ZMP-based gait for the humanoid robot Nao. Int. J. Robot.
Res. 32, 1074-1088. doi: 10.1177/0278364913487566

Asai, Y., Tasaka, Y., Nomura, K., Nomura, T., Casadio, M., and Morasso, P. (2009).
A model of postural control in quiet standing: robust compensation of delay-
induced instability using intermittent activation of feedback control. PLoS One
4:€6169. doi: 10.1371/journal.pone.0006169

Bolzoni, F., Bruttini, C., Esposti, R., Castellani, C., and Cavallari, P. (2015).
Transcranial direct current stimulation of SMA modulates anticipatory postural
adjustments without affecting the primary movement. Behav. Brain Res. 291,
407-413. doi: 10.1016/j.bbr.2015.05.044

Campbell, A. D., Dakin, C. J., and Carpenter, M. G. (2009). Postural responses
explored through classical conditioning. Neuroscience 164, 986-997. doi: 10.
1016/j.neuroscience.2009.07.042

Carpenter, M. G., Allum, J. H., and Honegger, F. (1999). Directional sensitivity of
stretch reflexes and balance corrections for normal subjects in the roll and pitch
planes. Exp. Brain Res. 129, 93-113. doi: 10.1007/s002210050940

Clark, R. E,, Manns, J. R, and Squire, L. R. (2002). Classical conditioning,
awareness, and brain systems. Trends Cogn. Sci. 6, 524-531. doi: 10.1016/s1364-
6613(02)02041-7

Diener, H. C., Dichgans, J., Guschlbauer, B., Bacher, M., Rapp, H., and
Klockgether, T. (1992). The coordination of posture and voluntary movement
in patients with cerebellar dysfunction. Mov. Disord. 7, 14-22. doi: 10.1002/
mds.870070104

Funato, T., Sato, Y., Fujiki, S., Sato, Y., Ao, S., Tsuchiya, K., et al. (2017). Postural
control during quiet bipedal standing in rats. PLoS One 12:€0189248. doi: 10.
1371/journal.pone.0189248

Funato, T., Sato, Y., Sato, Y., Fujiki, S., Aoi, S., Tsuchiya, K., et al. (2021).
Quantitative evaluation of posture control in rats with inferior olive lesions.
Sci. Rep. 11:20362. doi: 10.1038/541598-021-99785-w

Gawthrop, P., Loram, I, Gollee, H., and Lakie, M. (2014). Intermittent control
models of human standing: similarities and differences. Biol. Cybern. 108,
159-168. doi: 10.1007/s00422-014-0587-5

Herzfeld, D. J., and Shadmehr, R. (2014). Cerebellum estimates the sensory state of
the body. Trends Cogn. Sci. 18, 66-67. doi: 10.1016/j.tics.2013.10.015

Hof, A. L. (1998). In vivo measurement of the series elasticity release curve of
human triceps surae muscle. J. Biomech. 31, 793-800. doi: 10.1016/s0021-
9290(98)00062- 1

Kolb, F. P., Lachauer, S., Maschke, M., and Timmann, D. (2002). Classical
conditioning of postural reflexes. Pflugers Arch. 445, 224-237. doi: 10.1007/
500424-002-0892-z

Kolb, F. P., Lachauer, S., Maschke, M., and Timmann, D. (2004). Classically
conditioned postural reflex in cerebellar patients. Exp. Brain Res. 158, 163-179.
doi: 10.1007/500221-004- 1889-y

Laurens, J., Meng, H., and Angelaki, D. E. (2013). Computation of linear
acceleration through an internal model in the macaque cerebellum. Nat.
Neurosci. 16, 1701-1708. doi: 10.1038/nn.3530

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W.,
et al. (2018). DeepLabCut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1281-1289. doi: 10.1038/s41593-
018-0209-y

Miall, R. C., and Wolpert, D. M. (1996). Forward models for physiological motor
control. Neural Netw. 9, 1265-1279. doi: 10.1016/s0893-6080(96)00035-4

Morasso, P. G., and Sanguineti, V. (2002). Ankle muscle stiffness alone cannot
stabilize balance during quiet standing. J. Neurophysiol. 88, 2157-2162. doi:
10.1152/jn.2002.88.4.2157

Muramatsu, H., Suzuki, K., Sasaki, T., Matsumoto, M., Sakuma, J., Oinuma,
M., et al. (2009). Evoked potentials elicited on the cerebellar cortex by

electrical stimulation of the rat spinocerebellar tract. Surg. Neurol. 72, 395-400;
discussion 400. doi: 10.1016/j.surneu.2009.04.015

Nashner, L. M. (1976). Adapting reflexes controlling the human posture. Exp. Brain
Res. 26, 59-72. doi: 10.1007/BF00235249

Ng, T. H., Sowman, P. F., Brock, J., and Johnson, B. W. (2013). Neuromagnetic
brain activity associated with anticipatory postural adjustments for bimanual
load lifting. Neuroimage 66, 343-352. doi: 10.1016/j.neuroimage.2012.10.042

Peterka, R. J. (2000). Postural control model interpretation of stabilogram diffusion
analysis. Biol. Cybern. 82, 335-343. doi: 10.1007/s004220050587

Peterka, R. J. (2002). Sensorimotor integration in human postural control.
J. Neurophysiol. 88, 1097-1118. doi: 10.1152/jn.2002.88.3.1097

Scianca, N., De Simone, D., Lanari, L., and Oriolo, G. (2020). MPC for humanoid
gait generation: stability and feasibility. IEEE Trans. Robot. 36, 1171-1188.
doi: 10.1109/tro0.2019.2958483

Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional
motor control. Nat. Rev. Neurosci. 5, 532-546. doi: 10.1038/nrn1427

Shen, K., Chemori, A., and Hayashibe, M. (2021). Reproducing human arm strategy
and its contribution to balance recovery through model predictive control.
Front. Neurorobot. 15:679570. doi: 10.3389/fnbot.2021.679570

Sun, J., Wu, S., and Voglewede, P. A. (2018). Dynamic simulation of human gait
model with predictive capability. J. Biomech. Eng. 140:031008. doi: 10.1115/1.
4038739

Suzuki, Y., Nomura, T., Casadio, M., and Morasso, P. (2012). Intermittent control
with ankle, hip, and mixed strategies during quiet standing: a theoretical
proposal based on a double inverted pendulum model. J. Theor. Biol. 310,
55-79. doi: 10.1016/j.jtbi.2012.06.019

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci.
7,907-915. doi: 10.1038/nn1309

Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement.
New York, NY: Wiley.

Winter, D. A., Patla, A. E., Prince, F., Ishac, M., and Gielo-Perczak, K. (1998).
Stiffness control of balance in quiet standing. J. Neurophysiol. 80, 1211-1221.
doi: 10.1152/jn.1998.80.3.1211

Yakovenko, S., Krouchev, N., and Drew, T. (2011). Sequential activation of motor
cortical neurons contributes to intralimb coordination during reaching in the
cat by modulating muscle synergies. J. Neurophysiol. 105, 388-409. doi: 10.1152/
jn.00469.2010

Yamaura, H., Hirai, H., and Yanagihara, D. (2013). Postural dysfunction in a
transgenic mouse model of spinocerebellar ataxia type 3. Neuroscience 243,
126-135. doi: 10.1016/j.neuroscience.2013.03.044

Yanagihara, D. (2014). Role of the cerebellum in postural control. J. Phys. Fitness
Sports Med. 3, 169-172. doi: 10.7600/jpfsm.3.169

Yao, L., and Levine, W. S. (2009). “An optimal model predictive control model
for human postural regulation,” in Proceedings of the 17th Mediterranean
Conference on Control and Automation, Thessaloniki, 1143-1148. doi: 10.1109/
MED.2009.5164700

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Konosu, Funato, Matsuki, Fujita, Sakai and Yanagihara. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org

November 2021 | Volume 15 | Article 785366


https://doi.org/10.14358/pers.81.2.103
https://doi.org/10.14358/pers.81.2.103
https://doi.org/10.1177/0278364913487566
https://doi.org/10.1371/journal.pone.0006169
https://doi.org/10.1016/j.bbr.2015.05.044
https://doi.org/10.1016/j.neuroscience.2009.07.042
https://doi.org/10.1016/j.neuroscience.2009.07.042
https://doi.org/10.1007/s002210050940
https://doi.org/10.1016/s1364-6613(02)02041-7
https://doi.org/10.1016/s1364-6613(02)02041-7
https://doi.org/10.1002/mds.870070104
https://doi.org/10.1002/mds.870070104
https://doi.org/10.1371/journal.pone.0189248
https://doi.org/10.1371/journal.pone.0189248
https://doi.org/10.1038/s41598-021-99785-w
https://doi.org/10.1007/s00422-014-0587-5
https://doi.org/10.1016/j.tics.2013.10.015
https://doi.org/10.1016/s0021-9290(98)00062-1
https://doi.org/10.1016/s0021-9290(98)00062-1
https://doi.org/10.1007/s00424-002-0892-z
https://doi.org/10.1007/s00424-002-0892-z
https://doi.org/10.1007/s00221-004-1889-y
https://doi.org/10.1038/nn.3530
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1016/s0893-6080(96)00035-4
https://doi.org/10.1152/jn.2002.88.4.2157
https://doi.org/10.1152/jn.2002.88.4.2157
https://doi.org/10.1016/j.surneu.2009.04.015
https://doi.org/10.1007/BF00235249
https://doi.org/10.1016/j.neuroimage.2012.10.042
https://doi.org/10.1007/s004220050587
https://doi.org/10.1152/jn.2002.88.3.1097
https://doi.org/10.1109/tro.2019.2958483
https://doi.org/10.1038/nrn1427
https://doi.org/10.3389/fnbot.2021.679570
https://doi.org/10.1115/1.4038739
https://doi.org/10.1115/1.4038739
https://doi.org/10.1016/j.jtbi.2012.06.019
https://doi.org/10.1038/nn1309
https://doi.org/10.1152/jn.1998.80.3.1211
https://doi.org/10.1152/jn.00469.2010
https://doi.org/10.1152/jn.00469.2010
https://doi.org/10.1016/j.neuroscience.2013.03.044
https://doi.org/10.7600/jpfsm.3.169
https://doi.org/10.1109/MED.2009.5164700
https://doi.org/10.1109/MED.2009.5164700
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles

	A Model of Predictive Postural Control Against Floor Tilting in Rats
	Introduction
	Materials and Methods
	Experimental Animals
	Experimental Protocols
	Measurement of Kinematics
	Motion Analysis
	Model Predictive Control Model and Simulation
	Quantitative Evaluation of the Rats' Behavior From the Mathematical Model
	Statistical Analysis

	Results
	Experimental Results
	Simulation of the Proposed Model
	Identification Results of the Prediction Behavior

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


