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This study reconsiders behavioral and functional data from studies investigating the
anatomical imitation (AI) and the related mental rotation (MR) competence, carried
out by our group in healthy subjects, with intact interhemispheric connections, and
in split-brain patients, completely or partially lacking callosal connections. The results
strongly point to the conclusion that AI and MR competence requires interhemispheric
communication, mainly occurring through the corpus callosum, which is the largest
white matter structure in the human brain. The results are discussed in light of previous
studies and of future implications.
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INTRODUCTION

This study described imitative behavior and its relationships with mental rotation (MR). Imitative
behavior is a form of interaction emerging in the first month of life, allowing babies to do what
they see adults doing. Imitation is to copy spontaneously or on education what another individual
acts, or to reproduce the behavior of another individual serving as a model (Mühlau et al., 2005).
Since the late 1970s, studies on imitation suggested that few-hour-old babies are able to imitate
facial expressions (i.e., tongue protrusion, lips and mouth opening), demonstrating that a tendency
to imitate is present from birth (Meltzoff and Decety, 2003; Meltzoff, 2007).

In the past, several aspects of imitation have been addressed [see literature in Pierpaoli et al.
(2018, 2020a)] with respect to (1) type of stimulus (hand/head vs. finger configurations; novel
vs. known actions; transitive vs. intransitive gestures; biological vs. non-biological movements;
object-oriented vs. not oriented movements); (2) the spatial position of stimulus and observer, e.g.,
degrees of rotation at 0◦ and 180◦; (3) instructions, e.g., anatomical perspective vs. mirror; (4) a
combination of the previous factors.

It is known that in particular situations, the imitative competence is impaired, as in children
with autism spectrum disorders (Rogers et al., 2003); in these patients, the lack of socio-
communicative abilities would be secondary compared with altered development of skills such as
imitation. Inability to MR performance is also reported in various pathological situations showing
compromised imitation, such as schizophrenia, autism, dementia, and other diseases related to
cognitive deficits (Hardan, 2000; Paul, 2011).

Many clinical and experimental studies showed that in psychiatric and neurological disorders
in which the imitative competence and MR are reduced, morphological structural alterations of
the corpus callosum (CC) are also evident, in shape and/or size and/or myelination (Hardan, 2000;
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Paul, 2011; Fujino et al., 2014). It could be thus hypothesized a
causal link between good MR ability and anatomical imitation
(AI) and the integrity of the CC.

This study describes our recent researches focused on
the anatomical perspective-taking in imitating intransitive
meaningful gestures, on the MR ability, and on their relationships
with the CC. Since AI is basic for learning, for social behavior, and
for rehabilitative therapies, the knowledge of the neural circuits
underpinning AI and MR and of the timing of CC development
and maturation could have important influences on the children
and adolescent educational and social integration programs and
on physical therapy programs.

IMITATION

The imitation is a behavior reproducing observed actions; it
allows individuals to establish the first form of relationship
between infants and parental figures, and it is basic for learning.
In everyday life, the actions to be imitated are generally
presented with the imitator facing the model, i.e., in third-
person perspective.

When invited to imitate gestures of someone facing them,
individuals can choose either an anatomical mode, activating
exactly the same effectors as the model (therefore the same
nervous mechanisms), or a specular (mirror) mode, activating the
effectors sharing an external spatial reference with those activated
by the model (Koski et al., 2003; Franz et al., 2007; Press et al.,
2009).

Previous investigations on imitative competence showed that
(1) young children were likely to use a mirror mode imitation
strategy, but with increasing age, the anatomical perspective
prevailed (Wapner and Cirillo, 1968); (2) performance was more
accurate when participants imitated with the opposite body part
facing model at 180◦ and 240◦ (Press et al., 2009); adult subjects
made significantly fewer errors when using the mirror mode
(“imitate as if looking at a mirror”) than when asked to use
the opposite hand (anatomical correspondence; Avikainen et al.,
2003).

Therefore, it was hypothesized that the natural tendency of
humans is to mirror movements, and anatomical performances
would replace the mirror in the presence of certain stimulus
information (Franz et al., 2007). When the mental alignment
between the self and the stimulus does not need mental spatial
transformation, the performance is faster and occurs in the
mirror mode; when a rotation of the body representation of an
individual is necessary to align with respect to the stimulus, i.e., a
spatial transformation is necessary, the anatomical performance
would be the result.

The choice to mirror acts executed by others could be
likely related to cortical patterns of activity, consistent with the
existence of the mirror neuron system (MNS), and reflecting a
close connection between the mirror strategy and the specific
neuron system that matches observed and executed actions.

Investigations of cortical activation during anatomically and
not anatomically matching gestures have highlighted different
functional MRI patterns of frontoparietal activation for mirror

and AI (Koski et al., 2003), generating the hypothesis of a
close link between mirror imitation and MNS. In addition,
since the anatomical perspective is more often associated with
executive errors (Ishikura and Inomata, 1995) and the mirror
imitation involves shorter reaction times than the anatomical one
(Koski et al., 2003; Franz et al., 2007), it can be hypothesized
that the two perspective-takings may be subtended by distinct
neural processes.

Behavioral Studies
Recent behavioral studies from our group tested the hypothesis
of the mirror mode of imitation as the primary one. For this
purpose, adult healthy participants (Pierpaoli et al., 2014) and
epileptic patients who undergone callosal resection to prevent
the spread of seizures (callosotomized patients; Pierpaoli et al.,
2018) were invited to imitate intransitive meaningful gestures,
performed by a human model shown in a video. In the
first condition, the subjects were asked to imitate freely (free
imitation); in the second condition, the subjects had to use the
same or opposite body part (driven imitation).

The investigation was focused on the perspective assumed
by the subjects in imitating gestures, to evaluate whether the
participants’ choice preferred a mirror-mode or an anatomical
perspective-taking.

To perform the driven imitation task, the subject has to
primarily conceptualize the term same. The same with respect to
what/whom? Encoding the concepts of same requires the analysis
of spatial coordinates; someone could choose a purely spatial
matching between the stimulus and the response (like to be in
front of a mirror) or could change its mental body image (through
an abstract operation as the MR) so as to align one’s body parts
with the other’s body parts.

In the above-mentioned studies, participants’ responses
produced enlightening results: both groups used the mirror
perspective when free to imitate, but only the control group (with
intact CC) used the anatomical perspective when asked to use the
same limb. This lays for split-brain patients to differently encode
for the same concept, or not to be able to translate the same
concept into a motor schema based on anatomical criteria.

Functional Studies
Later, the cortical activation pattern evoked in the two previous
conditions, i.e., mirror and AI of intransitive gestures, was
investigated with functional MRI (fMRI). To reduce artifacts,
distortions, and signal loss, some adaptation was made to the
experimental protocol: in the free imitation task, participants
had to simply watch the videos, by assuming that simple
gesture observation does activate the cortical pattern for mirror
imitation; in the driven imitation session, they had to image to
imitate gestures using the same limb as the model.

This study was aimed to identify the following in healthy
control subjects:

1. The cortical areas activated during the observation of
intransitive meaningful gestures performed by a model,
presented in video clips in 3rd person perspective
(condition likely simulating the mirror mode imitation).
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2. The cortical areas activated by imaging to imitate
intransitive meaningful gestures performed by a 3rd person
model, using the same limb of the model (condition likely
simulating the anatomical mode imitation).

The results showed that, in control subjects, the simple gestures’
observation activated the cortical regions belonging to the MNS
(Pierpaoli et al., 2020a): left medial area 6, bilateral motor
cortex in the precentral gyrus (PrG; area 4), left inferior parietal
lobule (IPL), and bilateral angular gyrus (Figure 1); all these
areas built a frontoparietal network known as the observation-
execution matching system, having the role to recognize the
action (Rizzolatti et al., 2014; Rizzolatti and Sinigaglia, 2016), and
to be the neural substrate underlying the action comprehension
and eventual imitation. The imaging condition evoked a more
extensive activation in the right temporoparietal junction (TPJ)
including a larger portion of area 39; in addition, a bilateral
activation in the medial (MFG) and inferior frontal gyri (IFG)
was observed. Activation also appeared in the left area 45 and was
bilateral in area 44 and in the parietal opercula (PO).

A similar activation pattern was observed in patients in the
first task: the activation of the MNS cortical circuitry evoked by
sole observation was, however, less consistent than in control
subjects (Pierpaoli et al., 2021a). A different activation pattern
was instead elicited in the second task, image to imitate with
the same limb: the bilateral activation of PO was observed only
in two patients, one of whom did perform AI (Figure 1). This
suggested that a good interhemispheric connection, other than a
certain pattern of cortical activation, is necessary to perform AI
(Pierpaoli et al., 2021a).

In fact, our results indicate that the imitation according to an
anatomical criterion seems to require the cooperation of cortical
areas in both hemispheres: the MFG, IPL, and IFG in the left, the
TPJ in the right, and the PO in both hemispheres (see also Caspers
et al., 2010).

Therefore, the behavioral and functional results described
above have given the input to design further research concerning
the mechanism of MR, its involvement in the perspective
assumption in imitation behavior, and the role of the CC in this
mental operation.

MENTAL ROTATION

Mental rotation is an abstract operation whereby a person
imagines rotating an object or a body part to place it in a different
position. MR was first studied in behavioral experiments,
showing that the time to make a judgment about a rotated
object increases in a near-linear fashion with the amount of
rotation required to align the object with a comparison one or
with a previously learned template (Shepard and Metzler, 1971;
Cooper and Shepard, 1973; Zacks, 2008). This effect has been
observed with different kinds of stimuli: geometric and “abstract,”
such as letters, lines, polygons, and three-dimensional cubes, and
embodied and concrete, such as hands, legs, and whole-body
figures (Cooper and Shepard, 1975; Kosslyn, 1988; Parsons, 1994;
De Lange et al., 2006). The MR ability is present in very young

children, reaches higher levels during adolescence, and declines
with aging [see data and literature in Iachini et al. (2019)], with
the severity of decline often depending on stimulus and task type
(object-based vs. egocentric; Jansen and Kaltner, 2014).

Previous studies, trying to allocate this abstract function in the
brain, suggested that objects’ MR belongs to the right hemisphere
and body images’ MR to the left, although with less evidence
(Parsons, 2003; Tomasino et al., 2004; Zacks, 2008); however,
others studies go against the right hemisphere dominance for
objects MR (Corballis, 1997; Serrati et al., 2000).

Mental rotation is strictly concerned with AI, as suggested in
previous behavioral studies. It was therefore hypothesized that
the different AI performances of the split-brain patients with
respect to controls could possibly be due to an impaired capacity
for MR, in which the CC might have a role. Assuming the
existence of a causal link between callosal fiber functionality and
the AI performance, the MR ability was investigated in the same
group of subjects previously tested, i.e., patients with partial or
total resections of the CC, and healthy adults with intact CC.

Behavioral Studies
To test the hypothesis of a central role of the interhemispheric
connections in MR, two separate experimental sessions were set:
a verbal task, in which participants answered by voice whether
the hand holding the cup in the displayed picture was the left or
right, and a motor task, where participants responded by lifting
their own left or right hand. In this task, it was possible to evaluate
the MR ability through a hand-laterality judgment.

The results demonstrated that control subjects performed MR
almost perfectly, in verbal and in motor sessions, both with the
model in first and in third-person perspective. Callosotomized
patients showed some impairment, mainly in the verbal session
and when the model was in 3rd person. The results indicated
the central role of interhemispheric connections in MR, and
therefore, because of the need for the cooperation of both
hemispheres to be performed, strongly suggest considering the
MR as an asymmetric function (Pierpaoli et al., 2020b).

The behavioral data just described all agree in the observation
that, concerning egocentric transformation, back orientation
(first-person presentation) produces better performances than
front orientation (third-person presentation). The difference
increases in childhood and senior age, both periods of life in
which alterations of the cerebral white matter are observed.

Functional Studies
Subsequent research was designed with the aim to identify, by
fMRI, the cortical areas activated during an MR task with human
body pictures. Attention was also paid to relate the extent of
callosal resection with MR ability. A block-designed protocol
derived from that previously used in the behavioral study
(Pierpaoli et al., 2020b) was administered. The results indicated
that regions involved in MR in control subjects include lateral
area 6 of PrG and area 7 of the superior parietal lobule (SPL) in
both hemispheres; area 22 of STG (TPJ) in the right hemisphere
and area 13 of PO in both (Figure 2). In callosotomized patients,
the activation pattern was similar (Figure 2); however, at variance
with control subjects, the activated areas were less consistently
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FIGURE 1 | Significant activation in imitation task, in control subjects (A–F), as obtained from multisubjects analysis, and in three callosotomized patients (G–I).
(A,D) OBSERVE condition: activation of anterior left supplementary motor area (SMA; A, yellow arrows) is evident. z values in (A,D) are 53 and 6, respectively. (B,E)
IMAGE TO IMITATE condition: activation of anterior (B, yellow arrow) and posterior left SMA (B, red arrow) is shown. Bilateral activation in IFG (area 44; (E), green
arrows) and opercular cortex (E, blue arrows) is also visible. z values in (B,D) are 55 and 6, respectively. (C,F) IMAGE TO IMITATE>OBSERVE: only the activation in
left posterior SMA (C, red arrow), left IFG (F, green arrow), and bilateral parietal opercula (F, blue arrows) is evident. z values are 57 and 6, in (C,F), respectively. (G–I)
IMAGE TO IMITATE condition in three patients: in (G) (total callosotomy) and (I) (anterior callosotomy) bilateral activation foci in opercular cortex are evident (blue
arrows); in (H) (total callosotomy) in left hemisphere only. Axial images in (H,I) are from the same z values; in (G), the two hemispheres are from different z values
because of different position of the opercular activation foci. CS, central sulcus; SS, Sylvian sulcus; according to the radiological convention, the left hemisphere is
shown on the right. Modified from Pierpaoli et al. (2020a, 2021a).
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FIGURE 2 | Significant activation in mental rotation (MR) task, in control subjects, as obtained from the multisubject analysis, and in two callosotomized patients.
(A) Stimulation protocol. (B) Control subjects, THINK condition. Axial images are from z = 5 and z = 45. (C) Callosotomized patients, MOVE condition: activation
from two patients are shown: the first did not perform mental rotation (top row), the second did (bottom row). CS, central sulcus; SS, Sylvian sulcus; according to the
radiological convention, the left hemisphere is shown on the right. Modified from Pierpaoli et al. (2021b).

found in either hemisphere, and the presence of unilateral or
bilateral activation was independent of the ability to perform
MR. The hypothesis is that due to a total or partial lack of the

CC, callosotomized subjects are not able to integrate information
between the hemispheres, and therefore inefficient to perform
MR when the model was in third-person perspective.
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DISCUSSION

The results from imitation studies provide further support
to the notion that the AI requires the cooperation of both
hemispheres, since different cortical areas were activated in
different hemispheres: posterior area 22 and 39 (TPJ) in the right,
dorsal premotor area 6 (MGF), areas 39–40 (IPL), and area 44
(IFG) of the left, and the PO of both.

Previous functional studies, revised by Lesourd et al. (2018),
also found activation in the insula, especially the right one.
Indeed, it has been proposed that the insular cortex may play a
critical role in self-awareness of limb movement and sense of limb
ownership (Karnath and Baier, 2010). Evidence from patients
with brain damage reports a disturbing sense of agency or of limb
ownership, more frequently after right hemisphere lesions (Baier
and Karnath, 2005). Thus, the right insula could be a central node
of the network involved in human body schema representation;
it can therefore be assumed that to imitate someone else, a person
must integrate signals from various parts of his/her own body and
distinguish them from body parts of the model to imitate. It has
been shown that IPL is also involved in this function (Decety and
Sommerville, 2003; Tessari et al., 2021), but a side preference has
still to be defined.

The cortical areas activated during the AI task communicate
with their homologs in the contralateral hemisphere through
the CC: area 6 by sending fibers in the central portion (Chao
et al., 2009), area 44 in the ventral rostral body and ventral
anterior midbody, IPL across the dorsal splenium, and TPJ the
ventral splenium (Chao et al., 2009). The interhemispheric fibers
connecting the PO of the two sides seem to travel through the
anterior and central callosal body (Fabri et al., 1999, 2001, 2006,
2011; Polonara et al., 2014; Mascioli et al., 2015). Accordingly,
patients lacking callosal fibers from the anterior and/or central
body could display an impairment in AI performance, although
the involved cortical areas are generally activated.

The involvement of the CC has also been suggested in a
previous study reporting a gradual shift toward the AI mode
in children, as the maturation of the CC progress with age,
from 8 to 18 years (Wapner and Cirillo, 1968). In addition, by
assuming that AI does require the abstract operation of MR,
present results are also in line with previous behavioral data
on the same patients (Pierpaoli et al., 2020b), demonstrating
that callosotomized patients perform worse than intact brain
subjects in an MR task.

These results from MR investigation are essentially in line
with previous numerous studies [refer to data and literature in
Milivojevic et al. (2009)], indicating that regions participating
in MR include lateral areas 6 of PrG, 7 of SPL, 13 of PO in
both hemispheres, and 22 of STG (TPJ) in the right. Previous
functional studies (Zacks, 2008; Thirioux et al., 2010; Tomasino
and Gremese, 2016) identified a common trend correlating MR
with a sort of hemispheric specialization: left lateralization for the
parietal cortex and a right specialization for the frontal regions.
Similar activation was found, although less consistently, also in
callosotomized patients, both in those performing MR and in
those not. In particular, in all patients, the activation of PO was
reported, at least on the right side. This observation strongly
points to the role of the PO both in AI and in MR.

CONCLUSION

Since one big difference between control subjects and patients
is the total or partial lack of the CC, it can be concluded
that both AI and MR require the integrity of the CC
and, therefore, the imitative competence is an asymmetrically
distributed function. In this study, the findings described
confirms that people with partial or total callosal resection
display reduced performance in laterality test with stimuli
in third person orientation, suggesting an alteration of MR
mechanism (Pierpaoli et al., 2020b); consequently, the ability
to select AI is also compromised. In addition, it appears
that the CC is involved in a cognitive task. However, more
studies are necessary to obtain further insight on this function
of the CC and to investigate the role of the right insula
in imitation.

Future studies could collect similar data from healthy children
and adolescents of different ages and from young and adult
people with defective neural development or neural lesions.
Since AI and MR are basic for learning, social behavior,
and rehabilitation, the comprehension of the neural circuit
underpinning them and the timing of the CC development
could be helpful to set efficient programs both for children
and adolescents educational and social integration and for
physical therapy.
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