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The ability to sense, perceive, and respond appropriately to aversive cues is critical
for survival. Conversely, dysfunction in any of these pathway components can lead
to heightened avoidance of neutral or rewarding cues, such as social partners. The
underlying circuitry mediating both negative valence processing and social behavior
is particularly sensitive to early life experience, but mechanisms linking experience
to pathology remain elusive. Previous research in humans, rodents, and non-human
primates has highlighted the unique neurobiology of the developing infant and the role
of the caregiver in mediating the infant’s negative valence circuitry, and the importance
of this early social relationship for scaffolding lasting social behavior. In this review, we
summarize the current literature on the development of negative valence circuits in the
infant and their social regulation by the caregiver following both typical and adversity-
rearing. We focus on clinically-relevant research using infant rodents which highlights the
amygdala and its interface with the mesolimbic dopamine system through innervation
from the ventral tegmental area (VTA) as a locus of dysfunction following early-life
adversity. We then describe how these circuits are recruited to perturb life-long social
behavior following adversity and propose additional therapeutic targets in these circuits
with an eye toward developing age-appropriate interventions.
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INTRODUCTION

Social support is associated with positive health outcomes, and research has demonstrated that the
presence of a social-support figure can reduce psychological and physiological responses to aversive
experiences (Inagaki and Eisenberger, 2012; Hornstein and Eisenberger, 2017). Indeed, the critical
need for social support during adverse experiences has been underscored during the COVID-19
pandemic, in which isolated individuals have faced increased adverse mental health outcomes (Sahi
et al., 2021). In order for this social support to be effective, the brain-body systems responding to
aversive cues, or negative valence circuits, must be functioning appropriately. In a highly dynamic
environment, the ability to sense, perceive, and respond appropriately to aversive cues is critical for
survival. Conversely, dysfunction in any of these pathway components can lead to impaired threat
responses and is a key impairment in disorders such as PTSD and anxiety (Callaghan et al., 2019;
Meyer and Lee, 2019; Abend et al., 2020).
Impaired negative valence systems can be damaging not only when an individual fails

to avoid a threat, but also if the individual fails to approach potential rewards due
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to heightened threat responses. As an example, for most species,
access to food, protection, and receptive mates requires a
motivation to approach social partners, whereas failure to do
so prevents access to these key resources. Furthermore, failing
to engage in social approach behavior can prevent access to
social support during adversity. As noted above, this can lead
to increased susceptibility to highly aversive stimuli, chronic
stress system engagement, and further maladaptive remodeling
of negative valence systems.

The plasticity of these circuits that renders them open to
social regulation also renders them vulnerable to perturbation
by extreme adverse experiences, such as trauma. Specifically,
mounting evidence suggests that these circuits are particularly
sensitive to experiences during early development, such as
early caregiving adversity (Demers et al., 2018; VanTieghem
and Tottenham, 2018; Birnie et al., 2020; Tottenham, 2020).
As will be discussed below, species-atypical care can perturb
threat responses and undermine the effectiveness of social
partners during aversive cues later in life. In this way, the
unique impact of social stimuli is two-fold—both scaffolding
these developing negative circuits and regulating their function
in adulthood. Although these circuits are a critical locus of
dysfunction in psychopathology, we have limited understanding
of the mechanisms linking early social experience, negative
valence circuits, and social behavior. However, recent advances
in circuit dissection techniques in infant rodent models have
provided much-needed insight into this question.

Here, we review the literature on the development of these
circuits, their role in social behavior, and the impact of social
experience on their function. We focus on clinically-relevant
research using infant rodents which permits circuit dissection
techniques to ask, how do these systems develop normally,
and how does early trauma impact their lasting function to
perturb social behavior? We center our discussion on the early
social niche of the altricial infant, the caregiver-infant dyad, as
this relationship shows unique impacts on the development of
negative valence systems.

Why Focus on the Infant-Caregiver
Relationship?
The role of the social partner in regulating developing negative
valence circuits is rooted in the unique relationship between
the infant and caregiver across altricial species. In these species,
infants are born immature and depend on the caregiver for
survival, including the provision of food, shelter, protection,
and physiological regulation. John Bowlby’s Attachment Theory
drew on observations from comparative research that infants
across altricial species work to maintain contact with the
attachment figure, with evolution and survival placing heavy
selection bias on these infant-caregiver dyads (Bowlby, 1965,
1978). Rapid attachment is a key component of the infant-
caregiver relationship early in life. An example is imprinting
in birds (Hess, 1962), which demonstrates an example of
rapid and robust attachment immediately after birth. Similarly,
non-human primates attach to caregivers that provide contact
comfort, a process that is required for healthy development
(Harlow and Harlow, 1965).

Forming attachments also impacts altricial infants’ interaction
with immediate threats in their environment. When faced with
threatening cues, the motorically immature infant is unable to
fight or flee and instead seeks protection from the caregiver (Coss
and Penkunas, 2016). The caregiver also regulates the infant’s
neurobehavioral responses to threats—a process termed social
buffering, whereby the caregiver acts as a ‘‘safe haven’’ for the
young and attenuates the child’s fear response to potentially
threatening or stressful stimuli (Hennessy et al., 2009; Gunnar
et al., 2015; Doom et al., 2017; Hornstein and Eisenberger, 2017).
Social buffering has been observed across species, including
rodents, non-human primates, and humans.

NEURAL CIRCUITS SUPPORTING INFANT
SOCIAL BUFFERING

The neural circuits supporting social buffering involve
suppression of cortisol, or its non-human animal analog
corticosterone (CORT), from the hypo-thalamic-pituitary axis
during stress (Hennessy et al., 2006; Faustino et al., 2017; Howell
et al., 2017). This attenuation in turn impacts multiple brain
regions typically engaged during threat processing, particularly
the amygdala (Fuzzo et al., 2015; Opendak et al., 2019; Robinson-
Drummer et al., 2019). The activation of the amygdala is greatly
attenuated in human children during a mildly stressful task when
the caregiver is present (Gunnar and Donzella, 2002; Gee et al.,
2014). Additionally, the mechanisms underlying the recruitment
of the amygdala in threat acquisition, consolidation, and
expression are believed to be well-conserved across mammalian
species (Maren and Fanselow, 1996; Fanselow and LeDoux,
1999; Phelps and LeDoux, 2005; Johansen et al., 2011).

Rodent research has helped elucidate how and when this brain
region becomes involved in threat processing, and the impact of
caregivers on this process. In typically developing infant rats, the
amygdala is not functionally engaged in threat learning during
the first few days of life; manipulations to inhibit activity in the
amygdala have no effect prior to postnatal (PN) day 10 (Raineki
et al., 2009). As a result, these infant rats, or pups, do not form
conditioned aversions to stimuli with negative valence, though
they are capable of experiencing physical pain and forming
amygdala-independent aversions (Rudy and Cheatle, 1983; Blass,
1997; Barr, 2011). This early amygdala inactivity, combined with
the unique functioning of the infant odor processing circuitry
(anterior piriform cortex, olfactory bulb, and locus coeruleus),
means that pups learn to approach any cue associated with the
caregiver, even if that cue is aversive (Sullivan et al., 1992, 2000;
Sullivan and Wilson, 1994).

Gradual engagement of the amygdala in threat processing
occurs alongside developmental changes in endogenous CORT
levels (Thompson et al., 2008). In early life, plasma CORT levels
are typically very low in rats, a phenomenon termed the stress
hyporesponsive period (SHRP; Levine et al., 1985, 1988; Levine,
2001; Hennessy et al., 2006). The gradual rise in CORT as the
pup ages has been found to be causal in inducing plasticity in the
amygdala and conferring the ability to learn threat: exogenous
systemic injection of CORT at PN8 prematurely recruits the
amygdala in threat learning processes while adrenalectomy in
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FIGURE 1 | Remodeled negative valence circuits inhibit social behavior after adversity. Following early life adversity with a caregiver, increased dopaminergic
innervation from the ventral tegmental area (VTA) to the basolateral amygdala (BLA) results in decreased social approach toward a novel peer. Measurements during
the adversity itself show that whereas caregiver presence typically suppresses dopamine (DA) release in the BLA during threat exposure, repeated adversity with the
caregiver is accompanied by enhanced amygdala reactivity and DA release in the caregiver’s presence. This suggests that negative valence circuits are engaged in
processing the caregiver and this produces lasting hyperactivity of these circuits in responding to social partners. Research now turns to the lateral habenula (LHb)
as the site of dysfunction in social behavior, as this region inhibits DA release from the VTA to the classical reward locus of the nucleus accumbens. Based on recent
work, we propose a model whereby early adversity produces LHb hyperactivity (blue dashed line) and inhibited DA release to the accumbens (NA); combined with
enhanced DA release in the VTA, these circuit changes decrease the rewarding salience of social partners.

PN12 rats prevents threat expression and amygdala activation
(Upton and Sullivan, 2010). The molecular mechanism of this
plasticity has also been traced to the trafficking of GluA1 and
GluA2 AMPA receptor subunits to synapses in the basolateral
amygdala (BLA) and activation of upstream protein kinases
protein kinase M zeta (PKMζ) and iota/lambda (PKCι/λ)
in response to elevated CORT. The increased GluA1/2 ratio
stabilizes synapses in the amygdala and is required for the
formation of threat memories (Huganir and Nicoll, 2013; Oliver
et al., 2016; Opendak et al., 2018).

Endogenous CORT levels increase around PN10, an age
at which rat pups begin to wander away from the nest and

nibble solid food (Sullivan and Holman, 2010; Upton and
Sullivan, 2010). This change is accompanied by a transition
from the sensitive period for attachment formation to a
period when amygdala-dependent threat learning can occur
to promote avoidant responses to threat-predicting cues. A
similar transition occurs in humans when fear of strangers
emerges in young children (Callaghan et al., 2019). One key
feature of this developmental window is the new ability of the
caregiver to regulate the pup’s stress response, whereby the
presence of the caregiver or caregiver odor robustly decreases
amygdala activity and plasma corticosterone levels, and actively
promotes attachment behavior (Moriceau and Sullivan, 2006).
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The caregiver’s presence switches what is learned about the
stimulus—specifically, caregiver presence during conditioning
switches learned aversions to learned preferences during this
period, a striking reversal which has recently been documented
in children (Tottenham et al., 2019). From PN16 onwards in
rats, the power of the caregiver or social partner transitions
to a more modulatory function, similar to the effect of social
partners in adulthood (Eisenberger et al., 2011; Hornstein
and Eisenberger, 2017). A similar shift has been observed
in human children, where the caregiver has the power to
regulate amygdala-PFC connectivity in younger children but not
adolescents (Gee et al., 2014).

Caregiver regulation of infant threat processing affects
the midbrain dopamine (DA) circuit involving the amygdala.
Decades of microdialysis studies have shown that caregiver
inputs such as presence and milk decrease DA release from the
ventral tegmental area (VTA), the primary source of dopamine
to the amygdala (Tamborski et al., 1990; Andersen et al., 1992;
Kehoe et al., 1998). Furthermore, caregiver presence prevents DA
release in the BLA during threat (Barr et al., 2009), while DA has
been shown to be necessary for BLA long-term plasticity in adults
to promote learning (Rosenkranz and Grace, 2002; Lorétan et al.,
2004; Kienast et al., 2008; Fadok et al., 2009; Tye et al., 2010; Ng
et al., 2018). During the period when the caregiver can toggle
preference vs. aversion in rat pups (PN10-15), the caregiver
has been shown to regulate the broader mesolimbic dopamine
circuit, including the VTA, BLA, and nucleus accumbens
(Opendak et al., 2019). As pups develop past weaning (>PN21),
the BLA circuit partners impacted by the mother switches
from the VTA to the prefrontal cortex (Robinson-Drummer
et al., 2019). In post-weaning pups, maternal presence buffers
mPFC reactivity to threats, similar to the effect observed in
young adults viewing photos of attachment figures during
exposure to stressors (Eisenberger et al., 2011). Interestingly, the
lateral habenula (LHb), a brain region that shows functional
engagement during aversive cues and inhibits DA release from
the VTA, continues to be impacted by caregiver presence even in
older PN28 pups (Packard et al., 2021).

Taken together, these data suggest that infant negative
valence systems have a unique function. Instead of processing
threatening or aversive cues to generate avoidance responses,
these circuits interpret the caregiver as the ultimate arbiter of
ambiguous cues. As a result, the caregiver has immense control
over the infant’s emotional environment at an age when these
brain circuits are still developing.

EARLY LIFE ADVERSITY DEGRADES
SOCIAL REGULATION OF NEGATIVE
VALENCE CIRCUITS

As noted above, the adaptive features of approaching the
caregiver ensure that attachments are formed, regardless of
the quality of the care received. However, abusive and/or
neglectful care can impact the quality of attachment that is
formed and in turn, the ability of the caregiver to regulate
the infant. For example, caregivers in stressful or neglectful

rearing conditions have impaired ability to decrease infant
stress responses in the Strange Situation Procedure, a canonical
laboratory procedure measuring attachment quality in children
(Ainsworth and Bell, 1970; Nachmias et al., 1996). The quality of
attachment can also be evaluated by the robustness of the child’s
oscillatory responses to caregiver cues, as measured with EEG
(Stamoulis et al., 2015; Perone and Gartstein, 2019; Pratt et al.,
2019). Children reared in adverse caregiving conditions also
show decreased fMRI response in the amygdala and prefrontal
cortex to caregiver cues (Callaghan et al., 2019; Tottenham,
2020).

Recent work in rodents has dissected specific features
of compromised caregiver buffering of infant negative
valence systems. When pups were reared using the Scarcity-
Adversity paradigm from PN8-12, in which mother rats
are given limited bedding and roughly handle pups, we
observed degraded neurobehavioral impact of reunion
with a caregiver at PN13 following separation in a rodent
Strange Situation procedure—similar to effects observed
in children. However, we also were able to record cortical
oscillations during adversity-rearing itself and observed
that within this context, nurturing maternal inputs, such
as grooming and milk ejection, failed to produce expected
changes in cortical oscillations (Opendak et al., 2020).
These results suggest that impaired processing of nurturing
cues, rather than adverse care itself, may drive degraded
attachment.

Work in rodent pups has also permitted deconstruction of
naturalistic adversity conditions to further identify mechanisms
linking experience to the outcome. For instance, the mere
presence of a caregiver during repeated adversity was sufficient
to produce neurobehavioral deficits in pups, including amygdala
dysfunction and social behavior impairments observed at
PN13. Specifically, these impairments were observed if pups
experienced repeated shock or exogenous CORT administration
in the presence of an anesthetized mother, but not alone, from
PN8-12 (Raineki et al., 2019; Opendak et al., 2021).

We now understand that impaired social buffering involves
dopamine release in the amygdala from the VTA. This
mesolimbic dopamine—BLA interface appears to integrate the
effects of development, experience, and social buffering (Atzil
et al., 2017; Opendak et al., 2019). In typically developing
pups at PN12-14, caregiver presence during threat buffers VTA,
which is disrupted by adversity-rearing (Opendak et al., 2019).
Furthermore, microdialysis in pups shows that repeated shock in
the presence of the caregiver increases DA in BLA, and results in
failure of the caregiver to buffer amygdala plasticity in response
to threat (Opendak et al., 2021). Collectively, these findings
define the necessary combination of stress and caregiver presence
to disrupt caregiver regulation of negative valence circuits and
highlight that adverse maternal behavior per se is not necessary
to recapitulate the neurobehavioral effects of adversity-rearing.

IMPLICATIONS FOR SOCIAL BEHAVIOR

Early social regulation of these negative valence circuits, such
as the mesolimbic DA-BLA interface, scaffolds function of
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these circuits in social behavior across the lifespan. Cross-
species data suggest that the amygdala function in social
behavior shows developmental transitions. In humans, the
amygdala is responsive to fearful stimuli as early as 6–9 months
of age (Jessen and Grossmann, 2014; Graham et al., 2016),
but its role in social behavior is less well understood. In
non-human primates, bilateral amygdala lesions impair social
behavior in adulthood but not infancy (Bachevalier et al.,
2001; Goursaud and Bachevalier, 2007; Raper et al., 2014).
Similarly, pharmacological and optogenetic lesion studies in
rodents suggest that amygdala engagement is atypical in infant
social behavior (Raineki et al., 2019; Opendak et al., 2021).
This early lack of amygdala involvement is in line with the
unique ecological niche of the infant which promotes an
early social behavior bias toward approaching the mother
under threat and safety (Fox et al., 2005; Moriceau and
Sullivan, 2006; Coss and Penkunas, 2016; Shultz et al.,
2018).

Recent circuit dissection work in rodent pups has highlighted
the role of dopaminergic projections from the VTA to
the BLA in modulating developmentally-appropriate social
behavior (see Figure 1; Opendak et al., 2021). Optogenetic
inhibition of the BLA and VTA terminals in the BLA
increased social approach in older (PN23) but not younger
pups (PN14), suggesting these regions are not involved in
inhibiting social behavior in young pups. This work also
showed that early life adversity can prematurely engage the
amygdala to put a brake on the social approach towards
the caregiver. More specifically, dopamine release in the
BLA is both necessary and sufficient in producing social
avoidance behaviors following adversity. Early-life adversity with
the mother (both naturalistic Scarcity-Adversity and repeated
shock with mom) from PN8-12 increased dopamine in the
pup BLA, and its blockade through pharmacological and
optogenetic techniques rescued typical social behavior at pre
and post-weaning ages. Conversely, optogenetic stimulation
of the VTA to BLA circuit in control-reared pups inhibited
typical social approach at PN14. Taken together, these data
show that dopaminergic innervation of the BLA is atypical
during early social behavior and recruitment of this circuit
transitions a system biasing social approach toward the caregiver
toward one favoring a balance of approach and avoidance as
infants mature.

REMODELING OF EXTENDED NEGATIVE
VALENCE CIRCUITS

The VTA-BLA interface does not exist in isolation, and many
mesolimbic structures interface with the VTA to promote
adaptive social behavior. Research now turns to circuit
partners of the VTA and their specific roles in development.
One such circuit partner is the lateral habenula, a small,
phylogenetically conserved structure in the posterior-dorsal-
medial end of the thalamus with rich connections to both
prefrontal cortex and midbrain monoaminergic systems
(Hu et al., 2020). As mentioned above, this brain region,
considered an ‘‘anti-reward’’ center, responds to aversive

cues and sends projections to inhibit DA release from the
VTA (Proulx et al., 2014; Baker et al., 2015). Hyperactivity
in this structure has been consistently implicated in the
pathophysiology of depression, suggesting it is likely a target
of early trauma (Simmons et al., 2020). Our recent research
on this circuit has found that the LHb is engaged in threat
processing at a pre-weaning age (PN18) in both typically
and adversity-reared pups. However, previous adversity-
rearing reduced caregiver buffering of the LHb during
threat presentation in post-weaning animals (Packard et al.,
2021). Early life adversity also significantly alters functional
connectivity patterns between the LHb and downstream circuit
partners such as the VTA and substantia nigra, producing a
more adult-like connectivity profile. The dysregulated LHb
connectivity and LHb hyperactivity of rats experiencing
early life stress suggest there may be greater inhibition of
downstream targets, such as the VTA, and heightened aversion
to potentially threatening stimuli. However, further dissection
of specific projections and cell types mediating these differences
is needed.

COULD SOME CHANGES TO SOCIAL
BEHAVIOR BE ADAPTIVE?

While many studies are quick to highlight perceived deficits
in children experiencing early life adversity, it should be noted
that many changes in functioning may reflect an optimized
behavioral strategy (Ellis et al., 2017, 2020). Indeed, taking
a more avoidant approach following repeated exposure to
an aversive social environment may be adaptive in some
circumstances. Such optimizations, called ‘‘hidden talents,’’ may
require specialized testing to uncover and are a fundamental
framework to prevent further stigmatization of children
raised in adverse environments. Additional examples include
individual differences in measures of resilience (Masten
et al., 2004; Southwick et al., 2014) and observations of
post-traumatic growth (Tedeschi and Calhoun, 2004) following
early life adversity across species. This concept of circuit
optimization to suit environmental demands has been
proposed not only for social behavior circuits but also for
others involved in threat processing and reward-seeking
(Opendak et al., 2017; Cushman et al., 2021; Hanson et al.,
2021).

CONCLUDING REMARKS

Disrupted social behavior is a core symptom of many psychiatric
and developmental disorders, including autism, anxiety, and
depression (Crawley, 2004; Miller, 2007; Kennedy and Adolphs,
2012; Patel et al., 2019). The ontogeny of these disorders is
poorly understood, but clinical research has identified early
adversity as a significant risk factor in the scaffolding of lifelong
social deficits (Teicher et al., 2002, 2003; Raineki et al., 2012,
2015; Tottenham, 2012; Gee et al., 2013; Malter Cohen et al.,
2013; Hanson et al., 2015). More recent evidence suggests
that adversity within the social context of the attachment
figure renders the infant uniquely vulnerable (Raineki et al.,
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2019; Opendak et al., 2021). Using invasive circuit dissection
techniques previously impossible in pups, here we review how the
maternal signal becomes compromised during repeated social
adversity and highlight how this may impact social behavior
through perturbation of negative valence circuits. This work
has highlighted the mesolimbic dopamine interface with the
amygdala as a site dysfunction in both caregiver regulation of
the infant and infant social behavior. Future work targeting
this circuit and upstream regions, such as the habenula, will be
critical for developing age-appropriate interventions following
early-life adversity.
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