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Editorial on the Research Topic

The cognitive neuroscience of visual working memory, Volume II

VisualWorkingMemory (VWM) enables us to retain andmanipulate visual information

for a short amount of time in order to perform a specific task. Following on from a

popular volume on the topic published in 2017 (Sigala and Kaldy, 2017), we embarked on

editing an updated collection 5 years later, to capture a snapshot of the current research

in the field. With almost 4,000 studies published in the last 5 years on visual working

memory, it is extremely difficult to provide a comprehensive overview of the topic.

However, the articles that form this collection cover considerable ground in the field.

In a computational study, Matsumoto et al. investigate the effect of simulated

recurrent connections in a model that combined the properties of a deep neural network

(DNN), and a Recurrent Neural Network RNN). DNNs have been very successful on

computer vision tasks, but at the same time they are complex and non-linear, presenting

considerable issues of interpretation and reliability (e.g., Samek et al., 2021). Matsumoto

compared the Xception net with a Hopfield model, an associative memory model that

the authors have previously shown to behave similarly to TE neurons in the Inferior

Temporal (IT) cortex (Matsumoto et al., 2005). They found that the combined model

performed better than the DNN alone in a hierarchical categorization task, and they

suggest that the fully connected layers in the Hopfield model represent the Prefrontal

Cortex (PFC). The IT and prefrontal cortices are both active in tasks that involve object

recognition and categorization (e.g., Kar and DiCarlo, 2021), so this suggested neural

architecture is a plausible model for the VWM element of hierarchical categorization.

In another study employing RNNs, Xie et al. put to the test the assumption of

the Standard Model of WM that PFC neurons behave like a continuous attractor that

maintains information in spiking activity, also referred to as “bump attractor” models

(e.g., Jaffe and Constantinidis, 2021). They trained the RNNs on an Oculomotor Delayed

Response (ODR) task, and one with a Distractor (ODRD). The RNN connectivity

footprint emerges through training, while in bump attractor models it is hardwired

according to the tuning of connected units. Despite this difference, the RNN output

resembled that of the bump attractor models, and was closer to the activity of actual
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neurons, including RNN units with different stimulus

preferences during different task periods (e.g., Sigala et al.,

2008). Importantly, as the authors state, the study is also

compatible with activity-silent (non-spiking) accounts of WM,

which could involve changes in synaptic weights or dynamic

encoding (e.g., Stokes et al., 2013; Erez et al., 2022), or indeed

rhythmic discharges, as explored in the next paper in this

collection (Rezayat et al.).

Rezayat et al. present a review of the literature on

coordinated brain activity during WM, including behavioral

performance correlates, causal interventions and breakdown of

oscillatory activity in mental illness. The review incorporates

evidence from non-human primates, including recordings of

single units and Local Field Potentials (LFPs), as well as studies

of human intracranial recordings (ECoG). The authors present

evidence which supports the idea that the delay activity of

individual neurons often fails to predict WM performance,

while population-level signatures (such as LFPs) are more likely

to predict it successfully. They then move on to examine the

conceptual models of synchronized activity between the PFC

and other brain areas during WM, including sensory cortex

(sensory recruitment), parietal cortex (distributed networks),

and the hippocampus (activation of long-termmemory). After a

summary of brain disorders where oscillations and synchrony in

WM break down (including psychosis, autism, and depression,

among others), they survey the effects of manipulating inter-

areal synchrony onWMperformance for a variety of stimulation

methods. Finally, they propose a novel framework with a

specific role for synchrony in the function of VWM (Figure

3 in Rezayat et al.). This involves a top-down modulation of

spike timing in visual areas from the PFC, along with a shared

oscillatory frame of reference that allows sensory stimuli that

match the WM contents to be more likely to drive PFC activity

and behavior.

Finally, Assecondi et al. have contributed an experimental

study that combined a 3-day WM training with tDCS

(transcranial Direct Current Stimulation), and looked for

changes in event-related potentials (ERPs) 1 day and 1 month

after the training in healthy young adults. The particular tDCS

protocol did not result in behavioral or brain activity changes in

this participant sample, however the area of cognitive training,

and promoting brain plasticity with tDCS remain popular, and

limitations as well as future directions are discussed.

In summary, this Research Topic includes two

computational papers, an empirical study of WM training,

and a narrative review. They all present evidence in favor of an

integrative and multipronged approach that will help elucidate

the mechanisms of WM in health and disease, and offer a

snapshot of the exciting current work and theories in the field.
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