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Despite the prevalence of opioid misuse, opioids remain the frontline

treatment regimen for severe pain. However, opioid safety is hampered by

side-effects such as analgesic tolerance, reduced analgesia to neuropathic

pain, physical dependence, or reward. These side effects promote

development of opioid use disorders and ultimately cause overdose deaths

due to opioid-induced respiratory depression. The intertwined nature of

signaling via µ-opioid receptors (MOR), the primary target of prescription

opioids, with signaling pathways responsible for opioid side-effects presents

important challenges. Therefore, a critical objective is to uncouple cellular

and molecular mechanisms that selectively modulate analgesia from those

that mediate side-effects. One such mechanism could be the transactivation

of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-

effects can be uncoupled from analgesia signaling via targeting RTK family

receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This

review focuses on the current state of knowledge surrounding the basic

pharmacology of RTKs and bidirectional regulation of MOR signaling, as

well as how MOR-RTK signaling may modulate undesirable effects of

chronic opioid use, including opioid analgesic tolerance, reduced analgesia
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to neuropathic pain, physical dependence, and reward. Further research is

needed to better understand RTK-MOR transactivation signaling pathways,

and to determine if RTKs are a plausible therapeutic target for mitigating opioid

side effects.

KEYWORDS

mu-opioid receptor, opioid signaling, pain, tolerance, neuropathic pain, physical
dependence, reward, receptor tyrosine kinase

Introduction

The opioid epidemic has reached unprecedented
proportions globally. In the United States alone, overdoses
caused by opioids have claimed the lives of over hundreds of
thousands of people, with rates of lethal overdoses expected to
double in the next five years (Holland et al., 2021; Pickard and
Lee, 2021). Prescription opioids are major contributors to the
current opioid crisis, despite serving as the mainstay treatment
for severe and chronic pain. Safe use of opioids is hampered by
potentially severe side-effects including respiratory depression
and the development of dependence and addiction (Benyamin
et al., 2008; Pattinson, 2008; Henry et al., 2015; Hayhurst and
Durieux, 2016; Algera et al., 2019). Emergence of these side-
effects is promoted by escalating doses of opioids in chronic
pain patients to mitigate the development of analgesic tolerance
(Collett, 1998; Benyamin et al., 2008; Henry et al., 2015). High
opioid doses are also necessary in neuropathic pain patients to
overcome the minimal analgesic efficacy of current opioid-based
therapies (Przewlocki and Przewlocka, 2001; Balayssac et al.,
2009; Donica et al., 2014; Puig et al., 2020b). Such chronically
high opioid doses promote physical dependence, causing
deleterious physiological symptoms upon opioid withdrawal
(Azolosa et al., 1994; Epstein et al., 2006; Burma et al., 2017), and
ultimately prevents the discontinuation of opioid treatment.
As a result, patients are forced to choose between effective
pain treatments and the risk of physical dependence and/or
addiction. With high doses, patients also risk developing
respiratory depression (decreased respiration), the main cause
of overdoses death (Pattinson, 2008; Algera et al., 2019). Opioid
addiction has resulted in severe social and steep economic
costs of hundreds of billions of dollars annually (The Council
of Economic Advisers, 2017) and spurred a growing effort
on finding new strategies to treat pain effectively and safely.
One focus is toward finding a safe and “ideal” analgesic drug
that would be free of addiction potentiating side-effects and
have a low lethality. Unfortunately, to date, no safer alternative
with equal analgesic efficacy to opioids has been found (Stuart
et al., 2018). Many other proposed strategies involve reducing
opioid dosage by locally targeting injured tissue (and limit
central penetration), or reducing opioid prescriptions including

establishing multimodal pain treatment regimens (as opposed
to opioid monotherapy), opioid prescription monitoring, and
restricted prescribing guidelines (Saloner et al., 2018; Mir
et al., 2019; Franz et al., 2021). Yet this has not been enough.
Therefore, it is imperative to continue efforts toward preserving
long-term opioid analgesia, while mitigating side-effects. To
this end, a better understanding of the molecular mechanisms
underlying opioid signaling is needed.

Opioid receptors currently characterized include µ-opioid
receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor
(DOR), and opioid receptor like-1 (ORL1). These opioid
receptors (ORs) belong to the class A (rhodopsin family) family
of G protein-coupled receptors (GPCRs) which are coupled
to inhibitory Gαi/o G proteins. These GPCRs function to
reduce neuronal excitability primarily by increasing potassium
conductance and inhibiting voltage-gated calcium channels (Al-
Hasani and Bruchas, 2011). Prescription opioids specifically
modulate analgesia through MOR (Matthes et al., 1996; Loh
et al., 1998), which is concentrated in structures essential
for conductance of pain-related signaling including peripheral
sensory neurons, spinal cord, brainstem and central brain nuclei
(Mansour et al., 1994a,b, 1995a,b; Basbaum et al., 2009; Scherrer
et al., 2009). Activation of MOR expressed on pain processing
neurons via endogenous (e.g., endorphin) or exogenous (e.g.,
morphine or fentanyl) opioids directly inhibits these cells’
activity and controls analgesia (Al-Hasani and Bruchas, 2011).

Mechanisms of opioid analgesic tolerance and side-effects
are still poorly understood (Adhikary and Williams, 2022).
Traditionally, tolerance was thought to occur via the direct
modulation of MOR signaling and trafficking (Williams et al.,
2013). More recent evidence suggests that MOR-mediated
side-effects can be uncoupled from analgesia, suggesting
distinct signaling pathways for opioid-induced side effects
versus analgesia (Puig and Gutstein, 2017; Paul et al.,
2021). Separable pathways suggests that specific therapeutic
strategies can be developed to selectively target side-effects
without altering analgesia. This is further complicated by
the fact that, apart from observational clinical studies, in
contrast to animal experiments, practically no rigorously
controlled clinical trials have unequivocally demonstrated
pharmacodynamic tolerance to opioids in human patients
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(Collett, 1998; Henry et al., 2015), hampering the clinical
translatability of earlier preclinical models.

Though the precise mechanisms for the above opioid-
related signaling pathways remain to be determined, important
clues have emerged which involve the receptor tyrosine kinase
(RTK) family (Wang et al., 2012). More specifically, RTK
signaling selectively regulates analgesic tolerance to MOR
selective agonists (Puig et al., 2020a,b). Emerging evidence
also suggests that RTKs could be involved in reduced opioid
analgesia against neuropathic pain (Donica et al., 2014; Puig
et al., 2020b), physical dependence (Rezamohammadi et al.,
2020; Dorval et al., 2022), and reward (Koo et al., 2014; Fetterly
et al., 2021). Together, these studies suggest that targeting
opioid side-effects with RTK inhibitors could constitute a
promising strategy to improve opioid safety. This review
summarizes current knowledge about signaling interactions and
crosstalk between MORs and RTKs. Furthermore, we discuss
the implications of these mechanisms in opioid-mediated
side-effects, with a focus on tolerance, reduced neuropathic
pain analgesia, physical dependence, and reward. Finally, we
discuss the potential clinical use of RTK inhibitors. Though
RTK inhibitors are FDA-approved cancer chemotherapy drugs
(Karaman et al., 2008; Gialeli et al., 2014; Roskoski, 2018), we
present the possibility that these medications can be repurposed
as a novel therapy for chronic pain and to improve opioid safety.

Overview of mu-opioid receptor
signaling

Brief overview of mu opioid receptor
signaling transduction pathways

As a canonical GPCR, MOR recruits Gαi/o G proteins
upon stimulation. These inhibitory G proteins are composed
of a monomeric αi/o subunit and a dimeric Gβγ complex
and are characterized by their sensitivity to pertussis toxin
(Connor and Christie, 1999). At rest, the G proteins exist as
an inactive Gα/βγ heterotrimeric complex that is GDP-bound.
However, upon receptor activation by opioid ligands, changes
in receptor conformation lead to the dissociation of Gα and Gβγ

subunits via GDP/GTP exchange, which triggers intracellular
signaling through downstream signaling effectors (Figure 1A).
Canonical signaling pathways of Gαi/o include inhibition of
adenylyl cyclase (AC), the enzyme responsible for production
of cyclic adenosine monophosphate (cAMP)—a critical second
messenger of ORs. The resulting decrease in intracellular
cAMP diminishes activity of protein kinase A (PKA) and
PKA-dependent processes including activation of the C-AMP
Response Element-binding protein (CREB) transcription factor.
Gαi/o signaling also positively regulates the activity of G protein-
gated inwardly rectifying potassium (GIRK) channels, causing
cellular hyperpolarization (Navarro et al., 1996). In parallel, Gβγ

negatively regulates Ca2+ currents via inhibition of P/Q-type,
N-type, or L-type Ca2+ channels, further contributing to
overall inhibition of cellular activity (for review see: (Al-Hasani
and Bruchas, 2011; Williams et al., 2013)). To illustrate, in
pain circuitry, release of Gβγ subunits in presynaptic neurons
results in inhibition of N-type Ca2+ channels for negatively
modulating neurotransmitter release, while Gβγ subunits in
postsynaptic neurons activate GIRKs, preventing neuronal
depolarization (Chieng and Christie, 1994; Zamponi et al.,
1997). Together, these mechanisms activated by MOR agonists
result in analgesia via modulation of neuronal transmission
in circuits conveying nociception. Following G protein signal
transduction, G protein receptor kinases (GRKs) are recruited
for phosphorylation of MOR on 11 potential phosphorylation
sites present on the carboxyl terminal domain of the receptor,
including serine (S), threonine (T), and tyrosine (Y) residues
(Doll et al., 2011; Lau et al., 2011). Several GRKs (e.g., GRK2,
GRK3, GRK5, GRK6) selectively phosphorylate different MOR
phosphorylation sites, modulating signal transduction in a
ligand and context-dependent manner (Lemel et al., 2020).
Of note, other kinases, such as protein kinase C (PKC) or
calcium/calmodulin-dependent protein kinase II (CaMKII),
also phosphorylate MOR on selective phosphorylation sites in
a ligand-dependent manner (Kelly et al., 2008). Additionally,
MOR phosphorylation initiates receptor desensitization via
receptor recruitment of β-arrestin2 (Figure 1B; Whistler
and Von Zastrow, 1998; Martini and Whistler, 2007). This
activates clathrin-mediated endocytosis of the MOR-β-arrestin2
complex, resulting in MOR internalization and recycling which
terminates receptor signaling at the plasma membrane. The
MOR-β-arrestin2 complex also recruits specific transduction
signal proteins including kinases such as src, phosphoinositide
3-kinases (PI3K), or Mitogen-Activated Protein Kinases
(MAPK), including extracellular signal-regulated kinases 1
and 2 (ERK 1 and 2), or c-Jun N- terminal Kinases (JNK) 1–3
(Pierce et al., 2001) (for full review of pathways see Williams
et al., 2013; Jean-Charles et al., 2017). Finally, MOR signaling
can be terminated by degradation via ubiquitination pathways
(Chaturvedi et al., 2001; Petäjä-Repo et al., 2001).

Proposed mechanisms of
opioid-mediated side-effects

Mu-opioid receptor signaling is essential for opioids to
induce analgesia and their side-effects, as global deletion of
the gene encoding MOR (Oprm1) completely blocks opioid
analgesia, reward, and physical dependence in rodents (Matthes
et al., 1996; Loh et al., 1998). Indeed, most signaling pathways
downstream of MOR are critical for the development and
maintenance of opioid side-effects (Al-Hasani and Bruchas,
2011; Williams et al., 2013; Allouche et al., 2014; Zhou
et al., 2021). Historically, mechanisms explaining side-effects

Frontiers in Systems Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnsys.2022.1059089
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1059089 November 25, 2022 Time: 15:59 # 4

Gamble et al. 10.3389/fnsys.2022.1059089

FIGURE 1

Mu-opioid receptor (MOR) signaling transduction pathways, internalization, and recycling. (A) Ligand-activation of MOR activates Gαi/o-induced
inhibition of adenylate cyclase, resulting in decreased intracellular cAMP levels and depleted downstream signaling. Gαi/o also serves to activate
G protein gated inwardly rectifying potassium channels, leading to efflux of potassium ions while βγ heterodimers simultaneously perturb
calcium influx by inhibiting voltage gated calcium channels, overall inhibiting intracellular signaling and cellular activity. (B) Ligand-activation of
MOR also eventually leads to phosphorylation of MOR c-terminal tail by G protein receptor kinases (GRKs), which enables docking of
β-arrestin2 and initiates MOR endocytosis for further receptor degradation or recycling. Note that recruitment of β-arrestin2 can also drive
activation of downstream signaling effectors, including ERK, p38 or JNK pathways.

of morphine were generalized to all MOR ligands, however,
it has been difficult to find a single unifying mechanism that
could explain side-effect profiles shared by all MOR agonists
(Raehal and Bohn, 2011; Raehal et al., 2011; Whistler, 2012).
This is likely since MOR ligands differ in their potencies,
pharmacokinetics, and receptor internalization. Such drug-
specific differences may also lead to varying recruitment of
signaling effectors and pathways (Duttaroy and Yoburn, 1995;
Keith et al., 1996, 1998; Trafton et al., 2000; Bohn et al.,
2004; Kenakin, 2011; Posa et al., 2016; Schmid et al., 2017).
Relatedly, different MOR ligands can stabilize the receptor in
distinct conformations unique to each drug. As a result, different
ligands can preferentially activate distinct signaling cascades
that are biased toward either G protein versus β-arrestin2
pathways (Alvarez et al., 2002; Kenakin, 2011). Biased signaling
downstream of MOR was proposed to drive the distinction
between opioid side-effects and analgesia. In such a model,

β-arrestin2 signaling preferentially mediates opioid-induced
side effects while G protein signaling preferentially mediates
the analgesic properties of these drugs (Bohn et al., 1999,
2000, 2002, 2003, 2004; Raehal and Bohn, 2011; Schmid
et al., 2017). Consequently, much research has focused on
identifying opioid ligands with higher intrinsic efficacy for
stimulating G protein signaling downstream of MOR, while
not triggering activation of the β-arrestin2 pathway (Soergel
et al., 2014; Manglik et al., 2016). Although several G protein-
biased compounds provide efficacious analgesia (Singla et al.,
2019; Viscusi et al., 2019), adverse effects remain (Hill et al.,
2018; Conibear and Kelly, 2019). Additionally, despite different
signaling bias, all prescription opioids cause side-effects such
as tolerance. G protein-biased MOR ligands thus cannot fully
explain the mechanisms responsible for analgesia versus side-
effects (Gillis et al., 2020).
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Ultimately, a major thrust of opioid research is to uncouple
the signaling mechanisms that selectively regulate analgesia
from mechanisms that regulate undesired side-effects. New
approaches proposing mechanisms that may not involve
traditional canonical MOR signaling pathways may be key in
addressing this issue. We propose that RTK signaling may be
a common signaling pathway recruited downstream of MOR
by all opioid agonists beyond their signaling bias. Here, we
will present evidence suggesting that RTK signaling selectively
modulates opioid side-effects but not analgesia. Therefore,
we hypothesize that targeting RTKs offers a novel strategy
to prevent and/or treat opioid side-effects without altering
analgesia a critical objective for the field.

Overview of receptor tyrosine
kinase signaling

Receptor tyrosine kinases are a subclass of tyrosine kinases
expressed at the cell surface which respond with high affinity
to selective soluble polypeptide growth factors, cytokines, and
hormones. RTKs constitute 20 sub-families (Robinson et al.,
2000), including the ErbB family comprising the epidermal
growth factor receptor (EGFR), platelet-derived growth factor
receptor family (PDGFR), vascular-endothelial growth factor
receptor family (VEGFR), tropomyosin receptor family (Trk),
fibroblast growth factor receptor family (FGFR), ephrin receptor

family (EphR), and insulin receptor family (IR) (Table 1).
Structurally, RTKs are composed of single transmembrane
glycoproteins, with the N-terminal extracellular domain
containing the ligand-binding sequence, and the C-terminal
intracellular domain containing multiple tyrosine residues
which form the protein kinase catalytic core of these receptors
(Du and Lovly, 2018; Figure 2). Ligand activation of RTKs
elicits non-covalent oligomerization of monomeric RTKs and
promotes formation of homo- or heterodimers. This process
leads to trans-autophosphorylation (Honegger et al., 1989;
Favelyukis et al., 2001) of key tyrosine residues on the interacting
receptors. This activates downstream signaling via recruitment
of selective docking proteins possessing Src homology-2 (SH2)
and phosphotyrosine-binding (PTB) domains (Pawson, 2004);
SH2 and PTB-domain-containing proteins include insulin
receptor substrate-1 (IRS1), Grb2-associated binder (Gab1),
and FGFR substrate 2 (FRS2α/FRS2β). These downstream
proteins, lacking intrinsic kinase activity, serve as scaffolds to
organize signaling complexes and trigger intracellular signaling
cascades. Most docking proteins like Gab1 can be recruited
by multiple RTKs. However, some are specific to a subset of
receptors. For example, FRS2α and FRS2β are only involved in
FGFR-, and Trk-mediated signaling (Schlessinger, 2000). This
confers activation of specific signaling pathways by different
subsets of RTKs and possibly enables signaling specificity.
Pathways activated following docking protein recruitment
include phospholipase Cγ (PLCγ), phosphoinositide 3-kinases

TABLE 1 Receptor tyrosine kinases identified to modulate opioid-mediated behaviors.

Receptor tyrosine
kinase (RTK)

RTK-MOR
crosstalk

Analgesic
tolerance

Resistance of
neuropathic pain
to opioid analgesia

Opioid
dependence

Opioid reward

Epidermal growth factor
receptor (EGFR)

Belcheva et al., 2001;
Belcheva et al., 2003;
Belcheva et al., 2005;
Miyatake et al., 2009;
Zhao et al., 2013;
Phamduong et al., 2014;
Yang et al., 2021

Puig et al., 2020b Martin et al., 2017; Puig
et al., 2020b

Fibroblast growth factor
receptor (FGFR)

Fujita-Hamabe et al.,
2011

Blackwood et al., 2019

Platelet-derived growth
factor receptor (PGFR)

Wang et al., 2012; Weber
et al., 2013; Li et al., 2020

Wang et al., 2012; Puig
and Gutstein, 2017; Puig
et al., 2020a

Narita et al., 2005;
Donica et al., 2014

Insulin Receptor (IR) Mclaughlin and Chavkin,
2001; Li et al., 2003

Li et al., 2003; Xu et al.,
2012

Ephrin B Liu et al., 2011 Liu et al., 2011 Han et al., 2008 Xia et al., 2014

Tyrosine receptor kinase
B (TrkB)

Peregud et al., 2016;
Rezamohammadi et al.,
2020

Freeman et al., 2003; Koo
et al., 2012; Koo et al.,
2014; Jorjani et al., 2021

Fms-like tyrosine kinase
(FLT3)

Rivat et al., 2018

Vascular endothelial
growth factor receptor
(VEGFR)

Lopez-Bellido et al., 2019
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FIGURE 2

Receptor tyrosine kinase (RTK) structure, ligand binding and autophosphorylation, and common downstream signaling pathways. (A) RTK
monomers are single transmembrane crossing peptides with extracellular ligand binding sites and tyrosine-rich intracellular effector regions.
(B) RTK ligands bind as homo or heterodimers to RTKs inducing trans-autophosphorylation of opposing intracellular tyrosine residues.
(C) Ligand-bound RTKs typically recruit protein complexes with SH2 and PTB domains which may activate a number of secondary intracellular
messengers known to modulate other transmembrane receptors, intracellular signaling, or transcriptional regulation.

(PI3K), mitogen-activated protein kinase/p38 (MAPK/p38),
Ras-GTPase-activating protein (Ras-GAP), Janus kinase/signal
transducer and activator of transcription (JAK/STAT), proto-
oncogene c-Src, or focal adhesion kinase (FAK) signaling
cascades (for a review see: (Lemmon and Schlessinger, 2010; Du
and Lovly, 2018).

Historically, RTK signaling pathways were found to be
involved in cell proliferation, differentiation, migration, or
metabolic changes (Lemmon and Schlessinger, 2010), and were
also associated with cancer development (Du and Lovly, 2018).
Most, if not all, RTK signaling effectors are also activated by
opioid receptors. Numerous protein kinases including, ERK,
JNK, p38, PKC, AKT, and CaMKII are utilized by both MOR
and RTKs (Lemmon and Schlessinger, 2010; Williams et al.,
2013). The ability of multiple receptors to concurrently activate
signaling effectors raises the possibility of complex crosstalk
between these receptors or even receptor cross-activation by the
same molecule. Importantly, nearly all downstream pathways
utilized by RTK receptors including MAP kinase cascades
(Mckay and Morrison, 2007), PI3K (Haglund et al., 2007),
PKC (Heckman and Wade, 2018), Akt (Choudhary et al.,

2009), or ubiquitination (Haglund et al., 2003) play roles in
opioid signaling in analgesia, tolerance, and dependence. It
remains unclear, however, how these pathways pertain to opioid
behaviors and side-effects (Mouledous et al., 2007; Chen et al.,
2008a; Macey et al., 2009; Wang et al., 2009; Gregus et al., 2010).
These discrepancies could be related to cellular context and,
most importantly, they may involve modulation of signaling
via differential engagement of RTK signaling in response to
specific opioids.

Mu-opioid receptors-receptor
tyrosine kinases crosstalk

General mechanisms of G
protein-coupled receptors-receptor
tyrosine kinases transactivation

Crosstalk between GPCRs and RTKs can amplify signaling
pathways downstream of one or both receptors in a process
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known as GPCR-RTK transactivation (Daub et al., 1996).
This mechanism enables the integration of signal transduction
between GPCRs and RTK signaling networks at signaling hubs
shared between the respective receptor signaling pathways
(Ragunathrao et al., 2019). Two major pathways of GPCR-
RTK transactivation have been identified which involve
either extracellular RTK ligand release (ligand-dependent)
or intracellular recruitment of signaling effectors such as
phosphotyrosine kinases (ligand-independent) (for review see
Wetzker and Bohmer, 2003; Figure 3.

Ligand-dependent transactivation requires GPCR activation
of matrix regulatory proteins such as membrane-bound
matrix metalloproteinases (MMPs) or A Disintegrin and
Metalloproteases (ADAMs) which contribute to the shedding
of ligands. Several different MMPs or ADAMs are involved
in the proteolytic ectodomain shedding of membrane bound
RTK ligands from the extracellular matrix (ECM), which in
turn, may transactivate several different RTKs (Cattaneo et al.,
2014). This has been mostly described for EGFR as MMPs can
cleave the heparin binding EGFR (Hb-EGF) to activate EGFR
(Kilpatrick and Hill, 2021). Though the precise mechanisms of
GPCR-mediated activation of MMPs or ADAMS are not fully
understood, studies have implicated kinases such as c-src and
PKC or calcium influx as activators of these proteases Figure 3A,
for review, see Cattaneo et al. (2014). Notably, GPCR effectors
like Gβγ (Overland and Insel, 2015) and β-arrestin2 (Noma
et al., 2007; Oligny-Longpré et al., 2012).

Ligand-independent transactivation pathways involve
complex intracellular signaling cascades which recruit kinases
like Src or PI3K (Di Liberto et al., 2019) to phosphorylate
selective tyrosine residues on RTKs (Figure 3B). This mode
of GPCR-RTK transactivation can also require association of
the two receptors via protein complex formation (for review
see Wetzker and Bohmer, 2003). Of importance, GPCR-RTK
heterodimerization may completely change GPCR signal
transduction mechanisms and even promote a switch in the
associated G protein. This is of particular interest because MOR
signals via pertussis-toxin-insensitive stimulatory Gαs proteins
following chronic morphine exposure or neuropathic pain
(Chakrabarti et al., 2005, 2010; Chakrabarti and Gintzler, 2007;
Tsai et al., 2009). Therefore, involvement of RTKs in G protein
switching downstream of MOR is a possibility that remains to
be investigated.

Other ligand-independent transactivation involves atypical
mechanisms of GPCR-RTK crosstalk via reactive oxygen species
(ROS), such as nitric oxide (NO) (Figure 3C). ROS production
by GPCRs could block protein-tyrosine phosphatases, activate
phosphotyrosine kinases and modulate phosphorylation of RTK
tyrosine residues (Cattaneo et al., 2014). Such a mechanism may
be particularly relevant to opioid actions since ROS modulate
MOR-mediated behaviors in rodents (Doyle et al., 2013). This
therefore raises the possibility that RTKs could be involved in
these ROS-mediated signaling pathways.

Mu-opioid receptors-receptor tyrosine
kinases transactivation in vitro

Most in vitro studies investigating RTK transactivation by
MORs have focused on EGFR or PDGFRβ. In immortalized cell
lines transfected with MOR, acute treatment with selective MOR
agonists such as [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin
(DAMGO) or morphine resulted in transactivation of EGFR
(Belcheva et al., 2001, 2003, 2005; Phamduong et al., 2014) or
PDGFRβ (Weber et al., 2013) as shown by phosphorylation
of these RTKs. Interestingly, transactivation of RTKs by MOR
activates downstream effector signaling at levels comparable to
activation to direct activation of the RTKs themselves (Belcheva
et al., 2001; Weber et al., 2013; Phamduong et al., 2014), and
MOR-RTK transactivation can be abolished by pre-treatment
with selective RTK inhibitors (Belcheva et al., 2001; Chen et al.,
2008b; Weber et al., 2013). In cultured cells, mechanisms of
MOR-EGFR and MOR-PDGFRβ transactivation were shown
to require release of EGF (Belcheva et al., 2001, 2003, 2005;
Phamduong et al., 2014) or of PDGF-B (Wang et al., 2012;
Weber et al., 2013), respectively. Consistent with mechanisms
of ligand-dependent GPCR-RTK transactivation, MOR-EGFR
and MOR-PDGFRβ transactivation also require MMP activity
(Belcheva et al., 2001). MMP activation by MOR may involve
calmodulin (CaM), a Ca2+ sensor and binding protein. In
resting conditions, CaM prevents MMP activity at the plasma
membrane (PM) in HEK293 cells (Belcheva et al., 2001).
Acute treatment with MOR agonist DAMGO promotes CaM
translocation from the plasma membrane (PM) to MOR
intracellular domains, lifting CaM inhibition on MMP via
mechanisms involving activation of phospholipase C (PLC)
and PKCε signaling (Belcheva et al., 2001, 2005; Miyatake et al.,
2009; Figure 4A).

Other signaling effectors of MOR are involved in MOR-
RTK transactivation. MOR-EGFR transactivation requires
both Gαi/o and β-arrestin2. Indeed, opioid-mediated EGFR
phosphorylation can be attenuated via pertussis toxin or
by siRNA-mediated β-arrestin2 silencing in cultured rat
astrocytes (Miyatake et al., 2009). In addition to canonical
MOR transduction pathways, other common signaling effectors
between GPCRs and RTKs can take part in MOR-RTK
transactivation. PI3K inhibitors abolish EGFR activation by
DAMGO-activated MORs in cultured rat astrocytes, suggesting
involvement of this kinase in MOR-RTK transactivation
(Belcheva et al., 2005). Similarly, JNK inhibitors block MOR-
PDGFRβ transactivation in rat spinal neurons (Li et al., 2020).
Together, these studies indicate that MOR-RTK transactivation
likely involves a complex network of converging signaling
pathways (Figure 4A). It is important to note that most studies
of mechanisms of MOR-RTK transactivation have employed
acute MOR agonist treatments. However, longer MOR agonism
may have different effects on RTK activity (Belcheva et al.,
2003; Miyatake et al., 2009). Over hours, longer term treatment
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FIGURE 3

Ligand-dependent, ligand-independent, and atypical mechanisms of GPCR modulation of RTKs. (A) Ligand-dependent transactivation:
Activated GPCRs induce a variety of downstream signaling pathways including activation of phospho-tyrosine kinases (PTKs), or increase of the
influx of Ca2+, which activates matrix metalloproteinases (MMP) to cleave cell membrane-bound RTK ligands. (B) Ligand-independent
transactivation: Activated GPCRs may also recruit intracellular PTKs to directly phosphorylate tyrosine residues on the intracellular domain of
RTKs and induce their activation in a ligand-independent manner. (C) Atypical transactivation: Phox protein complexes activated by GPCRs
generate reactive oxygen species which modulate phospho-tyrosine kinases (PTK) and phosphotyrosine phosphatases (PTP) activity to promote
phosphorylation of intracellular RTK tyrosine residues. GPCR, G protein coupled receptor; MMP, matrix metalloproteinase; PTK,
phosphotyrosine-kinase; PTP, phosphotyrosine phosphatases.

with MOR agonists DAMGO, enkephalin, or morphine
induces EGFR phosphorylation as well as both downregulation
and decreased ERK phosphorylation. These mechanisms are
β-arrestin2- and Gαi/o-dependent and not observed with acute
opioid treatments on the order of minutes, suggesting that acute
versus longer-term events cause temporally distinct effects on
signaling (Belcheva et al., 2003; Miyatake et al., 2009). Because
most opioid-mediated side-effects occur after long-term opioid
treatment, further studies to understand the specific alterations
of MOR-RTK transactivation mechanisms by long-term opioid
MOR stimulation are still needed.

Intriguingly, mechanisms of MOR-EGFR transactivation
identified in vitro in immortalized cell lines do not differ
between opioids with different ability to internalize MOR
(Belcheva et al., 2001). Belcheva and colleagues (Belcheva et al.,
2001) found that EGFR was phosphorylated by MOR whether
it was activated by morphine (low internalizing (Sternini et al.,

1996), DAMGO (highly internalizing synthetic opioid peptide
(Keith et al., 1998) or endomorphin (highly internalizing
endogenous opioid peptide (Mcconalogue et al., 1999). In
addition, mechanisms of MOR-EGFR transactivation by these
agonists all required similar mechanisms of CaM recruitment
and PKC signaling, although they had been characterized
as opioids with different signaling bias toward G protein
and β-arrestin recruitment (Schmid et al., 2017). Together
this implies that RTK transactivation mechanisms may be
independent from MOR-ligands bias.

Receptor tyrosine kinases
transactivation of mu-opioid receptors

In addition to modulation of RTK signaling by GPCRs,
RTKs can also modulate GPCR-mediated signaling, suggesting
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FIGURE 4

Identified mechanisms of MOR-RTK crosstalk. (A) Identified mechanisms of MOR-RTK transactivation: Activated MOR can induce MMP
activation via mechanisms including disinhibition Calmodulin (CaM), leading to ligand shedding and ligand-dependent RTK activation. Other
ligand-independent mechanisms may involve recruitment of intracellular phosphotyrosine kinases (PTKs) to phosphorylate RTK tyrosine
residues. G protein and β-arrestin2 signaling may also be involved in MOR-RTK transactivation. (B) Identified mechanisms of RTK modulation of
MOR signaling: Phosphorylated RTK may modulate activation of GPCR via a recruitment of PTKs, or β-arrestins activity. RTK activation may also
lead to altered GPCR ligand gene expression or MOR internalization. MOR, mu-opioid receptor; MMP, matrix metalloproteinase; RTK, receptor
tyrosine kinase; GPCR, G protein coupled receptor.

that the relationship between GPCRs and RTKs is reciprocal
(Delcourt et al., 2007; Figure 4B). General mechanisms
of GPCR transactivation by RTKs or “GPCR highjacking”
(Delcourt et al., 2007) can involve recruitment of GPCR
signaling effectors like GRKs (García-Sáinz et al., 2010; Sun
et al., 2018), β-arrestins (Dalle et al., 2001; Povsic et al.,
2003; Hupfeld and Olefsky, 2007) or activation of RTK
downstream kinases including PI3K (Molina-Munþoz et al.,
2006), Akt, or c-Src (Baltensperger et al., 1996; Doronin
et al., 2002; Gavi et al., 2007). These mechanisms either
require physical interactions between GPCRs and RTKs or
transcriptional regulation of GPCR ligand synthesis (Delcourt
et al., 2007). Relevant to this review, accumulating studies
show that RTK signaling influences MOR signal transduction
by modulation of phosphorylation. In cultured Xenopus laevi
oocytes co-transfected with MOR and the insulin receptor
(IR), pretreatment with insulin potentiated DAMGO-activated

GIRK inward currents via MAPK signaling and possible
dephosphorylation of MOR tyrosine residues, Y-106, or Y-166.
Thus, indirectly demonstrating that IR signaling modulates
MOR-signaling efficacy (Mclaughlin and Chavkin, 2001). In
contrast, concomitant activation of MOR by DAMGO and
activation of EGFR by EGF in HEK293 cells promotes
MOR phosphorylation on Y-166 in a src-dependent manner,
resulting in negative regulation of MOR-G protein coupling
(Clayton et al., 2010). This suggests that regulation of MOR
phosphorylation by opioids may be modulated by RTK-
dependent activity. In separate studies, EGFR activation by
EGF caused recruitment and translocation of G-coupled protein
receptor kinase 2 (GRK-2) to the plasma membrane where
it phosphorylated MOR on Serine-residues 363 and 375 (S-
363, S-375), and Threonine-residue-370 (T-370), and enabled
DAMGO-mediated MOR internalization (Chen et al., 2008b).
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Together, these studies highlight that RTKs can modulate MOR
phosphorylation, signaling and internalization.

Involvement of receptor tyrosine
kinase signaling opioid-mediated
behaviors

While much of the literature has focused on MOR-RTK
transactivation in vitro, this phenomenon is also relevant
physiologically in vivo, particularly in the development and
maintenance of deleterious opioid side-effects caused by MOR
agonists. Reviewed here is evidence that several RTKs (Table 1)
play major roles in mediating opioid side-effects such as
analgesic tolerance, resistance of neuropathic pain to opioid
analgesia, physical dependence or reward.

Receptor tyrosine kinase signaling and
opioid analgesic tolerance

In the clinic, opioid analgesic tolerance is defined by a
gradual loss of analgesic efficacy to a fixed dose of an opioid.
As a result, escalation of opioid doses occurs over time to
maintain analgesic benefit (Henry et al., 2015; Hayhurst and
Durieux, 2016). MOR signaling is essential in the mechanisms
of tolerance (Williams et al., 2013; Adhikary and Williams,
2022) and MOR is expressed in structures strongly implicated
in tolerance and pain mechanisms including dorsal root ganglia
(DRG) neurons and neurons of the spinal cord substantia
gelatinosa (Mansour et al., 1988, 1995a; Scherrer et al., 2009;
Corder et al., 2017; Puig and Gutstein, 2017). RTKs are
similarly expressed alongside MOR in the spinal cord and
DRG, including PDGFRβ (Sasahara et al., 1991; Eccleston
et al., 1993), EGFR (Werner et al., 1988; Huerta et al.,
1996), VEGFR2 (Spliet et al., 2004; Herrera et al., 2009),
or Ephrin type-B receptor 1 (EphRB1) (Liu et al., 2011).
Putative roles for RTK signaling in opioid tolerance were
first shown in mice with global deletion of EphRB1 (Liu
et al., 2011) as they failed to develop tolerance to spinal
morphine administration. Similarly, we and others found
that systemic or intrathecal co-administration of morphine
alongside RTK inhibition via inhibitors of PDGFRβ (Wang
et al., 2012; Li et al., 2020; Puig et al., 2020a), EGFR
(Puig et al., 2020b), or VEGFR-2 (Lopez-Bellido et al.,
2019) completely blocked tolerance. Together, these studies
show that spinal RTK signaling is essential in morphine
tolerance development. In addition, supraspinal inhibition of
the RTK, FGFR, via intracerebroventricular (i.c.v.) injection also
blocks tolerance to morphine injected subcutaneously (Fujita-
Hamabe et al., 2011). Thus, other supraspinal structures of the

pain circuitry may additionally contribute to RTK-mediated
tolerance behaviors.

Precluding spinal signaling from one RTK at a time is
sufficient to fully ablate tolerance. This apparent signaling
redundancy raises the possibilities that: (1) spinal RTKs may
work in parallel to transduce complex signaling cascades
that specifically mediate tolerance and (2) that all signaling
cascades recruited by RTKs are essential for tolerance.
Interestingly, RTKs including EGFR and PDGFR-β were shown
to heterodimerize in vitro (Habib et al., 1998; Saito et al.,
2001). Heterodimerization could also happen in vivo, and
co-transactivation of several spinal RTKs by MOR may be
involved in mechanisms of tolerance. However, inhibition of
RTKs individually alters tolerance in different ways depending
on the RTK. For example, PDGFRβ inhibition only masks
the expression of morphine tolerance (Wang et al., 2012),
while EGFR inhibition completely blocks its development (Puig
et al., 2020b). Importantly, these results have been reproduced
by several independently conducted studies, highlighting the
robustness of these findings (Wang et al., 2012; Li et al., 2020;
Puig et al., 2020a).

In addition, we found that PDGFRβ inhibition blocks
tolerance to several opioid analgesics used in the clinic including
fentanyl, sufentanil, hydromorphone, and oxycodone (Puig
et al., 2020a). Interestingly, these opioids have profoundly
different pharmacokinetic and pharmacodynamic properties
and have different signaling bias (Keith et al., 1998; Schmid
et al., 2017). These findings show functional dissociation
between MOR endocytosis, ligand signaling bias and tolerance,
challenging the long-held hypotheses that mechanisms of MOR
internalization (Whistler et al., 1999; Finn and Whistler, 2001)
or of recruitment of β-arrestin2 (Bohn et al., 2000, 2004)
are at the core of tolerance signaling. Instead, it suggests
that PDGFRβ signaling could be a core mediator of opioid
analgesic tolerance (Puig et al., 2020a). This is further supported
by the fact that tolerance occurs independently of opioid-
induced MOR internalization, and PDGFRβ inhibition does
not modify levels of internalization while preventing tolerance
(Puig et al., 2020a).

The precise RTK signaling pathways activated by opioid-
stimulated MOR that mediate tolerance remain completely
unknown. However, a recent in vivo study suggested that
they could involve JNK signaling downstream of PDGFRβ

(Li et al., 2020). Mechanisms of MOR-RTK transactivation
in the spinal cord to mediate tolerance are similarly unclear.
However, they seem to involve RTK ligand-dependent signaling
pathways (Liu et al., 2011; Wang et al., 2012). Therefore,
MOR may recruit RTK signaling in either an autocrine or
a paracrine manner and RTKs may not necessarily need to
be co-expressed with MOR. In addition, RTKs that have
been involved in tolerance are closely phylogenetically related
(Brunet et al., 2016). Indeed, VEGFR-2 and PDGFRβ share
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a direct ancestor gene, the RTK PDGF/VEGF receptor (Pvr)
(Lopez-Bellido et al., 2019). This implies that involvement
of RTKs in opioid tolerance could be a phylogenetically
conserved function.

Receptor tyrosine kinase signaling and
reduced opioid analgesia to
neuropathic pain

Neuropathic pain results from lesions or diseases of
the somatosensory system that lead to a combination of
inflammation and nerve compression (Dworkin et al., 2003,
2010). NP can also result from nerve damage as a consequence
of prolonged chemotherapy (Murnion, 2018; Finnerup et al.,
2021). Due to a lack of better alternatives, opioids are commonly
used for NP (Quasthoff and Hartung, 2002; Chong and Bajwa,
2003; Lynch et al., 2004; Balayssac et al., 2009). Nevertheless,
opioids are not very effective in treating NP as several
clinical studies have shown that, despite high opioid dosage,
NP could not be alleviated following opioid administration
(Chaparro et al., 2012; Cooper et al., 2017). Although
combination therapy between opioids and gabapentin, a blocker
of voltage-gated calcium channels, proved effective, it has
been associated with severely debilitating side-effects including
nausea, constipation, and vomiting (Chaparro et al., 2012).
Therefore, new therapeutic strategies and targets are needed for
ameliorating NP.

NP can be modeled in rodents by inducing nerve injury on
spinal nerves via spinal nerve ligation (SNL) (Kim and Chung,
1992) or chronic contraction injury (CCI) of the sciatic nerve
(Bennett and Xie, 1988). In these models, low doses of opioids
fail to produce analgesia. Several studies have established the
impact of signaling from different RTKs in neuropathic pain
development and maintenance in rodents including signaling by
PDGFRα (Narita et al., 2005), FLT3 (Rivat et al., 2018), EphRB1
(Han et al., 2008), EGFR (Martin et al., 2017), or TrkA (Ugolini
et al., 2007). In addition, a clinical study demonstrated that
targeted inhibition of EGFR significantly reduces pain in male
and female NP patients (Kersten et al., 2019). Groundbreaking
recent discoveries also established direct involvement of RTK
signaling in NP resistance to opioid analgesia. Pharmacological
inhibition of either PDGFRβ (Donica et al., 2014) or EGFR
(Puig et al., 2020b) restores analgesia to a dose of morphine
previously ineffective on mechanical allodynia caused by SNL.
This shows that PDGFRβ or EGFR inhibition is sufficient to
restore morphine analgesic properties that were abolished by
alterations caused by nerve injury. Importantly, administration
of the same doses of PDGFRβ or EGFR inhibitors alone does
not have any analgesic effect. In fact, we estimated that the
dose of EGFR inhibitor used to restore morphine analgesia
is ∼20-fold lower than the dose previously needed to induce
analgesia (Nair and Jacob, 2016; Puig et al., 2020b). These results

emphasize that RTK inhibitors restore morphine-mediated
analgesia rather than causing analgesia by themselves. This
indicates that recruitment of PDGFRβ and EGFR signaling by
nerve injury activates signaling pathways that may block opioid
analgesic signaling during NP. Moreover, these mechanisms
resemble findings in the context of opioid tolerance (Wang
et al., 2012; Puig et al., 2020a,b), and imply that convergent
mechanisms between opioid tolerance and NP involve RTK
signaling. Based on these observations, it was speculated
that injured nerves release growth factors such as PDGF-B
to activate PDGFRβ signaling and induce morphine-resistant
states (Donica et al., 2014). It has also been proposed that this
endogenous PDGF-B release by injured nerves, is similar to
the release of PDGF-B in response to opioid administration,
leading to activation of MOR to mediate tolerance (Wang et al.,
2012). In conclusion, RTK signaling mediating opioid analgesic
resistance may form a mechanistic link between neuropathic
pain development and opioid tolerance (Mao et al., 1995;
Mayer et al., 1999; Joseph et al., 2010; Donica et al., 2014;
Puig et al., 2020b).

Receptor tyrosine kinase signaling and
opioid dependence

There is a complex bidirectional relationship between
RTK gene expression and opioid dependence. Dorval and
colleagues showed that mice that overexpress FGF21, an
FGFR ligand (FGF21-Tg mice, 50-fold overexpression), have
a reduced preference to morphine in a conditioned place
preference paradigm (Dorval et al., 2022). Further, naloxone-
precipitated physical dependence behavior, (i.e., number of
vertical jumps post-naloxone injection) is depressed in FGF21-
Tg mice compared to wildtype littermates, suggesting that acute
morphine physical dependence is regulated by FGF21 activity.
Interestingly, morphine analgesia and tolerance development
were not altered in FGF21-Tg mice, showing that FGF21 plays
a role in opioid dependence but not in analgesia or tolerance.
These findings are consistent with previous studies showing
that oxycodone self-administration is associated with elevated
striatal fgf2, fgfr2, and fgfr3mRNA levels during incubation
of oxycodone seeking (Blackwood et al., 2019). Furthermore,
these changes in FGF receptor gene expression are associated
with elevated c-fos mRNA expression in the dorsal striatum,
and elevated junB mRNA levels in these same regions. Given
that the striatum is an important region of the reward
circuitry, Blackwood and collaborators (Blackwood et al., 2019)
hypothesized that incubation of oxycodone seeking, a behavior
correlated with future dependence, is mediated at least in-part
by FGF2-dependent signaling. However, the mechanisms of
FGF receptor-driven opioid dependence remain unknown.

Other studies have also indicated that brain-derived
neurotrophic factor (BDNF), as well as its receptor, tropomyosin
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receptor kinase B (TrkB), may also play integral roles in opioid
dependence and withdrawal development. BDNF, TrkB, IGF1,
and IFG1R mRNA levels were found to be elevated in rodents
frontal cortex in a model of physical dependence to morphine.
In addition, BDNF was upregulated in hippocampus and
midbrain (Peregud et al., 2016). Recruitment of BDNF-TrkB
signaling by MOR during exposure to opioids or during
withdrawal may be mediated via mechanisms of atypical
GPCR-RTK transactivation involving a ROS, nitric oxide
(NO) (as illustrated in Figure 3C). Withdrawal associated
elevation of BDNF and TrkB and their respective receptors
is markedly lower in animals pretreated with the nitric oxide
synthase (NOS) inhibitor L-NG-nitroarginine methyl ester
(L-NAME). L-NAME-treated animals also exhibited depressed
amounts of phosphorylated TrkB following abstinence from
morphine (Peregud et al., 2016). Confirming the role of
TrkB signaling in withdrawal behaviors, a recent study
showed that rats pre-treated with ANA-12, a TrkB antagonist,
displayed greater drug dependence and significantly more
spontaneous withdrawal behaviors after a chronic treatment
with morphine. Furthermore, BDNF levels in the cerebrospinal
fluid (CSF) of ANA-12 treated animals are depressed during
morphine dependence, and elevated during withdrawal
(Rezamohammadi et al., 2020). Together these studies show
that FGFR and TrkB activation may have protective effects
against physical dependence, highlighting that this should be
carefully considered in the process of testing RTK targeting
therapies to treat opioid side-effects.

One hallmark of chronic opioid use which occurs upon
opioid withdrawal is opioid-induced hyperalgesia (OIH). Of
interest, Ephrin receptors, the most prominent subfamily of
RTKs, which are commonly associated with neuron-neuron and
neuron-glia interactions have been implicated in OIH. In a
rat model of remifentanil-induced hyperalgesia, remifentanil-
induced decrease of mechanical and thermal pain threshold
has been correlated with elevated spinal Fos protein levels.
Interestingly, these effects were reversed by inhibition of either
EphB ligand (via EphB1-Fc) or the NMDA receptor (NMDAR)
(via MK801) (Xia et al., 2014). Further, intrathecal injection
of ephrinB/EphB agonist, was sufficient to induce significant
hyperalgesia in a NMDAR-dependent manner (Xia et al., 2014),
showing that activation of ephrinB/EphB pathways are sufficient
to mediate OIH development via NMDAR (Xia et al., 2014).
Importantly, other RTKs are also known to be involved in
NMDAR-mediated OIH, including BDNF-TrkB signaling in
the spinal dorsal horn. Notably, previous work demonstrated
that morphine-induced hyperalgesia occurs because of MOR-
dependent BDNF release leading to a downregulation of
K+/Cl− co-transporter (KCC2) in rat spinal lamina neurons
(Ferrini et al., 2013). The resulting Cl− dysequilibrium serves
as a driver of hyperalgesia which is reversible by inhibition of
BDNF-TrkB or via prevention of KCC2 downregulation (Ferrini
et al., 2017). Further, this reversible anion transport dysfunction

induces a dampening of GABAergic and glycinergic spinal
signaling and elevated NMDAR activity (Li et al., 2016).

Receptor tyrosine kinase signaling and
opioid reward

RTK signaling and opioid reward involve midbrain
dopamine neurons in the ventral tegmental area (VTA) which
project to the nucleus accumbens (NAc) in the striatum. In
the context of opioids, morphine promotes activation of striatal
D1 receptor (D1R)-expressing MSNs which increase reward
behaviors and decreases dopamine D2 receptor-expressing
(D2R) MSNs which promote aversion. TrkB is expressed in
both D1R+ and D2R+ MSNs (Freeman et al., 2003; Baydyuk
et al., 2011) and most evidence about involvement of RTK
signaling in opioid reward derives from work analyzing TrkB
and morphine administration. Indeed, there is decreased
conditioned place preference (CPP) for morphine when the
selective TrkB antagonist, ANA-12, is injected into the NAc
of rats (Jorjani et al., 2021). However, it was also shown that
selective knockout of TrkB from D1R+ MSNs of the NAc in
mice, enhances morphine CPP while knockout of D2R+ MSNs
produces no change (Koo et al., 2014). Moreover, knocking out
TrkB in the VTA produces a similar effect as TrkB knockout in
D1R+ MSNs in the NAc with enhanced morphine CPP (Koo
et al., 2014). Overall, these findings suggest that TrkB-based
RTK signaling in D1R+ versus D2R+ MSNs mediates opposing
actions that together modulate opioid-induced behaviors and
that these actions are dependent on striatal dopamine release
from projections of midbrain dopaminergic neurons.

IR signaling has also been implicated in opioid reward.
In the hippocampus and hypothalamus, morphine induces IR
phosphorylation in wildtype, but not MOR knockout mice,
suggesting that MORs are able to transactivate IRs in these
structures (Li et al., 2003). Additionally, given the important
role of glutamatergic neurotransmission in drug reward (Britt
et al., 2012), the increases in presynaptic glutamate release in
the NAc in response to IR activation (Fetterly et al., 2021) may
provide a further RTK-mediated mechanism for opioid actions.
In contrast, insulin growth factor like receptor (IGFR) activation
decreases presynaptic glutamate release in the same neuronal
population, demonstrating differential effects depending on
the RTK. Additional involvement of IR in opioid reward is
supported by work showing that prolonged morphine-activated
MORs in vitro can cause desensitization of IR signaling to
Akt and ERK cascades (Li et al., 2003), both of which have
been implicated in reward (Shi et al., 2014; Zamora-Martinez
and Edwards, 2014). Inhibition of ERK in the NAc shell
prevents development of morphine CPP (Xu et al., 2012).
While, in a separate study, Russo and colleagues showed that
downregulation of Akt and IR subunit 2, an essential component
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of functional IR signaling, in the VTA results in reward tolerance
as shown by decreased CPP behaviors over time (Russo et al.,
2007). Together, these results further reinforce the involvement
of IRs in modulation of MOR-mediated reward signaling within
the NAc. Further studies to establish if this could be generalized
to other opioids remain necessary. For example, PDGFRβ is also
expressed in brain regions involved in reward and addiction
such as mPFC, NAc and dStr (Balayssac et al., 2009; Bor et al.,
2017) and PDGFRβ levels were shown to be altered in the
striatum and midbrain of rodents with disrupted dopaminergic
signaling, a central component for reward signaling (Masuo
et al., 2004). Overall, this work suggests RTKs could be
promising, yet understudied, candidates to mitigate morphine
reward, especially IRs.

Clinical implications

Treating human disease with RTK-targeted therapies is an
established standard of care as a therapeutic strategy for cancer.
Indeed, RTK inhibitors serve as the gold standard treatment of
malignancies (Savage and Antman, 2002; Elisei et al., 2013; Sim
et al., 2018). These medications are being explored for putative
efficacy in other, non-oncological conditions. Specifically, EGFR
and PDGFR inhibitors have recently received attention for their
clinical therapeutic potential against pain. Several case reports
have described analgesic effects by EGFR inhibitors in patients
with severe pain (Kersten and Cameron, 2012; Kersten et al.,
2015). Patients with either cancer pain (Moryl et al., 2006; Macey
et al., 2009) or different types of neuropathic pain (Kersten et al.,
2015) were treated with EGFR inhibitors which significantly
improved their pain score after a few days. Most interestingly,
in a clinical study led by Kersten and collaborators (Kersten
et al., 2013), half the patients who experienced immediate
pain relief following administration of the EGFR inhibitor
cetuximab also decreased their required opioid doses. The
authors concluded that cetuximab reversed opioid tolerance.
Similarly, PDGFR-β inhibitor imatinib induced analgesia in
cancer patients (Stankovic Stojanovic et al., 2011; Kutlar, 2013).
Based on the promise of these recent clinical studies and case
reports, it is possible that the improved pain relief observed
with RTK inhibitors is due to the reversal of pre-existing opioid
tolerance. We propose that combined treatment with opioids
and RTK inhibitors may decouple the intertwined pathways
mediating analgesia and tolerance.

Conclusion

Uncoupling analgesia from undesirable effects of opioids
by RTK inhibitors could therefore enable patients to maintain
opioid efficacy at smaller doses, mitigating the risk of side-
effects associated with chronic opioid use. Importantly, in

rodents, efficacious doses to mitigate opioid tolerance appear
to be significantly lower than those required to treat cancers.
This holds the promise that RTK doses required for effective
prevention of opioid side-effects in humans should not have
a deleterious impact that could outweigh advantages of RTK
inhibitors. Nevertheless, more work is clearly needed to better
understand how RTK inhibitors work in the context of
tolerance. It is still unknown if RTK inhibitors could be used
to treat opioid withdrawal symptoms or prevent rewarding
properties of opioids in humans. It is imperative that future
studies assess the power of concurrent opioid-RTK inhibitors
treatments both in the clinic and in pre-clinical models of pain.
If successful, RTK inhibitors may represent a promising new
class of drugs to treat pain more safely in conjunction with
opioids and therefore positively impact the lives of millions
living with chronic pain.
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