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The Wilson-Cowan model can emulate gamma oscillations, and thus is extensively used
to research the generation of gamma oscillations closely related to cognitive functions.
Previous studies have revealed that excitatory and inhibitory inputs to the model can
modulate its gamma oscillations. Inhibitory and excitatory self-feedback loops are
important structural features of the model, however, its functional role in the regulation of
gamma oscillations in the model is still unclear. In the present study, bifurcation analysis
and spectrum analysis are employed to elucidate the regulating mechanism of gamma
oscillations underlined by the inhibitory and excitatory self-feedback loops, especially
how the two self-feedback loops cooperate to generate the gamma oscillations and
regulate the oscillation frequency. The present results reveal that, on one hand, the
inhibitory self-feedback loop is not conducive to the generation of gamma oscillations,
and increased inhibitory self-feedback strength facilitates the enhancement of the
oscillation frequency. On the other hand, the excitatory self-feedback loop promotes
the generation of gamma oscillations, and increased excitatory self-feedback strength
leads to the decrease of oscillation frequency. Finally, theoretical analysis is conducted
to provide explain on how the two self-feedback loops play a crucial role in the
generation and regulation of neural oscillations in the model. To sum up, Inhibitory and
excitatory self-feedback loops play a complementary role in generating and regulating
the gamma oscillation in Wilson-Cowan model, and cooperate to bidirectionally regulate
the gamma-oscillation frequency in a more flexible manner. These results might provide
testable hypotheses for future experimental research.

Keywords: Wilson-Cowan model, gamma oscillations, self-feedback loops, bifurcation analysis, spectrum
analysis

INTRODUCTION

Gamma oscillation is a rhythmic electrical activity ranged from 30 to 80 Hz (Buzsaki, 2009; Wang
etal,, 2011), which is widely present in the thalamus, cortex and hippocampus of animal and human
brains (Womelsdorf and Fries, 2007), and is closely related to the cognitive function of animals
and humans (Gevins et al., 1997; Engel et al., 2001; Bartos et al., 2007; Cabral et al., 2014). On
the other hand, the abnormal gamma oscillation is an important cause of cognitive impairment
and neurological disorders such as schizophrenia (Lewis et al., 2005; Light et al., 2006), autism
(Orekhova et al., 2007; Milne et al., 2009) and language learning disorder (Heim et al., 2011).
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Therefore, studying the regulating mechanism of gamma
oscillations is of great significance for understanding brain
cognitive function and cognitive impairment.

So far, important progress has been made in physiological
experimental research on gamma oscillations. In vitro
experimental studies have shown that inhibitory interneurons
are the key factor in the generation of gamma oscillations,
and inhibitory postsynaptic potential (IPSP) is a necessary
condition for the synchronization of gamma oscillations (Colgin
and Moser, 2010). The synaptic connection strength between
neurons plays an important role in the generation of gamma
oscillations. Belluscio et al. (2012) showed that the interaction
between excitation and inhibitory neurons can promote the
generation of gamma oscillations. Atallah and Scanziani
(2009) studied the potential regulating mechanism of gamma
oscillations by recording the membrane potential inside and
outside of rat cells, indicating that the connection strength
between excitatory and inhibitory neurons can quickly adjust
the frequency of gamma oscillations. Ray and Maunsell (2011)
recorded local field potential (LPF) in the V1 brain area of
rhesus monkeys to detect the origin of oscillations in different
gamma bands. Ray et al. (2013) studied the effect of excitation
and inhibition balance on gamma oscillations by recording the
local field potential (LPF) in the MT area of rhesus monkeys, and
found that visual stimuli would change the balance of excitability
and inhibitory activity, and then adjust the gamma oscillations.
Recent experimental studies have shown that visual stimuli plays
an important role in inducing gamma oscillations and frequency
modulation (Chen et al., 2017, 2020; Saleem et al., 2017; Veit
et al., 2017; Welle and Contreras, 2017). Veit et al. (2017) used
optogenetic technology to conduct mouse experiments and
found that SOM (somatostatin) cells were stimulated to induce
gamma oscillations, and inhibitory SOM cells would decrease
the energy of gamma oscillations.

Computational research is another important method to
understand the regulating mechanism of gamma oscillations.
Geisler et al. (2005) found that the input of the neuron model has
a substantial impact on gamma oscillations, and the excitatory
and inhibitory synaptic time constants can predict the model’s
frequency. The Wilson-Cowan model is a mesoscopic firing
rate model proposed by Wilson and Cowan (1972), describing
the interaction between excitatory and inhibitory populations.
The model can simulate rich neural dynamics (Wilson and
Cowan, 1972; Destexhe and Sejnowski, 2009), thus is widely
used in research on gamma oscillation regulating mechanisms
(Srinivasan et al., 2013; Jadi and Sejnowski, 2014b; Veltz and
Sejnowski, 2015; Keeley et al., 2019). Srinivasan et al. (2013)
showed that the background input has an important effect
on the response of Wilson-Cowan model, and reproduced
the important experimental phenomenon that theta oscillation
modulates the gamma oscillation through simulation. Veltz and
Sejnowski (2015) studied the regulation of gamma rhythm by
periodic input and the phase-amplitude coupling mechanism
between two neural groups by constructing two interconnected
Wilson-Cowan models. Jadi and Sejnowski (2014b) found
that the super-linear response of the sigmoid functions in
the inhibitory population of the Wilson-Cowan model play
a key role in modulating the frequency and power of the

simulated cortical gamma oscillations, furthermore, the balance
of excitatory and inhibitory inputs into the model determine
the frequency and power of oscillations. Jadi and Sejnowski
(2014a) used two different stimulation methods to regulate the
gamma oscillations in the excitatory and inhibitory coupled
neural network, and revealed that stimulating the inhibitory
neuron group can enhance the gamma oscillation power while
stimulating the excitatory neuron group makes the gamma
oscillation frequency larger. Keeley et al. (2019) have found
that the time constants of excitatory and inhibitory populations
have an important influence on the gamma oscillations in
an extended Wilson-Cowan model. To sum up, the above-
mentioned research on the regulating mechanism of gamma
oscillations in the Wilson-Cowan model mainly focuses on the
effect of excitatory and inhibitory inputs, sigmoid functions,
and time constants of excitatory and inhibitory populations on
gamma oscillations.

A self-feedback loop is a ubiquitous structure of neural
circuits and neural networks. Computational studies have found
that it has an important regulatory effect on brain electrical
activity (Wilson and Cowan, 1972, 1973; Youssofzadeh et al.,
2015). Moran et al. (2007, 2008) found that the Jansen-Rit
neural mass model (Jansen and Rit, 1995) can successfully
simulate gamma oscillations by introducing an inhibitory self-
feedback loop into the model. Ursino et al. (2010) revealed
that extended Jansen-Rit neural mass model (Wendling et al,
2010) can simulate gamma and beta oscillations simultaneously
by introducing an inhibitory self-feedback loop into the fast
inhibitory interneuron population. Wang et al. (2020) studied
the effect of inhibitory self-feedback on the dynamics and
oscillations of the subthalamic nucleus (STN) and globus pallidus
(GPe) neural circuit model, and demonstrated that inhibitory
self-feedback exert an important effect on the generation and
regulation of beta oscillations. These previous studies have shown
that inhibitory self-feedback has an important effect on the
dynamic characteristics and oscillation behavior of the Jansen-Rit
neural mass model and its extended versions.

Excitatory and inhibitory self-feedback loops are important
structure features of the Wilson-Cowan model, however, it still
remains to be addressed how the inhibitory self-feedback loop
exerts an effect on the regulation of gamma oscillations in the
model, furthermore, it is still unknown whether or not the
excitatory self-feedback loop also plays a role in the regulation
mechanism, especially the way the two loops cooperate to
regulate the gamma oscillations. Here, by conducting bifurcation
analysis and spectrum analysis, we aim to elucidate regulating
mechanism of gamma oscillations in the Wilson-Cowan model
underlined by the two self-feedback loops.

The rest of this paper is organized as follows. In the section
“Model and Methods,” the Wilson-Cowan model is described,
which can produce gamma oscillations within certain parameter
regions. In the section “Results,” by combining bifurcation
analysis and spectrum analysis, we explore how inhibitory
and excitatory self-feedback loops regulate gamma oscillations,
respectively, and especially focus on elucidating the synergistic
regulating mechanism underlined by the interaction of the two
self-feedback loops. Finally, the conclusions are given in the
section “Discussions.”
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MODEL AND METHODS
Model

The Wilson-Cowan model is a firing rate model at the mesoscopic
level proposed by Wilson and Cowan (1972). The schematic
diagram of the model is shown in Figure 1, where “E” represents
excitatory population, “I” inhibitory population, i; and i stands
for inhibitory and excitatory inputs to the model, Wg; and Wig
represent the coupling strength between excitatory and inhibitory
populations, and Wgg and Wiy the excitatory and inhibitory self-
feedback connection strength, respectively. This model is mainly
composed of excitatory and inhibitory populations with self-
feedback loops, and can emulates the interaction between the
excitatory and inhibitory populations.

The mathematical formulation of Wilson-Cowan model is
formulated as follows:

d?’] H

U= + Gy (Wigrg — Wyprp + ip) (1)
drE H

TE? = —rg + Gg (Wggrg — WEgrrr + ig) 2

Where rE and rI are the outputs of the model, representing the
firing rate of excitatory and inhibitory populations, respectively.

Gg(-) and Gj(-) are two response functions describing the
non-linear dynamical properties of the model, respectively, and
the two response functions are given by:

1 1
1 + e—mg/[(x—eg/[) B 1+ emE/l°eE/I

Ggj1 (x) = (3)

The parameter values in the model are given in Table 1
(Wilson and Cowan, 1972; Jadi and Sejnowski, 2014b). In this
work, we mainly explore the role of the excitatory and inhibitory
self-feedback strength Wgr and Wy played in the regulation of
gamma oscillations, other parameters remain the default values
as Table 1. The parameters were chosen where the generating
oscillation frequency of the model was in the gamma band
(Ledoux and Brunel, 2011; Jadi and Sejnowski, 2014b).

lE u

Wer

WEeE Wi

Wie

FIGURE 1 | Schematic of the Wilson-Cowan model. E represents the
excitatory populations, / stands for the inhibitory populations, the red arrows
indicate the excitatory projections and blue arrows show the inhibitory
projections, i is the external inputs of the / populations, and ic is the external
inputs of the £ populations.

TABLE 1 | Parameters interpretation and values in the Wilson-Cowan model.

Parameters (units) Interpretation Values

I3 External input to excitatory population

iy External input to inhibitory population

Wi Strength of connections between /-E 20

Weg Strength of connections between £~/ 26

= /ms Average synaptic time constant for 20
excitatory population

v /ms Average synaptic time constant for 10
inhibitory population

Mg ,m; 0 ,6; Parameters of non-linear S function mg =1;m =1,

6 =56, =20

Wee Strength of self-excitatory feedback 16

Wy Strength of self-inhibitory feedback 1

Methods

Neural electrical activity in the brain has rich non-linear
characteristics, and the bifurcation analysis method is an effective
means to understand the non-linear dynamic behavior of the
brain (Gallez and Babloyantz, 1991; Grimbert and Faugeras,
2006; Spiegler et al,, 2010; Touboul et al., 2011; Xiaofei and
Junsong, 2014; Dong and Zhu, 2020). When one or several
parameters of the dynamic system are varied, the behavior
of the system undergoes a qualitative change, such as the
transformation between stable and unstable state, the appearance
and disappearance of limit cycle, the emergence of chaos, and so
on. These sudden changes are called bifurcations. The Wilson-
Cowan model is a typical non-linear system with rich and
complex dynamics (Borisyuk and Kirillov, 1992; Ledoux and
Brunel, 2011), for example, a stable equilibrium point in the
model corresponds to the resting state of neural mass, and the
appearance of Hopf bifurcation points in the model indicates the
transformation of the system from a stable equilibrium point to
limit cycle oscillation which often corresponds to the periodic
oscillatory electrical activity of the neural mass. Therefore,
the model parameters highly influence the non-linear dynamic
behavior of the Wilson-Cowan model, which plays an important
role in revealing the principle of how gamma oscillation is
generated and regulated.

XPPAUT (Ermentrout, 2002) and MatCont (Dhooge et al.,
2003) are commonly used software packages for bifurcation
analysis to draw the dynamic trajectory diagram of the system
as model parameters change. In this study, XPPAUT software
is used for one-parameter bifurcation analysis, and Matcont
is used for two-parameter bifurcation analysis. Particularly,
only the positive values in the bifurcation diagram are
biologically relevant, and the negative values are purely served
as a mathematical description in order to generate the full
bifurcation curves.

Through giving the fixed parameters and external inputs, the
signal output of the model with time changing was simulated.
Next, the Fourier transform was performed to determine the
oscillation frequency of the model’s output signals. Finally, the
frequency distribution of the simulated limit cycle oscillations
in a two-dimensional model parameter plane was obtained. The
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FIGURE 2 | The process of spectral analysis. (A) The simulated output signal
of the model; (B) The spectral analysis result of the output.

spectral analysis process is shown in Figure 2. In the present
study, we conduct the Fourier transform of the signal to plot
frequency curves with respect to model parameters and frequency
distribution diagrams in a two-dimensional parameter plane
by using MATLAB software. The Wilson-Cowan model was
integrated with the Runge-Kutta numerical integration method
with a time step of 0.001 s to solve the differential equations at a
zero initial condition (Ashwin et al., 2015).

RESULTS

In this section, we conduct a one-parameter bifurcation to
determine the ranges of inhibitory and excitatory self-feedback
strength generating limit cycle oscillations, thus probing how
inhibitory and excitatory self-feedback loops generate gamma
oscillations in the Wilson-Cowan model. Furthermore, through
two-parameter bifurcation analysis, we explored how inhibitory
and excitatory self-feedback loops interact with other model
parameters to exert influence on the gamma oscillations,
especially how the two loops cooperate to regulate the gamma
oscillations. In addition, to probe how the two loops regulate
oscillation frequency, we perform spectrum analysis to obtain the
distribution diagram of oscillation frequency.

Regulating Gamma Oscillations by
Inhibitory Self-Feedback Loop

One-Parameter Bifurcation Analysis With Respect to
Inhibitory Self-Feedback Strength

Firstly, we performed a one-parameter bifurcation analysis with
respect to the inhibitory self-feedback strength. The bifurcation
diagram is shown in Figure 3A, where HB represents the
Hopf bifurcation point (Wy = 2.019), the black solid line the
stable equilibrium point, and the black dashed line the unstable
equilibrium point. The model produces a limit cycle oscillation at
the range of Wy < 2.019, corresponding to the blue curve area
in Figure 3A. As shown in Figure 3A, the model exhibits a limit

cycle oscillating state when the value of inhibitory self-feedback
strength is small; with the increase of the inhibitory self-feedback
strength, at the Hopf bifurcation point, the model switches from
limit cycle oscillation to a unique stable fixed point state, and the
oscillations disappear. Thus the bifurcation result indicates that
increased inhibitory self-feedback strength is not conducive to
the generation of gamma oscillations.

Next, to explore how the inhibitory self-feedback loop
regulates the oscillation frequency, we determined the
oscillation frequency curve versus inhibitory self-feedback
strength, shown in Figure 3B. It is suggested that increased
inhibitory self-feedback strength results in the oscillation
frequency to increasing.

Furthermore, we conducted simulations to verify the
bifurcation analysis result and oscillation frequency curve
were correct. The simulation and spectrum analysis results
are shown in Figures 3C,D, respectively, which demonstrates
that the bifurcation analysis result and oscillation frequency
curve are correct.

Two-Parameter Bifurcation Analysis With Respect to
Inhibitory Self-Feedback Strength and Inhibitory
Input or Coupling Strength

Previous studies have found that excitatory and inhibitory
inputs can modulate the gamma oscillations in the Wilson-
Cowan model (Jadi and Sejnowski, 2014a,b; Gu et al., 2020).
To explore how the inhibitory self-feedback loop interacts
with inhibitory input to regulate gamma oscillations, We
perform a two-parameter bifurcation analysis with respect to
inhibitory self-feedback strength Wy and the inhibitory input
ir. The two-parameter bifurcation diagrams were obtained,
as shown in Figure 4A, where the blue curve is the Hopf
bifurcation curve. The behaviors of the model are divided into
two regions in the plane (ir, Wj), denoted as 1 and 2 with
different dynamic properties. The region denoted “I” exhibits
a limit cycle oscillation state, and the other region denoted “2”
corresponds to stable fixed point behavior. The bifurcation results
indicate that, with the increase of the inhibitory self-feedback
strength, the regions of inhibitory input to generate limit cycle
oscillation decrease, suggesting that the inhibitory self-feedback
loop suppresses the generation of limit cycle oscillation.

To probe how the inhibitory self-feedback loop interacts
with inhibitory input to regulate the oscillation frequency, the
oscillation frequency distribution diagram in the plane (i;, Wyr) is
determined as shown in Figure 4B, indicating that the oscillation
frequency increases with the increase of the inhibitory self-
feedback strength.

Moreover, some studies have claimed that connecting strength
between excitatory and inhibitory neurons has an effect on
modulating cortical gamma oscillations (Tiesinga and Sejnowski,
2009; Li et al., 2011; Buzsdki and Wang, 2012). Inspired by this
idea, we carried out further two-parameter bifurcation analysis
and spectrum analysis with respect to inhibitory self-feedback
Wi and coupling strength Wi of the Wilson-Cowan model.
The bifurcation result and oscillation frequency distribution
diagram are illustrated in Figures 4C,D, respectively. Obviously,
increased inhibitory self-feedback strength prevents the model
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FIGURE 3 | The impact of inhibitory self-feedback strength W}, on the dynamical behavior of the Wilson-Cowan model. (A) The one-parameter bifurcation diagram

with respect to W), The Hopf bifurcation point is labeled as “HB,” respectively; (B) Frequency curve versus Wj; (C) Simulation result (W = 2); (D) Spectrum analysis
result Wy = 2).
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FIGURE 4 | Influences of the interaction of inhibitory self-feedback and inhibitory input or coupling strength on the dynamic behavior of the Wilson-Cowan model.
(A) The codimension two bifurcations with respect to i; and Wj; (C) The codimension two bifurcations with respect to Wz and Wj;; (B,D) Oscillation frequency

distribution diagrams. The area labeled 1 represents limit cycle oscillations, the area labeled 2 represents fixed-point state, and the blue curve represents Hopf
bifurcation curves.
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from generating gamma oscillations, and leads to the increase of
the oscillation frequency, the same conclusions as that obtained
according to Figures 4A,C.

Impact of the Inhibitory Self-Feedback Loop on
Two-Parameter Bifurcation Results With Respect to
Inhibitory and Excitatory Inputs

Previous studies have revealed that inhibitory and excitatory
inputs play an important role in the generation and regulation
of gamma oscillations (Jadi and Sejnowski, 2014b). To discover
whether or not the inhibitory self-feedback loop exerts an
impact on the regulating law underlined by the two inputs,
we performed a two-parameter bifurcation analysis with respect
to inhibitory and excitatory inputs under different inhibitory
self-feedback strengths.

The bifurcation results are shown in Figures 5A,C,
respectively, where BT (Bogdanov-Takens Bifurcation) is
the intersection point of saddle node bifurcation and Hopf
bifurcation, GH (Generalized Hopf Bifurcation) the intersection
point of subcritical and supercritical Hopf bifurcation, the
blue curves represent the Hopf bifurcation, and the region
denoted “I” represents the limit cycle oscillation state. The
oscillation frequency distribution diagrams are plotted, shown in

Figures 5B,D, and the oscillation frequency ranges from 30 to
55 Hz, corresponding to the gamma band oscillation. The results
demonstrate that, with the increase of the inhibitory self-feedback
strength, the region generating gamma oscillations in the plane
(i1, ig) becomes small, which means that inhibitory self-feedback
is not conducive to the generation of gamma oscillations.

Regulation of Gamma Oscillations by

Excitatory Self-Feedback Loop

Besides the inhibitory self-feedback loop, the excitatory self-
feedback loop is the other connection motif in the Wilson-
Cowan model. However, the role this loop plays still remains
to be addressed. In this section, we conduct bifurcation analysis
and spectrum analysis to elucidate the regulation mechanism
of gamma oscillations in the Wilson-Cowan model that is
underlined by the excitatory self-feedback loop.

One-Parameter Bifurcation Analysis With Respect to
Excitatory Self-Feedback Strength

We first performed a one-parameter bifurcation analysis with
respect to excitatory self-feedback strength. The bifurcation
diagram is shown in Figure 6A where the blue point represents a
stable limit cycle oscillation, and the red point an unstable limit

Frequency (Hz)

Frequency (Hz)

FIGURE 5 | Influences of the interaction of inhibitory and excitatory inputs on the dynamic behavior of the Wilson-Cowan model with different inhibitory self-feedback
strength. (A,C) Are the two-parameter bifurcations with respect to j; and ig under different Wj; (B,D) Frequency distribution diagrams. (A,B) W, = 0.5. (C,D) W, = 1.
The blue curve represents Hopf bifurcation curves, GH stands for the generalized Hopf bifurcation, BT represents Bogdanov-Takens bifurcation, the area labeled 1
represents limit cycle oscillations.
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cycle oscillation. The model is at a stable state and does not
produce oscillation when the excitatory self-feedback strength
is smaller than the Hopf bifurcation point (HB point) value
WEgg = 13.57; with the increase of the excitatory self-feedback
strength, the model exhibits limit cycle oscillation in the region
of 13.57<Wgp<35, and switches from the limit cycle oscillation to
monostable behavior at Wgg = 35. The bifurcation diagram shows
that the Wilson-Cowan model produces limit cycle oscillations as
the excitatory self-feedback strength increases, and the oscillation
disappears when it exceeds a certain value. According to Table 1,
the standard value of excitatory self-feedback strength is less than
35, thus in general the excitatory self-feedback loop is conducive
to the generation of gamma oscillations.

The oscillation frequency curve versus the excitatory self-
feedback strength is shown in Figure 6B, suggesting that the
oscillation frequency decreases with the increase of excitatory
self-feedback strength. The simulation and spectrum analysis
results at the value of Wgg = 14 are illustrated in Figures 6C,D,
respectively, indicating the correctness of the analysis results.
Thus, we can conclude that excitatory self-feedback plays an
important role in regulating the oscillation frequency.

Two-Parameter Bifurcation Analysis With Respect to
Excitatory Self-Feedback Strength and Inhibitory
Input or Coupling Strength

In this subsection, we explore the regulation of gamma
oscillations by the interaction between excitatory self-
feedback and inhibitory input or the coupling strength between

excitatory and inhibitory populations. To this end, we created a
two-parameter bifurcation with respect to (i;, Wgg) and (Wi,
WEgE), respectively. The bifurcation diagrams are shown in
Figures 7A,C, where the blue curve represents Hopf bifurcation.
The region denoted “I” indicates that the model is at a limit cycle
oscillation state, and the region denoted “2” represents a stable
fixed point state. The bifurcation diagram shows that, with the
increase of excitatory self-feedback strength Wgg, the oscillation
region in the plane (i, Wgg) and (Wig, WEgg) become large,
indicating that the excitatory self-feedback loop promotes the
generation of gamma oscillations.

Furthermore, we investigate the influence of the excitatory
self-feedback loop on the oscillation frequency. The frequency
distribution diagrams in the plane (i, Wgg) and (Wig, Wgg) are
obtained, as shown in Figures 7B,D. It was suggested that the
oscillation frequency decreases with the increase of the excitatory
self-feedback strength.

Impact of the Excitatory Self-Feedback Loop on
Two-Parameter Bifurcation Results With Respect to
Inhibitory and Excitatory Inputs

In this subsection, we further investigate the influence of
excitatory self-feedback strength on the regulating mechanism
underlined by the excitatory and inhibitory inputs. We conduct
a two-parameter bifurcation analysis with respect to (ij, ig)
under different excitatory self-feedback strength Wgg, and the
bifurcation diagrams are illustrated in Figures 8A,C, respectively.
The oscillation frequency distribution diagrams are shown in
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Figures 8B,D, corresponding to the gamma band oscillation.
The results demonstrate that the areas generating limit cycle
oscillations in the plane (i,ir) become large with increased
excitatory self-feedback strength Wgg, indicating that the
excitatory self-feedback loop is conducive to the generation
of gamma oscillations. It is suggested that the excitatory self-
feedback loop has an important effect on the gamma oscillation
regulating law underlined by inhibitory and excitatory inputs.

Synergistic Regulation of Gamma
Oscillations by Inhibitory and Excitatory
Self-Feedback Loops

By combining the results in sections “Regulating Gamma
Oscillations by Inhibitory Self-Feedback Loop” and “Regulation
of Gamma Oscillations by Excitatory Self-Feedback Loop,” we
can conclude that both excitatory and inhibitory self-feedback
loops are crucial for the regulation of gamma oscillations under
the Wilson-Cowan model. Thus an interesting question is how
the two loops interact to exert an influence on the gamma
oscillation. To address this problem, we further investigated the
synergistic regulation of gamma oscillations by the cooperation
of inhibitory and excitatory self-feedback loops in the Wilson-
Cowan model.

Firstly, we drew the two-parameter bifurcation diagram with
respect to inhibitory and excitatory self-feedback strength, as
shown in Figure 9A. The blue Hopf bifurcation curve divides
the two-dimensional parameter plane (Wj, Wgg) into two
regions, where the region denoted “I” stands for the limit cycle
oscillation state, and the region labeled “2” is the monostable
state. The bifurcation diagram shows that, with the increase
of excitation self-feedback strength, the oscillation region of
the model is increased, which means that the excitatory self-
feedback loop promotes the generation of gamma oscillations.
while increased inhibitory self-feedback strength results in the
oscillation region of the model becoming small, indicating
that the inhibitory self-feedback loop is not conducive to the
generation of gamma oscillations.

Next, the oscillation frequency distribution diagram is
determined, shown as in Figure 9B. It should be noted that
the part of Figure 9B where the model parameters are negative
does not have any biological significance, but only serves as
a mathematical description of the model. Figure 9B indicates
that the frequency of the limit cycle oscillation is mainly
gamma band activity, and increased inhibitory self-feedback
strength leads to the increase of the oscillation frequency, while
increased excitatory self-feedback strength causes the oscillation
frequency to decrease.
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Theoretical Analysis
In this subsection, we further conduct a theoretical analysis
to provide explanations on the generating and regulating
mechanism of oscillations underlined by the excitatory and
inhibitory self-feedback loops. Linear control theory is employed
to bridge the relationship of self-feedback parameter Wy
and Wge with the oscillation characteristics of the Wilson-
Cowan model.

The mathematical descriptions of the inhibitory and
excitatory populations of the model, i.e., Eqs. (1, 2), can be
reformulated in the form of

U% = =11+ (4)
y1 = Gy (Wigrg — Wyrp + ip)
drg __
e = —TE+JE (5)
yE = Gg (Wggrg — Wgpr + ig)

According to the structure shown as Figure 1, and the
mathematical formulation as Egs. (1, 2) of Wilson-Cowan model,
we can derive the block diagram of the model, demonstrated as

Figure 10, where the inhibitory population (blue part) is mainly
composed of linear part h;(f) and non-linear sigmoid function
G (x), and excitatory population (red part) includes linear hg(t)
and non-linear Gg (x), where xrepresents the input of a sigmoid
function, hy(f)and hg(t)are the impulse response functions of
rl% = —r;+yrand 'EE% = —rg + yE, respectively.

Firstly, we will explore how the inhibitory self-feedback
loop exerts an effect on the oscillation of the Wilson-Cowan
model. We approximate the inhibitory sigmoid function Gy (x)in
the inhibitory population with the first-order Taylor expansion
K = %. The Laplace transformation of the linear function

hy(t)can be formulated as Hy(s) = ﬁ

When there is no inhibitory self-feedback loop in the
inhibitory population, i.e., Wy =0, the transfer function of
the inhibitory population is defined as the ratio of the Laplace
transform of the output variable to the Laplace transform of the

input variable, thus we derived it as follows
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Then, by substituting s = jw into Eq. (6), we obtain Fourier
transformation, i.e., the frequency response characteristics of the
inhibitory population as:

K

e 7
juw+1 )

¢r(jo) = KiHj(jw) =

Obviously, the equivalent gain and time constant of the
inhibitory population without an inhibitory self-feedback loop
are K and 1y, respectively.

Furthermore, according to the blue part of the block diagram
shown in Figure 10, we can derive

Ri(s) = [I1(s) — Ri(s) Wir] d1(s)

which can be formulated as

Ri(s) [1+ Wrdi(s)] = I1(s)di(s)

[ Wy <

i +

a G > H,) L

A .
" e (e e
0 f—— G ¢ _
)
Vs

FIGURE 10 | Block diagram of Wilson-Cowan model. The blue part
represents the inhibitory population, and the red part is the excitatory
population, respectively.

Thus, we obtained the closed-loop transfer function of the
inhibitory population with inhibitory self-feedback, i.e., the ratio
of the Laplace transform of the output variable to the Laplace
transform of the input variable of the inhibitory population, as
follows:

Ris) _ 919
Ir(s) 1+ Wrdi(s)
where R;(s) and Ij(s) are the Laplace transform of the output
variable r7(f)and the Laplace transform of the input variable i;(¢)
of the inhibitory population, respectively.

Substituting Eq. (6) into Eq. (8-1), we further derived

K; - Hi(s)

1+ WpK; - Hi(s)

y(s) = (8-1)

or(s) = (8-2)

By substituting s = jw into Eq. (8-2), we further obtained the
frequency response characteristics of the inhibitory population
as:

Kr - Hi(jo)
14+ WiK; - Hi(jo)
Kp
1+ WiKj + tyjo
B Ki/(1 + WiKy)

1 + tjo/tjo(l + WiK)
K
1+ o

dp(jw) =

where )
K; = K[/(l + WnKjp)

, )
1= t]/(l + WiKp)

and K} is the equivalent gain, and T/I the equivalent time constant
of the inhibitory population, respectively.
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Thus we can draw the following conclusion

/
KI<KI
’
T <TU

(10)

Equations 9, 10 demonstrate that the inhibitory self-feedback
loop, i.e., the introduction of Wy into the inhibitory population,
causes both the equivalent gain and time constant of the
inhibitory population to be decreased. It should be pointed
that this conclusion does not depend on the selection of the
other model parameters. According to the control and dynamics
theory (Franklin et al., 1994), we can conclude that the decreased
equivalent gain prevents the model from generating oscillation,
obviously, the decreased equivalent time constant results in the
oscillation frequency increased.

For the excitatory population, using the same analysis method
as the above mentioned, we determined the transfer function
of the excitatory population without excitatory self-feedback as
follows

Rg(s) Kg
S) = = K H S) = 11
dE(s) T50) EHE(5) ——— (11)
where K; = % is the linear approximation of the excitatory

sigmoid function Gg (x)in the excitatory population with the
first-order Taylor expansion, and H.(s) = the Laplace
transformation of the linear function kg (t).

The transfer function of the excitatory population with
excitatory self-feedback can be derived as follows

ReGs)  E()
Ig(s) 14 Weedg(s)
Substituting Eq. (11) into Eq. (12-1), we further derived

1
TEs+1

Pp(s) = (12-1)

Kg - Hg(s)

" (s) = 12-2
£ 1 + WgeKEg - Hg(s) (12:2)

By substituting s = jw into Eq. (12-2), we obtained

> Kg/(1 — WggKg) K
d)E(]w) = . = T
1+ TE](D/(I — WEgeKEg) 1+ tgjm
where )
Kp = Kg / (1 — WggKE)

o= e/ (13)

T;E = ‘CE/(l — WEEKE)

and K}i is the equivalent gains, and ‘c% the equivalent time
constants of the excitatory population without and with
excitatory self-feedback loop, respectively.

Obviously, we can draw the following conclusion for the
excitatory population

{K,E > Kg (14)

T > 1

Thus, the excitatory self-feedback loop results in the increased
gain and time constants of the excitatory population, which
demonstrates that the excitatory self-feedback loop facilities the
generation of oscillation, and causes the oscillation frequency to
decrease.

DISCUSSION

From the view point of biological meaning, the self-feedback
loop corresponds to an autapse (Auto-synapse) in a neural
circuit. Separate from synapses between different neurons, an
autapse is an unusual kind of synapse that connects to the
neuron itself, which was first discovered in 1972 in the pyramidal
cell of neocortex cerebri by Van der Loos and Glaser (1972).
Experimental studies have found that autapses has been observed
in various brain regions such as in the neocortex, hippocampus,
cerebellum, and striatum (Loos and Glaser, 1972; Bekkers and
Stevens, 1991; Gébor et al., 1997; Bacci et al.,, 2003). Especially,
autapses can form a self-feedback loop in a neuron. Meanwhile,
the autapse plays a rich role in the regulation of neuron firing and
neural rhythm. Biological experiments suggest that inhibitory
self-feedback can suppress neuron firing (Saa Da et al., 2009),
while excitatory self-feedback can promote neuron firing (Yin
et al., 2018). In addition, Connelly has found that self-feedback
plays a crucial role in enhancing the synchrony of the membrane
potential across the entire network during the neocortical
gamma oscillations (Connelly, 2014). Recently, by using the
axon patch-clamp recording technique, research has shown
that a self-feedback loop in the neuron can promote neuronal
responsiveness, burst firing, and coincidence detection in these
neocortical principal cells (Yin et al., 2018). Different from
these previous studies, the present results reveal the regulating
mechanism of neural oscillations underlined by excitatory and
inhibitory autapses at the level of population. Furthermore,
we conducted a theoretical analysis to provide explanation of
these regulating mechanisms, which can shed light on a deeper
understanding of the role of excitatory and inhibitory autapses
play in achieving brain functions and causing neural disorders.

Gamma oscillations are closely related to brain functions, for
example, learning and memory. Most previous studies focused
on the synapse between different neurons how to influence
brain functions; the investigations in this paper might provide
an avenue to understand autapse underlined brain function
mechanisms. Moreover, abnormal neural oscillations are an
important biomarker of many kinds of neural diseases, such as
epilepsy, Parkinson’s disease, etc. The present results can bridge
the relationship between the neural oscillations and excitatory
and inhibitory autapses, which may provide some guidelines and
predictions for future experimental studies on how autapses exert
an impact on brain functions and neural diseases.

CONCLUSION

The Wilson-Cowan model can generate gamma oscillations and
is extensively employed to study the regulation mechanism of
gamma oscillations. Excitatory and inhibitory self-feedback loops
are typical connection modes of the model, however, it is unclear
how the two self-feedback loops exert an effect on the regulation
of gamma oscillations in the model. The results suggest that
inhibitory self-feedback is not conducive to the generation of
gamma oscillations, while excitatory self-feedback promotes it.
Moreover, The increased inhibitory self-feedback strength causes
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the oscillation frequency to increase, and with the increase of
excitatory self-feedback strength, the oscillation frequency is
decreased. It should be noted that these conclusions do not
depend on the selection of the other model parameters. Taken
together, these results reveal that inhibition and excitatory self-
feedback loops play a complementary role in the generation and
regulation of gamma oscillations. Through the cooperation of
the two self-feedback loops, a flexible bidirectional regulation of
gamma oscillations in the Wilson-Cowan model can be achieved.

In the present study, there are some limitations as follows:
The study builds on the parameters from the previous research,
such as the works conducted by Ledoux & Brunel and Jadi
& Sejnowski. As opposed to the previous study of Jadi and
Sejnowski, the present study mainly focuses on exploring how
the inhibitory and excitatory self-feedback loops regulate the
neural oscillations of the Wilson-Cowan model and has no direct
relationship to external inputs corresponding to sensory inputs.
The results have revealed that the excitatory and inhibitory
self-feedback loops have an important effect on the underlined
regulatory mechanisms of the model inputs, neural oscillations,
which implies that the two self-feedback loops may exert impact
on the response of the model to some sensory inputs. In the
future, experimental research could be further conducted to
verify the present conclusions.
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