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Understanding the neural mechanisms of working memory has been a long-standing
Neuroscience goal. Bump attractor models have been used to simulate persistent
activity generated in the prefrontal cortex during working memory tasks and to study
the relationship between activity and behavior. How realistic the assumptions of these
models are has been a matter of debate. Here, we relied on an alternative strategy to
gain insights into the computational principles behind the generation of persistent activity
and on whether current models capture some universal computational principles. We
trained Recurrent Neural Networks (RNNs) to perform spatial working memory tasks and
examined what aspects of RNN activity accounted for working memory performance.
Furthermore, we compared activity in fully trained networks and immature networks,
achieving only imperfect performance. We thus examined the relationship between the
trial-to-trial variability of responses simulated by the network and different aspects of
unit activity as a way of identifying the critical parameters of memory maintenance.
Properties that spontaneously emerged in the artificial network strongly resembled
persistent activity of prefrontal neurons. Most importantly, these included drift of network
activity during the course of a trial that was causal to the behavior of the network.
As a consequence, delay period firing rate and behavior were positively correlated, in
strong analogy to experimental results from the prefrontal cortex. These findings reveal
that delay period activity is computationally efficient in maintaining working memory, as
evidenced by unbiased optimization of parameters in artificial neural networks, oblivious
to the properties of prefrontal neurons.

Keywords: neuron, prefrontal cortex, short term memory, neurophysiology, deep learning

INTRODUCTION

Working memory, the ability to maintain information in mind over a period of seconds is a
core cognitive function, essential for higher human faculties (Baddeley, 2012). The neural basis
of working memory has been a matter of debate (Constantinidis et al., 2018; Lundqvist et al., 2018).
By some accounts, persistent activity generated in the prefrontal cortex and areas connected to
it represents the information held in memory and determines what the subject recalls (Qi et al.,
2015; Riley and Constantinidis, 2016). However, alternative models of working memory have also
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been proposed, identifying the rhythmicity of neuronal
discharges as the critical neural variable of memory maintenance
(Miller et al., 2018), suggesting that information may be
maintained without an increase in firing rate during the delay
period of working memory tasks (Stokes, 2015), or placing the
site of working memory activity in sensory areas rather than the
prefrontal cortex (Sreenivasan et al., 2014).

Generation of persistent activity has been modeled as a
continuous attractor by biophysically inspired network models
that generate a bump (peak) of activity representing the stimulus
to be remembered (Compte et al., 2000). Predictions of these
models about how neuronal activity, variability, and correlation
and how these relate to performance of working memory
tasks are borne by neurophysiological data (Wimmer et al.,
2014; Barbosa et al., 2020). It is unclear, however, whether
underlying assumptions of bump attractor models are realistic
and whether their simplified structure is truly compatible with
the diversity and variability of real neuronal responses. Criticism
abounds, therefore, about whether they constitute a realistic
model of working memory (Lundqvist et al., 2018; Miller et al.,
2018). Many empirical results observed in neurophysiological
recordings are also often difficult to interpret in the context of
the bump attractor (Qi et al., 2021).

A potential way of understanding the nature of computations
performed by neural circuits is to rely on Deep Learning methods
(Cichy and Kaiser, 2019; Yang and Wang, 2020). Convolutional
neural networks have had remarkable success in artificial vision
and the properties of units in their hidden layers have been found
to mimic the properties of real neurons in the primate ventral
visual pathway (Yamins and DiCarlo, 2016; Khaligh-Razavi et al.,
2017; Rajalingham et al., 2018; Bashivan et al., 2019; Cadena et al.,
2019). It is possible to directly compare the activation profile of
units in the hidden layers of artificial networks with neurons in
cortical areas (Pospisil et al., 2018). Deep learning models are thus
being used to understand the development, organization, and
computations of the sensory cortex (Yamins and DiCarlo, 2016;
Rajalingham et al., 2018; Bashivan et al., 2019). Another class of
artificial networks models, Recurrent Neural Networks (RNNs)
has been used recently to model performance of cognitive tasks
and to study cortical areas involved in cognitive function (Mante
et al., 2013; Song et al., 2017). RNN units exhibit temporal
dynamics resembling the time course of neural activity and can
be trained to simulate performance of working memory and other
cognitive tasks (Masse et al., 2019; Yang et al., 2019; Cueva et al.,
2020; Kim and Sejnowski, 2021).

Although RNNs and other Deep Learning methods have
received wide recognition, their use for studying the brain has
not been without criticism. The title of a recent review article
is telling: “If deep learning is the answer, what is the question?”
(Saxe et al., 2021). Neural network models are often under-
constrained and it is almost always possible to produce a model
that mimics the activity of the brain in some respects. The value
of such a result is limited. Artificial Neural Networks do provide
ways to understand how networks of units implement certain
computations, however, and can further generate insights and
hypotheses that can then be tested experimentally. It has been
postulated that structured neural representations necessary for

complex behaviors emerge from a limited set of computational
principles (Saxe et al., 2021). Uncovering such principles through
the use of artificial neural networks would be of value for the
study of working memory.

We were motivated therefore to approach the mechanisms of
working memory maintenance by simulating neural activity in
RNNs trained to simulate working memory tasks and compare
the mechanisms and computations that emerge in them with
the behavior of real neurons and with biophysically inspired
networks, which have been used to model the activity of the
prefrontal cortex. We were thus able to determine how RNN
networks maintained information in memory and to understand
what aspects of their structure and activity could be used to draw
further inference about the generation of cognitive functions.

MATERIALS AND METHODS

Design of Recurrent Neural Networks
We trained leaky RNNs to perform multiple working memory
tasks: the Oculomotor Delayed Response or ODR task
(Figure 1A); a variant of the ODR task requiring the subject to
remember the location of a cue and ignore the presentation of a
subsequent distractor (ODRD task in Figure 1B); and response
inhibition tasks (variants of the antisaccade task), as we have
described recently (Liu et al., 2021). We have found that the
simultaneous training in multiple tasks facilitates acquisition of
the working memory task and generalization across a number of
task conditions. We then examined performance of the networks
and activity their units generated in the working memory tasks.

Implementation was based in Python 3.8, using the
TensorFlow package. The RNNs consisted typically of 256
recurrent units, with positive activity. The dynamics of the
activity r of any unit were given by the following equation:

τ
dr
dx
= −r+ f

(
Wrecr+Winu+ b

√
2τσ2

recξ

)
Here τ is the neuronal time constant (set to 100 ms in our
simulations), u the input to the network, b the background input,
f the neuronal non-linearity, ξ a vector of independent white
noise process with zero mean and σrec the strength of noise (set
to 0.05). This activity was discretized and each time step in our
implementation represented 20 ms. That meant that a delay of
1.5 s was represented in 75 timesteps. We modeled the neuronal
non-linearity based on the Softplus function

f (x) = log(1+ ex)

Output units, z read out the non-linearity from the network as:

z = g(Woutr),

where g(x) is the logistic function

g(x) =
1

1+ e−x

and Wout the weights of units connected to the output units.
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FIGURE 1 | Working memory tasks and RNN approach. (A) Schematic Diagram represents the sequence of events in the ODR task. (B) Sequence of events in the
ODRD task. (C) Possible locations of the cue (and distractor) presentation. (D) Schematic architecture of input, hidden, and output layers of the RNN network.
Panels are arranged as to indicate successive events in time, in a single trial, across the horizontal axis. Appearance of the fixation point in the screen (top left panel)
is simulated by virtue of activation of fixation units, a subset of the input units. Appearance of the visual stimulus to the left of the fixation activates input units in
representing this location. Input units are connected to hidden layer units, and those to output layers units. In both tasks, the trained network generates a response
to the remembered location of the cue by virtue of activation of the corresponding output unit.

Our networks received three types of noisy input: fixation,
visual stimulus location, and task rule. The weights of the
recurrent unit matrix (Wrect) were initialized with random
orthogonal initialization (Mezzadri, 2007), implemented with
the scipy.stats.ortho_group function. Initial input weights (Win)
were drawn from a standard normal distribution divided by the
square root of the unit’s number. Initial output weights (Wout)
were initialized by the tf.get_variable function, using the default,
Glorot uniform initializer, also known as the Xavier initializer
(Glorot and Bengio, 2010). All weights could take either negative
or positive values.

To train an RNN to perform the working memory tasks, we
used a three-dimensional tensor as the input to the network

that fully described the sequence of events. The first dimension
of the tensor encodes the noisy inputs of three types: fixation,
stimulus location, and task rule. Fixation input was modeled as
a binary input of either 1 (meaning the subject needs to fixate)
or 0, otherwise. The stimulus is considered to appear at a ring
of fixed eccentricity, and its location is fully determined by the
angular dimension. Stimulus inputs consisted of a ring of 8 units,
with preferred directions uniformly spaced between 0 and 2π. For
some simulations, a more fine-grained stimulus input was used;
for those networks we increased the number of input units in a
ring to 360 (while keeping fixed the number of 256 recurrent units
in the network). The rule of the task was represented as a one-hot
vector with a value of 1 representing the current task the subject is
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required to perform and 0 for all other possible tasks. The second
dimension of the tensor encoded the batch size (number of trials).
The third dimension encoded the time series for each trial.

A ring of 8 output units (plus one fixation output unit)
similarly indicated the direction of gaze at each time point in the
trial. Networks with 360 output units were also used, whenever
the input unit number was increased. While the fixation point
was on, the fixation output unit should produce high activity.
Once the fixation input was off, the subject had to make an eye
movement in the direction of the stimulus in the ODR task (and
the direction of the first stimulus in the ODRD task), which was
represented by activity in the network of tuned output units. The
response direction of the network was read out using a population
vector method. A trial is considered correct only if the network
correctly maintained fixation (fixation output unit remained at
a value > 0.5) and the network responded within 36◦ of the
target direction.

An important consideration in the activity generated by RNN
networks is the duration of the task epochs, and whether this is
fixed or varies during training. Networks trained with fixed delay
intervals tend to generate activity that rises and peaks at a certain
time point in the trial; in contrast, networks trained with variable
delays generate more stable persistent activity (Liu et al., 2021).
We therefore trained networks with both fixed and variable delay
period, the latter using training trials where the delay period
could take a value between 0 and 3 s in 0.1 s increments. Once
fully trained, these networks could still be tested with task epoch
durations equal to those used in the experimental studies: the
fixation epoch is the period before any stimulus is shown, and
lasted for 1 s. The cue presentation epoch lasted for 0.5 s and was
followed by the delay period (1.5 or 3.0 s).

The RNNs are trained with supervised learning, based on
variants of stochastic gradient descent, which modifies all
connection weights (input, recurrent and output) to minimize a
cost function L representing the difference between the network
output and a desired (target) output (Yang and Wang, 2020).
We relied on the Adam optimization algorithm (Kingma and
Ba, 2015) to update network weights iteratively based on training
data. For each step of training, the loss is computed using a small
number M of randomly selected training examples, or minibatch.
Trials representing all six tasks were included in a single
minibatch during training of our networks. Trainable parameters,
collectively denoted as θ are updated in the opposite direction
of the gradient of the loss, with a magnitude proportional to the
learning rate η:

1θ = −η
∂L
∂2

We found that the ability of the networks to master the task was
quite sensitive to the value of η. This was set to 0.001 for the
simulations included in the paper.

The activity of recurrent units was read out at discrete time
points representing 20 ms bins. These can be compared with
“Peri-stimulus Time histograms” of real neurons. Firing rates of
individual units and population averages are typically presented
as normalized rates, obtained by subtracting the unit’s baseline
firing rate (obtained in the 1 s period prior to the appearance

of the cue) from the unit’s raw firing rate during the course
of the trial, and dividing by the same baseline firing rate.
Furthermore, we identified three stages of training, mid-trained
(defined by a performance level of 35–65%), mature (achieving
a performance level of 65–95%) and fully trained (achieving
performance ≥ 95%).

Quantification and Statistical Analysis
Saccade Endpoint Analysis
To visualize the difference in distance between the predicted
saccade location from the RNN network and target stimulus
position, the distribution of saccade location relative to the
stimulus location was plotted during the three training stages
for both correct and error trials. We refer to this as “saccadic
endpoint” analysis in Figure 2.

Activity of Recurrent Neural Network Units
We trained RNN networks with the ODR (Figure 1A) task, which
requires subjects to remember the spatial location of a stimulus
and indicate that by shifting their eye position, and the ODRD
task (Figure 1B), which adds a distractor stimulus that needs to
be ignored between the presentation of the cue and response.
We then determined the activity of RNN units during the delay
period in the three training stages and in correct and error
trials. We identified neurons that generated persistent activity
as those whose activity during the delay period was significantly
elevated over the fixation period (based on a t-test, evaluated at
the p < 0.05 significance level). We constructed PeriStimulus-
Time Histograms (PSTH) from different training stages, using
both correct and error trials. Typically the best location of
each neuron was identified, and then responses of multiple
neurons were averaged together. We performed comparisons
between conditions (e.g., correct vs. error trials) by averaging
activity from all units that generated persistent activity during
the task (typically in the order of 150–200 units per network
instantiation), across multiple networks (typically 30 networks).

Network Peak of Activity
In order to visualize the spatial extend of RNN unit activation
across the network, we created a two-dimensional heatmap of
activity. For this analysis, simulations with 360 input and output
units were used. During this ODR task, which has a 1.5 or 3.0
s delay time, we first sorted the units based on the location in
which each unit achieved its peak firing rate during the delay
period. We then generated a heatmap in ascending order where
each row represents the firing rate of a single unit normalized by
its preferred delay firing rate.

Behavior—Rate Correlation Analysis
In order to explore the correlation between mean firing rate
and saccade deviation in network hidden units, the Pearson
correlation coefficient was computed. We only used the last 1
s of the delay period in the ODR task as the neural activity
which was most representative and sensitive right before the
saccade. The firing rate deviation of each unit was computed as
the difference between the actual firing rate in a trial and the
median firing rate across all trials for the same cue location.
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FIGURE 2 | Saccadic endpoint analysis. Saccadic endpoint distributions to target stimulus locations (◦) of RNN units responsive to the ODR task during three
training stages (indicated as mid-trained, mature, and fully trained networks). N = 711 correct, 2,617 error trials for the mid-trained stage; N = 983 correct, 809 error
trials in the mature stage; N = 5,101 correct, 659 error trials for the fully trained stage, respectively.

The value of saccade deviation of each unit was the absolute
difference between actual location and median of locations. The
sign of saccade deviation was determined according to the tuning
function of each unit. Saccade deviation toward the preferred
stimulus had positive sign, while saccade deviation away from the
preferred stimulus had negative sign. The firing rate and saccade
deviations were then reordered based on the tuning locations
and the correlation coefficients were computed. We observed the
averaged correlation coefficients of spatial tuning locations and
its distribution of delay neurons in the fully trained stage.

Fano Factor Analysis
Fano factor was computed as a measure of variability of
RNN units in these simulations. For each unit that exhibited
significantly elevated delay-period activity (as defined in the
previous section) we computed the delay-period firing rate in the
entire delay period, separately for each of the 8 ODR stimulus
locations. We then repeated this calculation across 16 correct
trials. The variance of this estimate, divided by the mean defines
the Fano factor for each unit at each location. We then rotated
the neural response to the stimulus at different spatial locations
so that the best location of each unit was represented in the
graph’s center location. The firing rate and Fano factor at each
location were plotted as a function of distance from the unit’s
preferred location to generate the average tuning curves and
Fano factor plots. Here, we also used the last 1 s of delay period
in the ODR task.

RESULTS

We trained RNN networks to perform variants of the
Oculomotor Delayed Response task (ODR—Figure 1A),
including a version of the task with a distractor (ODRD—
Figure 1B). A cue stimulus could appear at one of eight locations
arranged on a ring, thus deviating by 45◦ of angular distance
relative to each other (Figure 1C). Subjects performing this task
are required to maintain the stimulus in memory, and after a
delay period, to perform an eye movement to its remembered
location, ignoring any distractor stimulus, if one is present

(Zhou et al., 2016). The RNNs simulated the task by receiving an
input representing the cue location, representing its location in
activity over a delay period of 1.5–3 s and generating a response
corresponding to an output location on the ring (Figure 1D).
This was computed by combining the activity of output units and
could therefore vary continuously in the range of 0–360◦. We
analyzed the performance of the network in the task, the activity
of units, and the relationship between the two.

Task Performance
We first determined how the network performed the task and
how performance changed as a result of training. We used
the calculated position of the output units of the network,
which corresponds to the endpoint of the saccade of subjects
performing the ODR task, as the main metric of performance.
Early in training, the RNN networks exhibited a near uniform
distribution of responses, with saccadic endpoints covering all
possible output positions. Only a small fraction of these trials
was considered correct by our definition of falling within 36◦
of the cue position (Figure 2, left). As training progressed, the
percentage of correct trials increased (Figure 2, middle). The
distribution of error trials also markedly shifted, so that in the
fully trained network errors deviated only slightly beyond the 36◦
criterion deviation value. A smaller peak in the error distribution
of the mid-stage network corresponded to the location adjacent
to the actual stimulus position (at 45◦ degrees relative to the
cue). The skewness in the distribution was further exaggerated
in the fully trained networks (Figure 2, right), however, even
in this phase, RNNs generated a distribution of trials with
variable accuracy, including error trials. That allowed us to
determine how activity of neurons in the network related to
behavioral performance.

Recurrent Neural Networks Activation
Compared to Attractor Models
One class of models posits that working memory is mediated
by the persistent activity of neurons in the prefrontal cortex
(Riley and Constantinidis, 2016; Constantinidis et al., 2018),
which behave as a continuous attractor. These are referred
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FIGURE 3 | Bump attractor vs. RNN models. (A) Schematic diagram of the
bump attractor model. Neurons representing different stimulus location are
arranged in a ring so as to indicate each neuron’s preferred location. Synaptic
connections between neurons with similar preference are stronger.
(B) Schematic of the pattern of activity in the network. Y axis represents
neurons in the ring with different spatial preference. A stimulus appearing at
the left creates a peak of activity in the network centered on the 180◦ location.
This peak may drift in time during the delay period of the task. The location of
the peak at the end of the delay period determines the location that the
subject recalls. (C) Activity of individual neurons is modulated based on the
drift of activity in the network; a neuron with a peak at 180◦ may be maximally
activated at the beginning of the delay period, but its activity is expected to be
much lower at the end, if the peak has drifted. (D) Schematic diagram of the
RNN networks. Units with different preference are arranged randomly in the
network, and strengths of connections develop after training, with no
geometric arrangement.

to as “bump attractor” models because the bump (peak) of
activity across the network of neurons with different stimulus
preferences ends up determining the location that the subject
remembers (Compte et al., 2000; Wimmer et al., 2014). In this
scheme, activity during the working memory interval of the task
is maintained in the network by virtue of connections between
neurons (Figure 3A). Neurons with different spatial tuning, i.e.,
maximally activated by stimuli appearing at different spatial
locations on the screen can be thought of as forming a ring (hence
“ring attractor” is another term for this type of network). Neurons

with similar spatial tuning are strongly connected with each other
(indicated by the width of arrows in Figure 3A). Appearance
of a stimulus at one location, e.g., at the 180◦ location, to the
left of the fixation point, maximally excites neurons on the ring
representing that location. Activation then persists even after the
cue is no longer present, by virtue of their pattern of connections
between neurons that allow activity to reverberate in the network
(Constantinidis and Wang, 2004). Maintenance of activity is
not perfect in the network; the peak of activity may drift in
time, resulting in behavioral inaccuracies. This is illustrated in
Figures 3B, now representing the ring of neurons of Figure 3A
in linear fashion, across the y-axis. The critical element of the
model is that activity at the end of the delay period determines
the location that the subject recalls (Figure 3B right). Activity of
individual neurons can then be expected to be higher or lower
depending on whether the bump of activity drifts toward the
neuron’s preferred location or away from it (Figure 3C).

Artificial networks that simulate the bump attractor have been
shown to accurately capture properties of prefrontal neurons
(Compte et al., 2000; Wimmer et al., 2014; Barbosa et al.,
2020). However, the pattern of connectivity between neurons
active during working memory is generally unobservable and
it is unknown if they represent a realistic depiction of neural
circuits, shaped by activity. The pattern of connections between
RNN units is unstructured initially and emerges during training
(Figure 3D). Such simulations can allow us therefore to test
the pattern of connectivity that emerges in networks after
optimization and the relationship between delay period and
behavior that develops.

We thus sought to examine how RNNs implement this task.
Results of a typical network are shown in Figure 4. After training
in the ODR task, individual RNN units exhibited a preferred
stimulus location (they are shown arranged in ascending order
across the ordinate of the plot, in a similar fashion as the model of
Figure 3B). During trials involving presentation of the stimulus
at the 90◦ location, units whose preferred delay period activity
were near this location continued to be active through the delay
period when no stimulus was present. This pattern of activity
was reminiscent of bump attractor networks (Figure 3B), and
experimental results (Funahashi et al., 1989).

It was also informative to understand how the pattern of
connections between these units was shaped after training.
Analysis of all unit weights in shown in Figure 5A. Units in the
hidden (recurrent) layer with similar tuning were more likely
to be connected to each other (positive weights cluster around
the diagonal). This weight matrix that emerges after training
recapitulates the weight structure of bump attractor models, in
which the footprint of synaptic connections is directly dependent
on tuning similarity (Compte et al., 2000; Wimmer et al., 2014).
Changes in network unit number (e.g., increase of input units
from 8 to 360) produce rescaling of weights in the course of
training (Figures 5B,C).

The similarity of the RNN networks with the bump attractor
model was not absolute. RNN units displayed considerable
dynamics, with activity after the cue appearance that quickly
decayed and reemerged later in the delay period (as in
Figure 5A), or activity that ramped up slowly after the
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FIGURE 4 | Location of RNN unit activation during working memory tasks. Firing rates of RNN units responsive to the ODR task during the mature-training stage.
Each row represents activity of a single unit during presentation of the unit’s preferred stimulus in the ODR task. Units have been sorted based on the location where
each unit achieves the peak firing rate during the delay period (indicated at the y-axis label). Color scale represents activity normalized by the baseline firing rate,
separately for each neuron. Horizontal line at the bottom of the plot indicates time of cue appearance at time 0; vertical arrow, time of response.

appearance of the stimulus and peaked in the delay period (as in
Figure 5B—further discussed below). Furthermore, RNN units
often exhibited different preferred location for the cue and delay
periods. In the network instantiation shown in Figure 3 the
stimulus appeared at the 90◦ location and units have been sorted
based on their maximum delay-period activity. Only a few of the
units active during the delay also show peaks of activation during
the cue presentation, which typically subside and reemerge (as
in Figure 6A). A second cluster of activation during the cue
appearance at 90◦ was observed among units whose preferred
delay period activity was near 270◦. This finding clearly deviates
from the behavior of bump attractor networks whose peak of cue
activation persists stably into the delay period but is in fact more
similar to experimental data from prefrontal neurons that often
exhibit different preferences at different task epochs (Rao et al.,
1999; Spaak et al., 2017).

Unit Responses and Relation With
Behavior
To appreciate better the full time-course of activation of RNN
units in the task, we plotted PSTHs of individual units (Figure 6).
Different RNN units generated activity at various times during
the task, including in the delay period. As we have shown recently

(Liu et al., 2021), the time course of activation in RNN units varies
considerably depending on the timing of task events. Networks
trained with fixed delay intervals are much more likely to produce
activity that peaks at specific times during the task (Figure 6A).
In contrast, networks trained with a variable delay period can
generate stable delay period activity that remained at a high level
until the response period (Figure 6B).

Our first objective regarding the relationship of RNN activity
and behavior was to determine whether the delay period
activity generated by RNN units during working memory tasks
determined recall, in analogy with the bump attractor models
and experimental results from the prefrontal cortex. This was
indeed the case. The activity of RNN units in the delay period
of the task was predictive of the behavior of the network, in
multiple ways. Firstly, error trials were characterized by lower
levels of activity following a unit’s preferred delay-period location
in the ODR and ODRD tasks. Mean activity in the last 1 s
of the delay period following the preferred location of each
RNN unit was significantly higher in correct than error trials
for networks trained with a fixed 3 s delay, as in Figure 5A
(two-tailed t-test, t2,946 = 2.48, p = 0.013). The difference was
much more pronounced for networks trained with a variable
delay period as in Figure 5B (two-tailed t-test, t5,181 = 18.9,
p = 2.1× 10−58). We based this analysis exclusively on activity of
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FIGURE 5 | Weight Matrix. (A) Full connectivity matrix for a trained network in the ODR task. Left: weights between input and hidden (recurrent) units. Center:
weights between recurrent units. Bottom: weights between recurrent and output units. Arrangement of recurrent units in the corresponding dimension of each matrix
was obtained, by sorting them based on their preferred stimulus location in the ODR task. Red points indicate excitatory weights between corresponding units; blue
points indicate inhibitory weights. (B) Weight distribution if input-to-recurrent unit weights in mid-, mature- and fully trained networks incorporating 8 input units (as
in A). (C) Weight distribution in networks incorporating 360 input units.

units that generated elevated delay period activity, pooled across
multiple network instances. The variability of individual units
was very subtle from trial-to-trial (discussed in more detail in
section “Unit Variability,” below). The difference between error
and correct trials was mostly the result of differences between
network instances. In other words, networks in which units did
not generate high levels of delay period activity were more likely
to generate errors.

In the ODRD task (Figure 6C), the critical comparison
was that of activity in the second delay interval of the task,
following a cue in the unit’s preferred location. Mean RNN
unit activity in this interval was higher in correct rather than
error trials (two-tailed t-test, t3,157 = 7.3, p = 6.7 × 10−13).
These results mirror findings in neurophysiological experiments:
prefrontal neurons exhibit reduced firing rate for their preferred
stimulus during the delay period of error trials in the ODR
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FIGURE 6 | Activity of RNNs during working memory tasks. (A) Mean firing rate of RNN units responsive to the ODR task for the location corresponding to the best
delay period activity of each unit in fully trained networks. Solid line indicates PSTH of correct trials, dashed line indicates PSTH of error trials. N = 2,704 units for
correct trials, 244 units for error trials. Inset on top of figure indicates schematically the sequence of events in the task; location of stimulus used to construct the
mean firing rate plot differed for each unit. (B) As in (A) for an RNN network trained with a variable delay period. N = 5,039 units for correct trials, 144 units for error
trials. (C) Mean firing rate of RNN units responsive to the ODRD task. Solid line indicates PSTH of correct trials when cue is in the best location of each unit; dashed
line indicates PSTH of error trials. N = 2,951 units for correct trials, 208 units for error trials.

(Funahashi et al., 1989; Zhou et al., 2013) and ODRD tasks
(Zhou et al., 2016).

Secondly, the behavioral outputs of the RNN networks (which
we refer to as “saccadic endpoints” in analogy to the eye
movements generated by subjects in the ODR task) were related
to the mean activity of individual units. For different deviations
of saccadic endpoints from their mean position, activity in
individual units showed a deviation in the direction predicted by
the unit’s tuning function, not unlike what has been reported for
prefrontal neurons in the context of the bump attractor model
(Figure 3C). For this analysis we rotated the tuning of each
neuron so that the best location is represented at the center
of the tuning curve. Let’s consider a trial involving stimulus
appearance at the flank of the neuron’s tuning curve, at +45◦
degrees from the peak. If the delay period activity of this unit
contributes causally to the recall of the stimulus, then on trials
when the activity of this unit was higher than average we would
expect the saccadic endpoint to deviate in the direction of the
unit’s preferred location; on trials when its activity is lower
than average, we would expect the saccadic endpoint to deviate
in the opposite direction. The correlation of any single unit
with behavior would be expected to be small (since behavior
is determined by the simultaneous activation of hundreds of
units) but positive. This is the result predicted by the bump
attractor and validated in prefrontal recordings (Wimmer et al.,
2014). This was precisely the case in our RNN simulations,
as well (Figure 7). A small but significant positive correlation
was observed between the unit’s delay period activity and the
endpoint of the saccade. Across the population of units, firing rate
deviations from tuning curve correlated positively with saccade
deviations from median saccade position (Figure 7C). The mean
correlation value (r = 0.087) was significantly higher than 0
(one-sample t-test, p = 1.07 × 10−25). Importantly, this positive
relationship held for locations in the flanks of the unit’s receptive
field (locations ± 45–135 in Figure 7B). For the peak and tail of
the unit’s tuning curve no such relationship would be expected

(as deviation of saccadic endpoint from either direction of the
peak would be expected in lower firing rate, and no net positive
correlation), resulting in an “M”-shaped averaged correlation at
tuning locations.

Unit Variability
One consistent difference between RNN unit activity and firing
rate of cortical neurons was that, for a given trained network,
RNN unit activity tended to be much more stereotypical and
reproducible from trial to trial. On the other hand, real neurons
in the prefrontal cortex and other brain areas exhibit considerable
variability from trial to trial during working memory (Qi and
Constantinidis, 2012). This property can be appreciated in the
PSTH of example RNN units (Figure 8). Except for brief periods
of time during the response period of the unit depicted in
Figure 8A, or the cue period in the unit depicted in Figure 8B,
activity was virtually indistinguishable between different trials.

Trial-to-trial variability in brain neurons can be quantified
formally with measures such as the Fano factor of spike counts
(variance divided by the mean of the number of spikes at a
given time). Use of the Fano factor for activity in a network
that does not generate spikes is not entirely equivalent. Even if
spikes are assumed to be generated by a Poisson process with
mean rates equal to those achieved by the RNN, trial-to-trial
spike counts in cortical neurons is determined by two types of
variability: a network state reflected in mean firing rates, but also
the stochasticity of the spike- generation process due to noisy
inputs and probabilistic generation of action potentials. A much
greater variability in spike counts would thus be expected in
neurons than RNNs with equal mean rate. RNN unit activity
can better be thought as an average of multiple neurons, and its
Fano factor thus computed is not equivalent to that of individual
neurons. Nonetheless, the Fano factor of RNN activity rates is
still informative about the relative variability across conditions
and the mean Fano factor computed over the delay period
was therefore in the range of 0.02 (Figure 9), which is almost
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FIGURE 7 | Behavior-rate correlation analysis. (A) Population tuning curve from units with delay period activity in the fully trained stage of the ODR task constructed
by rotating neuron responses to the stimulus presentation at different spatial locations so that the best location of each neuron is represented in the graph’s center
location. Left curve represents the best Gaussian fit. Curve represents average of N = 114 neurons, averaged over 16 correct trials for each location. (B) Averaged
Pearson Correlation coefficients between delay firing rate deviation and saccade deviation at spatial tuning locations of RNN delay units during the fully trained stage,
for the same population of neurons shown in (A). (C) Distribution of Pearson correlation coefficients between delay firing rate deviation and saccade deviation of
RNN units that exhibited delay period activity (N = 114 neurons).

FIGURE 8 | Activity of single RNN units in working memory task. (A,B) Peristimulus-time histogram of two responsive units from the fully trained stage of RNN in the
ODR task. Traces of different colors represent firing rate in individual trials (N = 16 trials).

two orders of magnitude smaller than Fano factor of prefrontal
cortical discharges (Qi and Constantinidis, 2012).

Despite this large quantitative difference, RNN captured
another qualitative property of prefrontal cortical networks,
variability during working memory that depends on the location
of a remembered stimulus relative to the unit’s receptive field
(Wimmer et al., 2014). In the context of the bump attractor
model, following appearance of a stimulus at one location, the
bump of activity in the population may drift randomly in either
direction relative to the stimulus. If the stimulus appears at the
flanks of the neuron’s receptive field, drifts in the direction of
the peak would be expected to result in the increase in firing
rate whereas drifts in the direction of the tail would be expected
to result in lower firing rate. On the other hand, if the stimulus
appeared at the peak of the receptive field, then any drift would
be expected to result in lower firing rate, and therefore much less
variability overall, from trial to trial. The same is true for locations
at the tail of the unit’s tuning function. RNN units exhibited
precisely the same pattern of variability, with an M-shaped Fano
factor curve as a function of the unit’s tuning (Figure 9), similar

to the pattern observed for the rate-behavior correlation. A 1-way
Analysis of Variance revealed a significant effect of stimulus
location on Fano factor [F(7,904) = 5.05, p = 1.2 × 10−5]. This
result, taken together with the rate-behavioral correlation results
in Figure 7 indicates that, variability of the output of the RNN
networks is governed by drifts of delay period activity. RNN
units are activated in a predictable manner, as the activity of
the network sweeps to represent different locations. The output
of the network is governed by the relative activation of units
representing different locations.

DISCUSSION

Artificial neural networks have been used widely over the
past decade to solve computational problems as well as to
uncover brain processes (LeCun et al., 2015). The success
of convolutional neural networks in uncovering properties of
neurons in the primate ventral visual pathway (Yamins and
DiCarlo, 2016; Khaligh-Razavi et al., 2017; Rajalingham et al.,
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FIGURE 9 | Fano factor analysis. Mean Fano factor values computed across
units with delay period activity, for spatial locations relative to each unit’s
preferred location. Curve represents average of N = 114 neurons, calculated
over 16 correct trials for each location.

2018; Bashivan et al., 2019; Cadena et al., 2019) suggest that
the same fundamental operations performed by the human
brain are captured by artificial neural networks. This finding,
in turn, allows the use of such networks as scientific models
(Cichy and Kaiser, 2019; Saxe et al., 2021). Neuroscience
principles have also been instructive for the design of more
efficient networks and learning algorithms (Sinz et al., 2019).
In addition to convolutional networks, other architectures have
had practical applications in Neuroscience questions, for example
to uncover neuronal spike dynamics, or encoding of elapsed
time (Pandarinath et al., 2018; Bi and Zhou, 2020). The activity
of the prefrontal cortex has been investigated successfully with
Recurrent Neural Network frameworks, which capture many
properties of the prefrontal cortex, including its ability to
maintain information in memory and to perform multiple
cognitive tasks, after training (Yang et al., 2019). We capitalized
on these developments to study computational principles of
working memory maintenance.

Bump Attractor vs. Recurrent Neural
Networks
In our current study, we performed a number of analyses
in the same fashion as previous studies that have tied
neurophysiological activity of neurons in the prefrontal cortex
with behavior in working memory tasks (Wimmer et al., 2014;
Barbosa et al., 2020). The architecture of the RNN network
is different from biophysically inspired bump attractor models
in that the connectivity footprint of each RNN unit is formed
through training, rather than being hardwired based on the
relative tuning of connected units. Nonetheless the output of
the trained RNN network was determined by activity in the

delay period of the task in a fashion that resembled the bump
attractor models. Similarly, we saw that variability of RNN
networks is governed by drifts of activity in the network. RNN
units are activated in a predictable manner, as the activity of
the network sweeps to represent different locations. The output
of the network is governed by the relative activation of units
representing different locations.

In a sense, the structure of the RNN resembles more that of the
prefrontal cortex, which does not contain an orderly organization
of neurons with precisely outlined connections (Constantinidis
et al., 2001; Leavitt et al., 2017), unlike ring attractor models
which simplify and idealize the organization of neurons and their
synaptic connections. Other differences were also present, for
example RNN units with different stimulus preference during the
cue and delay periods (Figure 4), which again resembled more
experimental results (Rao et al., 1999; Spaak et al., 2017) than
their idealized, bump-attractor instantiation. Weight-updating is
also in line with experimental findings of changes in synaptic
connections observed in the primate prefrontal cortex (Zhou
et al., 2014). Our results give credence to the idea that synaptic
connections may be adjusted appropriately between prefrontal
neurons, even absent a clear topographic organization and that
the population of neurons may then behave like an attractor
network even if activity of individual neurons does not appear
perfectly canonical.

Model Limitations
Despite the similarities between RNNs and prefrontal cortex, we
do not wish to overstate their analogy. Some RNN instantiations
maintained information in the delay period in a transient
fashion, which is a documented property of RNNs trained to
maintain information in short-term memory (Orhan and Ma,
2019). “Ringing” (oscillatory) dynamics were also much more
prominent in the RNNs than the PFC data, though we should
note such dynamics have been observed in other neural datasets,
and arguments have been made of a significant role in working
memory maintenance (Roux and Uhlhaas, 2014; Lundqvist
et al., 2016; de Vries et al., 2020). We additionally relied on a
small network of 256 units for these simulations, which greatly
underestimates the complexity of the prefrontal cortex. Millions
of neurons make up the real network, which is additionally
organized in several subregions with distinct properties and
capacity for plasticity (Riley et al., 2017, 2018), and encompasses
areas beyond the prefrontal cortex (Jaffe and Constantinidis,
2021). Responses across trials were also highly stereotypical and
lacked the variability present in prefrontal discharges. These
examples illustrate that RNNs are not expected to be a precise
replica of the brain. Nonetheless, the use of RNNs can reveal
important computational principles of the brain.

Our study also did not examine directly opposing models of
working memory, such as those relying on synaptic mechanisms.
RNN networks allowing for forms of non-activity dependent
plasticity have indeed shown ability to learn at least simple
working memory tasks (Masse et al., 2019). We do not wish
therefore to imply that our current study is definitive regarding
the relative importance of spiking and non-spiking mechanisms
(Masse et al., 2019).
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Summary of Insights and Outlook for
Future Research
Our study demonstrates that persistent activity can be generated
in a network of units whose activity represents a stimulus
held in memory and whose structure of synaptic weights is
determined by their relative preference for different stimuli.
Our approach offers promise for understanding more complex
working memory tasks are performed by neural circuits,
including object working memory which requires representation
of stimulus identity rather than spatial location; tasks that require
manipulation of information in working memory; and tasks
probing the capacity limitation of human working memory.
Our approach offers a path toward identifying plausible neural
mechanisms for these phenomena, which can then be probed
with future experimental results.
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