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There is an extensive body of literature on the topic of estimating situational states, in
applications ranging from cyber-defense to military operations to traffic situations and
autonomous cars. In the military/defense/intelligence literature, situation assessment
seems to be the sine qua non for any research on surveillance and reconnaissance,
command and control, and intelligence analysis. Virtually all of this work focuses on
assessing the situation-at-the-moment; many if not most of the estimation techniques
are based on Data and Information Fusion (DIF) approaches, with some recent
schemes employing Artificial Intelligence (AI) and Machine Learning (ML) methods. But
estimating and recognizing situational conditions is most often couched in a decision-
making, action-taking context, implying that actions may be needed so that certain
goal situations will be reached as a result of such actions, or at least that progress
toward such goal states will be made. This context thus frames the estimation of
situational states in the larger context of a control-loop, with a need to understand the
temporal evolution of situational states, not just a snapshot at a given time. Estimating
situational dynamics requires the important functions of situation recognition, situation
prediction, and situation understanding that are also central to such an integrated
estimation + action-taking architecture. The varied processes for all of these combined
capabilities lie in a closed-loop “situation control” framework, where the core operations
of a stochastic control process involve situation recognition—learning—prediction—
situation “error” assessment—and action taking to move the situation to a goal state.
We propose several additional functionalities for this closed-loop control process in
relation to some prior work on this topic, to include remarks on the integration of
control-theoretic principles. Expanded remarks are also made on the state of the art of
the schemas and computational technologies for situation recognition, prediction and
understanding, as well as the roles for human intelligence in this larger framework.

Keywords: stochastic control and time-varying systems, situation control, situation assessment, estimation,
prediction

INTRODUCTION AND REVIEW OF CURRENT RESEARCH

The concept of a “situation” can be thought of as describing a portion of a real-world that is of
interest to a participant in that portion of the world. An understanding of a situation is needed and
useful toward guiding or assessing the need for possible action of the participant in that situation.
Action of a participant may also be needed to possibly alter the situation if it is in an undesirable
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state (assuming resources capable of affecting the situation are
available), or for the participant to alter his position in the
situation. For a human participant, the mental faculties of
human cognition, such as consciousness (awareness), reasoning,
formation of beliefs, memory, adaptation, and learning, frame
the functional aspects of a process of cognitive situational
understanding, related to the notion of sensemaking (see, e.g.,
Pirolli and Card, 2005; Klein et al., 2007).1 Acting on the situation,
however, leads to the process of cognitive situation control,
as well described in various of Jakobson’s papers (Jakobson
et al., 2006, 2007, Jakobson, 2008; Jakobson, 2017) that, in
part, motivated this work. A depiction of that process is shown
in Figure 1 taken from Jakobson (2017); we offer here an
abbreviated description of that process. The cycle starts with
the existence of some (real, true) condition in the world, shown
here by Jakobson as the “Operational Theater” which, as shown,
can be affected by nature (that is, a context affected/defined by
various contextual factors) and possibly of hostile or adversarial
agents. That real situation is observed by imperfect and often
multiple, multimodal sensors, and possibly human observers to
support an estimation process that yields a “recognition” of the
situation (a state estimate) that may be reasoned over by a human
agent, or that provides an input to a subsequent automated
process. (The situational picture so derived is understood to be
only a part of some larger situational construct.) Jakobson calls
this estimate the “Abstract Situation” in Figure 1. Given the
current, recognized situation derived largely from observation,
a Situation Learning process evolves from what we will call
a contextual learning or a model-building process that could
also be called Situation Understanding. Such a process implies
an ability to develop a generalized, broader conception from
the particulars of the current recognized picture and exploiting
contextual factors either known a priori or collected in real-time.
This process is similar to Bruner’s view that “mental modeling
is a form of information production inside the neuronal system
extending the reach of human cognition ‘beyond the information
given”’ (Bruner, 1973). Following Jakobson, the recognized,
learned situation is compared to a goal situation that presumably
can be specified a priori or in real-time, and a difference is
computed between the two situational states by a Situation
Comparator function. That difference can be considered, from
a control process point of view, as an “error” signal; if that
(likely stochastic) difference is high enough (in consideration of
an estimated state variance), actions need to be contemplated
and assessed in a decision-making process, and once defined are
enabled onto the current situation in an effort to “move” the
situation toward the goal state. Note that Actions or Effects on to
the situation can only be realized through whatever “Actuators”
or Resources may be available to this control process.

There are two classes of “Resources” in this characterization:
Observational Resources and “Actuators” or Resources that
can enable changes in the real situation; these could also be

1Sensemaking is not the same as understanding; sensemaking involves interplay
between foraging for information and abstracting the information into a
representation called a schema that will facilitate a decision or solution
(http://www.peterpirolli.com/Professional/Blog__Making_Sense/Entries/2010/8/
16_What_is_sensemaking.html).

called “Effectors.” The effective design of a process of managing
these resources raises some challenges. For the Observational
Resources, they first of all have to support the process that forms
a recognized situational picture, possibly in the face of the “Five
V’s” of modern-day Big Data environments,2 since this process
does not start without an (estimated) recognized situational
picture. To the extent then that the Observational Resources are
a fixed resource set, and have any slack in their employment,
they can also be used/multiplexed to support the employment
of Effectors, as Effectors will need to be directed in some way.
We submit that there is a time delay of possibly widely varying
extent between the time of (initial) Situation Recognition and the
eventual time of action of the Effectors; that is, most situations are
continually unfolding and changing; they are dynamic. This being
the case, it can be that there is a meaningful difference between
the initial recognized situation and the situation that is eventually
acted upon; such differences may result in very incorrect results
of Actions if not accounted for. Thus, we assert that there will
usually be a need for a Situation Prediction capability to create a
temporal synchronization in this control process by propagating
the situational estimate to the (expected, estimated) time of
action. Then, just before acting, the predicted situation should
be verified, this also requiring Observational resources. In sum,
the Observational Resources will be shared over three different
functional operations, as follows:

• Synchronizing Observation to Situational Velocity,
Volume, Variety, Veracity, and Value in support of
Situation Recognition
• Observation Multiplexing to support employment of

Resources/Effectors
• Observation Multiplexing to support Situation Prediction

confirmation.

A factor that will be very important in determining the process
context for Situation Management and Control is the assessed
rate at which the situation is unfolding; that is, the Operational
Tempo (“OpTempo”) of the situation. This factor needs to
be weighed in relation to both the scanning/sampling rate of
the Observational Resources, the prediction interval, sensor
resolution factors, and in fact the viability of the overall process;
if the situation is unfolding at a rate faster than it can be feasibly
observed, forming dependable situation estimates will be very
difficult, and situational predictions will be equally hard. This
balance changes the dependence of the Learning/Understanding
process between a priori knowledge and real-time observational
data; uncertainties in the consequent estimated situation will also
be affected. Estimating situational OpTempo should therefore
be a fundamental requirement of the Situation Recognition
function, as it is a critical process design and management
parameter, setting the overall “clock” for this control process.
The notion of OpTempo is in the fashion of a meta-metric,
since any situation will be comprised of multiple component
processes unfolding at varying rates. Note too that there are
optimization issues lurking here, as regards defining how optimal

2Volume, velocity, variety, veracity, and value.
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FIGURE 1 | Concept of cognitive situational control derived from Jakobson (2017).

co-employment of bounded Observational Resources will be
managed across these process needs.

Jakobson does not elaborate on the functions of Situation
Learning nor on the Memory-based processes shown in Figure 1
(by choice, deferring those topics to future publications). He does
elaborate on the functions of Situation Recognition as a tree-like
hierarchical structure of component situation recognition sub-
processes. A disaster-based use case is described within which an
action-taking process that is also layered is elaborated. Jakobson,
along with others on various occasions, has produced a number of
papers on the central themes of cognitive situation management
and many related topics that bear on the overarching topic of
situation management (see prior citations and Jakobson et al.,
2006; Jakobson, 2008).

To provide a historical perspective related to the process of
situation control, we cite here the work of John Boyd, a military
strategist and United States Air Force Colonel who in the 1980’s
put forward the paradigm that has come to be called the “OODA
Loop,” OODA an acronym for Observe-Orient-Decide-Act (see
Boyd, 1986), but there are many papers, and a wide range of
publications related to this paradigm if one searches on the web.
It should be clear that these functions are quite similar to those
depicted in Figure 1, with “Orient” perhaps needing clarification.
Before remarking on Orient, it is emphasized that the OODA
process was framed as a mental process, and then was studied

by many to expand the framework to a potentially computational
basis. Orient then was about mental modeling that built a mental
model of a situation by consideration of prior knowledge (long-
term memory), new information, cultural factors (a contextual
effect), and other factors. This situation control type paradigm
has found its way into business intelligence settings, game
theory, law enforcement, and a multiplicity of other applications.
A thorough review of the OODA process is provided in Richards
(2012), although there are many publications about this process
that addresses situation control.

Our intent in this paper is to expand the framework
of cognitive control in terms of our views of several other
component processes (forthcoming), and in discussing
these additional processes, to relate them to research and
capabilities in the cognitive neurosciences and machine
understanding domains.

SITUATION CONTROL IN CRISIS
MANAGEMENT

There is a large literature on crisis management and disaster
management. In many cases, the characterization of the process
begins with an assumption that certain of these problems can be
anticipated, since in many cases an assessment of vulnerability to
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specific types of crises can be analyzed, such as in the cases of
natural disasters. The ability to achieve Situation Recognition in
these cases benefits from recognizing anticipated early signals of
the onset of the event, among other factors. However, there are
many other crises that do not follow this model, either because
they are of a rare type or perhaps because they are perpetrated
by some actors; situation recognition in these cases is both
more difficult and will also take more time for evidence accrual.
Perpetrated crises are analogous to military-type crises and can
have similar properties such as the employment of deception
techniques and other complications; these factors re-orient the
situation assessment process to one of adversarial reasoning. In
any setting involving situation state estimation, an early question
has to do with whether the setting is a natural one where
phenomena are driven by natural causes or whether the setting
comprises a two-sided, adversarial context. The case involving
adversaries can be related to the case of “Information Warfare,”
(IW), where the two sides are manipulating information, the
bases for perception and inference, to their advantage. The larger
purpose of these operations is to manage adversarial perceptions
by structuring the information available to an adversary to be
compliant with that perceptual construct. Another topic related
to deception is denial of information by covertness, camouflage,
jamming, and other means. Deception and denial strategies work
because of exploitation of reasoning errors, cognitive limitations,
and cognitive biases (Elsaesser and Stech, 2007). The most
important errors are:

• Reasoning causally
• Failure to include a deception hypothesis
• Biased estimates of probabilities
• Failure to consider false positive rates of evidence.

In our own experience in dealing with an earthquake
disaster case, there was the additional complication of multi-
jurisdictional participants, all taking different views of the
integrated situation and what resources are to be deployed
and controlled. This latter case involved additional processes
of consensus-forming and complex communications to both
recognize and predict situational states. In our disaster example
and in most crisis problem contexts, a top priority is life-saving
and casualty recovery, and the situation to both understand
and control is that which relates to all of the dimensions of
casualty-recovery operations. Such operations are dependent
on vulnerable infrastructure components such as airports,
ambulance depots, and electrical power. In addition, it is very
typical in crises that there are cascading effects; in the case
say of an earthquake, the tremors will cause primary problems
such as building collapses but will in addition rupture gas lines
leading to fires as secondary threats. These same cascading events
occur in other crises as well, such as in wildfires, where entry
and exit routes are compromised by evolving fire patterns, and
where wildfire observation such as from drones is affected by
dense smoke patterns; all of these factors drive a need to model
the dynamics of situation control patterns. A core challenge
in all situation control problems is achieving synchronization
of the situation recognition, prediction, and understanding

processes with control-related and action-taking processes. That
is, there are the issues of gaining situation awareness and
maintaining situation awareness, while comparing situational
conditions to those desired and subsequently deciding on specific
control actions.

Related Work; A Sampling
As noted above, there is a lot of literature on crisis and disaster
management for which the topic of situation control would seem
to be of interest. Relatively few papers in this field, however,
address end-to-end process issues and models in the systemic
context of this paper, although there many papers that address
portions of the entire process; we sample a few here.

For example, it is clear that any Situation Control process
must also be managing data and might require ancillary analytical
support operations. The paper by Hristidis et al. (2010) provides
one overview of data management and analysis processes
in a stressing disaster-type situation. Information extraction,
retrieval, and filtering processes (similar to data preparation
processes in data fusion operations) are needed to extract relevant
data of satisfactory quality for subsequent operations. Aspects of
the supporting process infrastructure are addressed here as well,
such as the need for a consistently formatted data base. This work
is focused on textual data (often called “soft” data to distinguish
it from quantitative “hard” data from electromechanical sensors),
an important class of data for situation control, often not
addressed.

Zambrano et al. (2017) provide an interesting aspect of a
modern-day situation control problem regarding the use of
cellphones; most modern contexts where a situation is evolving
will involve cellphones carried by many people, and cellphone
data of various type can contribute to both the estimation of
the situation and aid in controlling the situation. This paper
interestingly brings together a detailed data fusion process model,
following the well-known JDL Data Fusion Process Model (see
Llinas et al., 2004) and builds an end-to-end situation estimation
process model based on cellphone-captured data. The main
contribution here is the messaging protocol for information
exchange in complex cellphone networks, and support to early
warning notifications in real time.

The paper by Van de Walle et al. (2016) provides some
interesting views for enriching raw incoming information
by adding a summary of the information received, and by
channeling all incoming information to a central coordinator
who then decides upon further distribution within the team.
This paper is largely about information quality, a factor that is
important in all information operations. In a manner similar to
assigning “pedigree” to information sources based on analytical
or experiential bases, this paper discusses notions of information
richness that can be based on reputation or on analytical
methods that compute metrics for information sources based
on notions of completeness or timeliness, and other such
quality-influencing factors. While information can be enriched
in various ways, in this research “enriched information” is
defined as information that combines information from different
sources and is represented in a format with which professional
crisis responders are familiar, similar to the association and

Frontiers in Systems Neuroscience | www.frontiersin.org 4 July 2022 | Volume 16 | Article 796100

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-796100 July 23, 2022 Time: 15:39 # 5

Llinas and Malhotra Expanded Framework for Situation Control

combining operations in a data fusion process. Information
that is not aggregated nor represented in a specific format is
considered “raw” or non-enriched. This work carries out a series
of experiments to explore the hypotheses related to information
enrichment and centralized decision-making, concluding that
that enriched and non-enriched information conditions are
significantly different only if information is centralized.

In Costa et al. (2012), a Situation Modeling Language (SML) is
developed, which is a graphical language for situation modeling,
and an approach to situation detection and recognition based on
the SML model is realized by linking the model to a rule-based
scheme. The motivation for this paper comes in part from a view
of Kokar et al. (2009) that argues, from an ontological point of
view, that “to make use of situation awareness [. . .] one must
be able to recognize situations, [. . .] associate various properties
with particular situations, and communicate descriptions of
situations to others.” In addition to supporting an ontological
foundation related to anything having to do with situations,
this paper has many features that resonate with our own ideas,
for example in defining situations as composite entities whose
constituents are other entities, their properties, and the relations
in which they are involved. This leads to an approach which
is similar to an ontological approach that we also argue for
in this paper, and also to a graphical construct that we also
support as the correct modeling basis for these problems. This
work also concerns itself with formal semantics which are
quite necessary for these problems since clear semantics aid

in clarifying combinatoric complexities of layered situational
constructs. Previous work by Dockhorn et al. (2007) addresses
what could be called the context of situation development, where
an “invariant” is defined as the necessary and sufficient conditions
for a situation to exist. Addressing context and its importance
in situation estimation is also addressed from various points
of view in works by Snidaro et al. (2016). Yet other work of
Costa et al. (2006) addresses a distributed rule-based approach
for situation detection. When well-designed and developed, rule-
based systems can be both efficient to develop and to effective
to employ, but there are many lessons-learned and limitations
of rule-based systems that need to be considered (e.g., Nazareth,
1989), such as scalability, blindness to data not included in
the rules, and coverage of unbounded parameter values. While
the foundational and systemic aspects of these works are very
relevant to our discussion on situation control, the authors point
out in more than one of these papers that evaluations of these
prototype implementations are under development.

All of these works are focused on the estimation function
and associated processes for developing capabilities to estimate
situational states. Collectively, many systems engineering issues
are addressed, to include data management, ontological issues,
modeling of situations, and other related functions for situational
estimation. In that regard, they are solid research projects
but they are not directed to the holistic, closed-loop situation
control process that involves decision-making once situational
states are determined.

FIGURE 2 | Expanded framework of cognitive situation control.

Frontiers in Systems Neuroscience | www.frontiersin.org 5 July 2022 | Volume 16 | Article 796100

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-796100 July 23, 2022 Time: 15:39 # 6

Llinas and Malhotra Expanded Framework for Situation Control

PROPOSED FUNCTIONAL EXPANSION
OF THE BASELINE FRAMEWORK:
OVERVIEW

While Jakobson provides a sound initial foundation for a
process description of situation control, we suggest various
enhancements of this process description. A first remark is
that the level of specificity of the meaning and construct of a
“situation” needs to be elaborated; we see this ideally as resulting
from a formal ontological development. At the highest level of
abstraction, one could say that a situation is a set of entities (here,
writ large, meaning not only physical entities and objects but
events and behaviors) connected by a set of relations. Relations
bring a new challenge to observation-based estimation because
relations are not observable by conventional sensing devices,
sometimes called “hard” sensors, meaning electromechanical
type devices such as radars and imaging systems. Hard data
produces features and attributes of entities in the situation from
which inter-entity relations could be reasoned. It is possible that
“soft” data such as social media data may apply to a situation
control problem, in which case such data may, if based on human
observation, reasoning, and judgment, yield direct estimates
of inter-entity relations. Contextual type data, that imputes
influences on the estimation of entities and relations, would also
be fused in a robust observation and data fusion process to aid
situation estimation processes. Along with the entity ontology,
a relation ontology is also needed so that the specifics of a
labeled, specific situational state can be assembled from these
components. That assembly requires a higher level of abstraction
in inferencing. Thus, Jakobson’s situation recognition process
will need to be supported by an ontological foundation where
entities, relations, and labeled situational states are coupled to the
fusion and recognition processes that will have to assemble the
recognized, labeled situational state by exploiting this framework,
and also by accounting for the various uncertainties in the
integrated observational and inferential processes.

Another suggestion relates to the need for accounting for time.
As we remarked previously, the real world is always dynamic, and
so situations are in a constant process of unfolding; situations
can be labeled as continuously valued random variables. Thus,
we assert the need for a Situation Prediction process that is
the means for maintaining situation understanding over time.
How such a process may be framed depends on how the
situation state is modeled; for example, a situation could be
represented as a graph (entities as nodes, relations as arcs) or as
a pattern of variables in the form of a time-series, or yet other
representational forms. Many strategies for prediction address
the problem as a pseudo-extrapolation of some type, projecting
the most likely evolution of the dynamic sub-parts of a current
situation. This brings in the need for Situation Understanding,
which we characterize as a process that enables generalization
from the particulars of the moment. Situation Understanding
admits to adding knowledge and thus adding (or subtracting)
new piece-parts of the situational construct, thus enabling more
insightful projection of estimated situation dynamics. At some
point in time or as part of an ongoing process, an assessment of

whether the situation is satisfactory or not is typically carried out;
this requires a specification of some desired situational state (as
previously noted, Jakobson calls it a Goal Situation in Figure 1)
that is the basis for comparison. Executing this step thus requires
a process for Situational Comparison. However, executed, the
comparison process yields what could be called an “error signal”
as would exist in any control process, as Jakobson points out;
we assert that this error signal will have stochastic properties,
since the estimated situational state, and perhaps the goal state
as well, will have stochastic-type error factors embedded in the
calculations. The error signal requires assessment as to whether
any action is required, and so there is a question as to “degree” of
error, and if the error is stochastic, issues of variance in this error
variable will factor into the severity assessment.

Another timing issue also arises at this point: this relates to
the issue of synchronizing the action-taking and the situation
prediction processes in order that the planned action is in fact
acting on the intended world situation at the action-time. All
these processes consume time, and an estimate of the sum of
the decision-time and acting-time will set a requirement for
situation prediction so that the actions that occur are acting
onto the expected situation at that time; thus, there are process
interdependencies (see Llinas, 2014) for further remarks on
this point). These expanded remarks and functional needs are
depicted in Figure 2 that shows our suggestions for an expanded
framework of situation control:

EXPANDED FUNCTIONAL REVIEW:
STATE OF THE ART AND CHALLENGES

Situation Recognition
One definition of “recognize” is to “perceive something
previously known,” implying that a model-comparison type
process is employed for recognition. But even before a model
is conceptualized, a modeling framework is required to set
a norm for the structure and content of such a model; this
requirement brings into our discussion the need for a situation
ontology. To our knowledge, no fully and well-developed,
formalized ontological specification of a situational state exists
that has been taken up broadly by researchers addressing
the kind of problems we are discussing here (e.g., the data
fusion community). There has been a fairly large number of
publications that offer representational schemes for situations,
some labeled as ontologically-based, but those models have not
been broadly applied (see Dousson et al., 1993; Boury-Brisset,
2003; Baumgartner and Retschitzegger, 2006; Little and Rogova,
2009; Cardell-Oliver and Liu, 2010; Almeida et al., 2018, that
are just a sampling). As situations are rather complex world
states, processes trying to estimate these states need to take a
position on what the components of situations are, as most
approaches can be labeled as bottom-up, assembling situational
state estimates from estimates of the components. Development
of a rigorous situational ontology and harmonization of its use
across a community is a very complex matter. It would seem
that such an issue should fall to the portion of a community
addressing its engineering methods, and the regularization of
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top-down system engineering approaches; how this issue will
unfold going forward remains unclear.

As it is clear that situations evolve and change over time,
we need to think about the tempo of situation recognition
as a process, e.g., as a “freeze-frame” depiction or perhaps
an interval-based depiction. This issue muddies the distinction
between recognizing a situation and prediction and updating
of situations; the underlying issue is that a situational state
is a continuous variable, an emphasis previously pointed out.
Importantly, perhaps even crucially, the ability to assess the
situation evolution rate/OpTempo is needed to specify the
required observational rates of situation components, in the
fashion of a “Nyquist” criterion for signal sampling. Clearly if
the observational rates across the sensor suite are not tailored to
the situational tempo, the entire situation estimation and control
framework is compromised.

Sampling of Computational Methods for Situation
Recognition
As commented above, one way that Situation Recognition
(SR) can be approached is as a model-comparison process.
In Dahlbom et al. (2009) a template-based approach to SR
is described. This paper raises some basic questions for any
model-based approach, to include deciding which situation-
types to model, how complete must the matching process be,
and other issues related to the model-comparison scheme. We
also point out that a model-comparison approach, to include
any ML approach, is based on historical, available data and
a priori knowledge, and a root question revolves around the use
of “history” to assess the “future,” meaning that an argument
needs to be shaped that verifies that the applicability of such
models includes an acceptable spectrum of possible future
situations of interest. That is, such methods have boundaries
of situation coverage and will not address anything that is not
modeled, such as possible effects of nature, effects of contextual
factors, or the creative actions of an adversary. If we abstract a
“situation” as a set of entities in a set of relations, we can say
that SR aims at identifying complex constellations of entities
and relations, i.e., situations, extracted from a dynamic flow of
complex observational and other data and information. In a
broad sense, one could say that SR is a filtering process. This
process will depend on the extent and quality of both real-time
data projected to be available and of the a priori knowledge
employed in model construction. This distinction or balance of
available real-time data and degree of a priori domain knowledge
is clearly a crucial a priori design issue for the design of any SR
approach. The requirements for either of these factors depends
in part on the complexities of the set of relations embodied in
any situational construct; if the relations are simple, they should
be able to be inferred from observational data but if they are
complex, they will need to be derived from a combination of
observational data and a priori knowledge. In Dahlbom et al.
(2009), a simplified scheme for a template-based approach to
SR is developed; they point out that template-based methods
have also been applied in the extensive work in plan recognition,
such as in Azarewicz et al. (1989) and Carberry (2001), as well
as other early AI-based techniques such as rule-based systems,

both also being model-based approaches. Without doubt, the
framework used most frequently for Situation Recognition is the
Bayesian Network (BN)/Bayesian Belief Net (BBN) approach; the
publications advocating the use of BBN are numerous. Some
researchers Elsaesser and Stech (2007) suggest that BBN’s “can
be thought of as a graphical program script representing casual
relations among various concepts represented as nodes to which
observed significant events are posted as evidences,” which is
pretty much the dynamic process of interest here. The idea of
that paper is to construct BBNs from sub–networks of internodal
relations. An important advantage of this approach is that it uses
BBNs distributed across multiple computers exploiting simple
standard “publish” and “subscribe” functionalities that allows
for significant enhancement of the inferencing efficiency. Multi-
agent architectures involving other estimation techniques at
the nodes are also used for Situation Recognition. Many other
paradigms for SR including Fuzzy Logic and Markovian methods
can be seen in the literature.

Situation Prediction
As noted in section “Proposed Functional Expansion of the
Baseline Framework: Overview,” the requirement for a situation
prediction (SP) process is linked to the time of action onto
the predicted situation. As for most prediction, projection, or
extrapolation processes, the difficulty and accuracy of such
processes is linked to the temporal degree of projection (how far
ahead) and the rate of observation and input of any data that
the projections depend on; this is not just sensor/observational
data but contextual and soft data as well. We have emphasized
the importance of the temporal aspects and the need to
maintain situation awareness; that emphasis is acknowledged in
various recent publications (e.g., Blasch, 2006; Niklasson et al.,
2008; Baumgartner et al., 2010; Foo and Ng, 2013). Research
areas where situation prediction has been addressed include cyber
defense, for attack/intent projection, autonomous vehicles where
traffic situation prediction is crucial, and also crisis/disaster
management, to guide response services.

Sampling of Computational Frameworks for Situation
Prediction
Two application areas where SP is addressed are those related
to Cyber SP for cyber-defense and Traffic Situation SP related
to autonomous car systems. A broad area where SP has also
been addressed is in a wide variety of game settings, from Chess
to Wargaming to Video Gaming. Most game environments,
however, have various rules that can constrain the evolution
of situations and thus provide a constrained framework within
which to explore SP, although many other settings will also
have constraints. We choose to show the SP framework of
Baumgartner et al. (2010) for traffic prediction that describes
a holistic approach that shows the joint exploitation of an SA
Ontology and, in this case, Colored Petri Nets (CPN) as an SP
estimation/modeling scheme.

In the traffic/autonomous car application, it is desired
to predict critical situations from spatio-temporal relations
between objects. These and other relations can be expressed
by employing relation calculi, each of them focusing on a
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certain spatio-temporal relation, such as mereotopology-based
(“part-of” based), spatial orientation, or direction. According to
Baumgartner et al. (2010) these calculi are often modeled by
means of Conceptual Neighborhood Graphs (CNGs, see Freksa,
1991); as noted in this paper, the CNG’s impose constraints on
the existence of transitions between relations, thus providing a
way to bound the complexity of relation modeling. CNGs can be
used for modeling continuously varying processes, and have been
used in a variety of related applications. Representing CNGs as
CPNs can lead to increasing prediction precision by using precise
ontological knowledge of object characteristics (if the ontology
is done well) and interdependencies between spatio-temporal
relations. This can lead to increased prediction explicitness
in their approach by associating transitions with dynamically
derived distances for multiple view-points. These so-called
Situation Prediction Nets (SPN) in Baumgartner et al. (2010)
are derived automatically from the available situation awareness
ontologies. The research described in this paper is among the few
that proactively integrate an ontological framework for relations
and situation structures with a computational strategy for SP.

In Salfinger et al. (2013), a situation’s evolution is modeled as
a sequence of object-relational states it has evolved through, i.e.,
the sequence of its situation states. This approach discretizes the
continuous evolution of the monitored real-world objects into
a sequence of their different joint relational states defined by
various relations between those objects, defined in an “alphabet”
or what could be called a bounded ontology. Thus, the problem
of predicting a monitored situation’s evolution is cast as a
sequence prediction problem. This technique is also applied
here to the traffic-situation prediction problem. This approach
employs a Discrete Time Markov Chain scheme; this is preceded
by a situation-mining analysis to define the situation state-space
“alphabet,” learned from human-labeled state sequences.

As previously remarked, works on SP can also be found
in the cyber-defense domain. In Husák et al. (2019), a survey
of such methods is provided. Their approach addresses four
categories of predicative capability. The first two of these
categories are attack projection and intention recognition, in
which there is a need to predict the next move or the
intentions of the attacker, third is intrusion prediction, in
which predictions are developed of upcoming cyber-attacks,
and fourth is network security situation forecasting, in which
projections are made of the cybersecurity situation in the whole
network. Across these applications, the paper reviews two broad
categories of prediction techniques: discrete-time approaches,
and continuous-time approaches. The discrete-time techniques
include: “attack graphs” that probabilistically model initial and
successor states of a postulated attack process. As in Salfinger et al.
(2013), the state-space if often defined by a data mining analysis.
The predictions using attack graphs are based on traversing the
graph from an initial state and searching for a successful or
most-probable attack path. A number of papers are cited in
the survey that employ variations of this technique. Bayesian
Nets and Markov techniques, as well as Game-theoretic methods
are among the other discrete-time approaches reviewed. The
continuous-time methods reviewed fell in to two categories, time-
series methods and “gray” methods. These methods were largely

used for whole-network predictions involving forecasts of the
numbers, volumes, and composition of attacks in the network
and their distribution in time.

Some Views From Cognitive Neuroscience
We have maintained that Situation Prediction is a functional
requirement in the process of Situation Control. There are
relatively few frameworks offered in the technical engineering
literature for Situation Prediction (as just discussed) but there
are also some paradigms for this process in the computational
neuroscience literature. For example, Bubic et al. (2010) provide
one overview of such processes in the brain. In this paper,
distinctions are made in relation to the horizon over which
predictions might be made (as we have also mentioned
previously). For example, the term “expectation” is said to
reflect the information regarding the spatial and temporal
characteristics of an expected event, whereas “anticipation”
describes the impact of predictions on current behavior,
e.g., decisions and actions based on such predictions, and
“prospection” is described as an ability to “pre-experience the
future by simulating it in our minds.” These distinctions are
shown in Figure 3.

The main factors that influence the nature of a predictive
process are characterized in Bubic et al. (2010) as shown in
Figure 4.

Heeger, in a paper that provides somewhat detailed
mathematical models of cortical processes (Heeger, 2017),
suggests that prediction is one of three key cortical operations: (i)
inference: where perception is a non-convex optimization that
combines sensory input with prior expectation; (ii) exploration:
here, inference relies on neural response variability to explore
different possible interpretations; and (iii) prediction: inference
includes making predictions over a hierarchy of timescales,
not unlike suggested by Bubic et al. (2010) The starting point
for this development is the hypothesis that neural responses
minimize an energy function that represents a compromise
between the feedforward drive and prior drive (drive ≈ neural
signals). In these process models, the responses of the full
population of neurons (across all channels and all layers)
are asserted to converge to minimize a global optimization
criterion, which Heeger calls an energy function. Specifically, the
starting point for this model development is the hypothesis that
neural responses minimize an energy function that represents
a compromise between the feedforward drive and prior drive.
Heeger says that predictive coding theories start with a generative
model that describes how characteristics of the environment
produce sensory inputs; Perception on the other hand is
presumed to perform the inverse mapping, from sensory inputs
to characteristics of the environment. Heeger’s approach suggests
a different process for how the brain might predict over time,
relying on a recursive computation similar to a Kalman filter,
where the predictive basis functions serve the same role as the
dynamical system model in a Kalman filter.

Returning to cognition, many researchers in the neuro
and cognitive sciences have developed a view according to
which prediction or anticipation represents a fundamental
characteristic of brain functioning, suggesting that prediction
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FIGURE 3 | Distinctions in prediction-anticipation-prospection derived from Bubic et al. (2010).

FIGURE 4 | Factors influencing the nature of prediction derived from Bubic et al. (2010).

is “at the core of cognition” (Pezzulo et al., 2007). Further,
for many cognitive functions and neural systems, an ability to
anticipate is a core requirement, such as in motor and visual
processing and attention (Mehta and Schaal, 2002). According
to Friston (2005), predictive processing is inherent to all levels
of our organized neural system. It is suggested that predictions
drive our perception, cognition, and behavior in trying to
fulfill predictions by preferentially sampling features in the
environment. Nevertheless, it can be expected that mismatches
will occur, and the size of such mismatches (prediction error)
creates a “surprise” that the brain tries to minimize in order
to maintain present and future stability (Friston and Stephan,
2007). In reviewing Bubic’s paper, one comes away with
the interpretation that anticipatory or predictive processing
potentially reflects one of the core, fundamental principles of
brain functioning which justifies the notion of “the predictive
brain” seen in some papers.

These neuronal-level models are quite interesting in helping
to understand how the brain develops predictions, but what is
being predicted are anticipated human-based sensor signals that
are important to human survival.

One such model, the Virtual Associative Network (VAN),
is combined with active inference and presented elsewhere

in this Frontiers special edition (Moran et al., 2021). This
work presents a new, Cognitive-Partially Observable Markov
Decision Process (C-POMDP) framework, extending the
Partially Observable Markov Decision Process (POMDP)
to account for an internal, cognitive model which attempts
to contend with situation control considerations we outline
here such as situation recognition, prediction, learning
and understanding.

The C-POMDP framework presumes an active interaction
between the agent and its environment wherein the agent
interacts with the environment in repetitive cycles consisting
of (i) sensing observable phenomena within the environment;
(ii) estimating situational states, situation dynamics (behavior,
op tempo, relations, etc.); (iii) predicting future states and
rewards; and (iv) making decisions to maximize expected
rewards. A key point here is that these estimation and
decision-making processes are based upon an internal
model which is maintained and updated by the agent as it
reasons about experiences. In Moran et al. (2021), learning
is facilitated by probabilistic reasoning and operations
on a graph-based modeling structure which encapsulates
associations between objects (entities, situation artifacts),
behaviors, and relations.
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Situation Learning and Situation
Understanding
The topics of learning and understanding have of course been
extensively studied by a variety of research and application
communities. These concepts have some relationship but they are
also distinct from each other. Learning can be seen as dependent
on (at least) two processes: observation and data gathering, and
on experimentation and acting. Both processes produce real-
time data that support inductive processes directed to gaining
real-time knowledge. Understanding would seem to follow
learning wherein the gained knowledge, along with archived
knowledge, are exploited in combination to develop a generalized
understanding of a world situation that allow development
of a contextual perspective—a generalized perspective—of that
situation. Generalization allows the recognition of the similarities
in knowledge acquired in one circumstance, allowing for
transfer of knowledge onto new situations. The knowledge
to be transferred is often referred to as abstractions, because
the learner abstracts a rule or pattern of characteristics from
previous experiences with similar stimuli. Yufik (2018) defines
understanding as a form of active inference in self-adaptive
systems seeking to expand their inference domains while
minimizing metabolic costs incurred in the expansions; the
process thus also entails an optimization element directed
at minimizing neuronal energy consumption. This view also
sees understanding as an advanced adaptive mechanism in
virtual associative networks involving self-directed construction
of mental models establishing relations between domain entities.
Understanding inter-entity relations is also a core element of
situation understanding. Thus, the relationship between learning
and understanding can be seen as complementary; understanding
complements learning and serves to “overcome the inertia of
learned behavior” when conditions are unfamiliar or deviate from
those experienced in the past (Yufik, 2018). A challenge now
receiving considerable attention with the new thrusts into AI is to
understand how humans are able to generalize from very limited
sampling. One approach fostered by Tenenbaum et al. (2011) and
Lake et al. (2015) is based on probabilistic generative models,
proposed as a basis for linking the psychological and physical
aspects of the world. These techniques are being explored
in DARPA’s Machine Commonsense program; however, these
techniques will yield learning and understanding processes that
create the foundational nuggets of what humans typically call
“common sense” knowledge, often called tacit knowledge, and
are far from a computational ability to understand situations of
varying complexity. (An often-cited example of common, tacit
knowledge that humans accrue is the learning of embedded
rules of grammar that are learned over time from discrete
sampling.) As most would agree that understanding involves
uncertainty, whereas knowledge is often defined as “justified
true belief” following Plato (yet acknowledging Gettier),3 it
seems reasonable to explore probabilistic methods to model
commonsense understanding. The issue of exactly how certain
one must be about a belief to qualify as “knowing” has been called

3https://en.wikipedia.org/wiki/Gettier_problem

the boundary problem (Quine, 1987). We see that there are thus
distinctions between understanding and knowledge; importantly,
understanding can be possibly incorrect. Also important to this
discussion, as just mentioned, is the process of generalization, a
rather pervasive topic in psychology. In Austerweil et al. (2019),
discuss the issue of learning how to generalize, which suggests
that generalization requires postulating “overhypotheses” or
constraints in effect on the hypothesis domain to be nominated.
Some assert that such overhypotheses are innate but Austerweil
et al. (2019) argue that they can be learned. In either case,
the generalization framework is said to be Bayesian-based.
Generalization has also been studied in Shepard (1987) that
suggests an exponential metric distance between the stimuli
as a basis to assert similarity, and in Kemp et al. (2006) that
discusses the overhypotheses issue. We note that the issue of
assessing similarity or degrees of association between disparate or
multimodal data is broadly similar to the generalization question,
and is a topic addressed in the field of multisensor data fusion. In
those cases, techniques of multidimensional scaling, copulas, and
manifolds have been used to develop scaling methods to relate
such non-commensurate data.

Situation Comparison
The assessment of any situation as to its acceptability or
to the need for situation control and action-taking requires
the specification of some basis for comparison; in Figure 1
Jakobson shows the Situation Comparator function needing a
Goal Situation to be defined. As situational states can be rather
complex, the bases of comparison could perhaps be done for
portions of a situation rather than the entirety of a complicated,
entangled set of situational elements. How any such comparisons
would be done is also dependent on how one chooses to represent
situations. Our search for literature related to this situation
comparison issue shows that this issue has not been extensively
addressed, and the methods proposed are of very different type,
as described next.

Sampling of Computational Methods for Situation
Comparison
In Mannila and Ronkainen (1997), as in other works reviewed
here, a situation is depicted as a series of events, i.e., an event
sequence. For many papers, as we will see, the issue of comparison
evolves around developing notions of similarity. In Mannila and
Ronkainen (1997) then, there is the issue of defining similarity
across event sequences. Building on the intuition that differences
or similarities in sequences relates to how much work has
to be done to convert one sequence to another, they define
an “edit distance” measure of similarity. These edit distance
measures are computed using a dynamic programming approach.
Sequence transformation operations such as insert, delete, and
move are formed, as well as a cost measure. From this framework,
an optimization function can be developed to compute the
minimum cost of a sequence edit between sequence pairs. Some
limited empirical results are developed that show reasonable
performance of this exploratory approach. Sidenbladh et al.
(2005) propose an approach based on using random sets as the
representational form for situations. This paper compares rolling
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situation predictions as a use case where the situation predictions
at two different times are normalized due to estimation noise
differences, arguing that prediction error is proportional to
prediction time. Given that normalization, they define a standard
norm as a similarity/difference measure and also point out that
the Kullback-Liebler measure4 is inappropriate for this purpose.
In some of our own work, we have depicted situations as graphs,
following a simple situation definition, as previously mentioned,
as a set of entities connected by a set of relations. Situation
similarity then can be assessed by any of the many existing
types of metrics for graph comparison (see e.g., Hernandez and
Van Mieghem, 2011). Which metrics are best will depend on
the graph details; for example, relations among entities can be
directed, and so comparison would then require metrics that
account for directed arcs in the representational graphs for the
situations being compared. There are metrics that can compare
both the global and local characteristics of two graphs; methods
of this type have been used for anomaly detection in situational
analysis. Since the description of any situational state will employ
language to label the situational components (entities) and their
relations, notions of situational similarity may also involve issues
of semantic similarity in the terms employed. Our research in
hard and soft data fusion for disaster response needed to address
this issue, which has been studied extensively, since semantic
similarity and whether words mean the same thing is a core
issue in many application settings. A hierarchically structured
ontology or taxonomy can be useful in estimating the semantic
similarity between nodes in the taxonomic network. Two specific
approaches used to determine the conceptual similarity of two
terms in this type of network are known as node and edge-based
approaches. The node-based approach relates to the information
content approach while the edge-based approach corresponds to
the conceptual distance approach. The edge-counting measures
are based on a simplified version of spreading activation theory
(Cohen and Kjeldsen, 1987) that asserts that the hierarchy of
concepts in an ontology is organized along the lines of semantic
similarity. Thus, the more similar two concepts are, the more
links there are between the concepts, and the more closely
related they are Rada et al. (1989). The node-based measures
are based on the argument that the more information two
terms share in common, the more similar they are, and the
information shared by two terms is indicated by the information
content of the terms that subsume them in the taxonomy. Data
association methods employed in data fusion have been used
to assess whether two situation states have the same objects in
them (e.g., Stubberud and Kramer, 2005); these metrics used
ideas from metric spaces and cardinality principles to compute
object-set similarities. Other techniques for assessing situational
similarity can be drawn from measures for assessing similarity
of sets such as the Jaccard Similarity and the Overlap Coefficient
(Rees, 2019).5 Similarity of relations is also of interest, and the
methods of ontological similarity could be used for relation-
labels as well as methods from Fuzzy Logic and latent variable

4https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
5https://medium.com/rapids-ai/similarity-in-graphs-jaccard-vs.-the-overlap-
coefficient-610e083b877d

type analyses (Turney, 2006). Finally, (Gorodetsky et al., 2005)
develop a situation updating method that addresses the issue of
asynchronous data with a data ageing scheme, the missing data
issue with a direct data mining approach, and a situational state
classification scheme based on a rule-based approach, in an effort
to account for these various aspects of situation updating in an
integrated approach.

CONTROL DYNAMICS

We have described the overall control process so far as
rather linear and feed-forward but there may be inter-
functional interdependencies across each “situational” function
described here. As multisensor data fusion processes are relevant
information processes supporting situation control as candidate
processes for situation estimation (see, e.g., Liggins et al., 2009)
it is known that there can be inter-process dependencies that
need to be addressed among data fusion, situation estimation,
and decision-making processes (see Llinas et al., 2004; Llinas,
2014). In the case of data fusion processes, the approach to
situation estimation is typically layered, following a “divide and
conquer” approach typically employed for complex problems.
The layered estimates are partitioned according to specificity,
with lower levels estimating features of situational entities,
and upper levels estimating aggregated multi-entity relational
constructs. Thus, the layers share content about common entities
that may be helpful to share in a synergistic scheme; for data
fusion, Llinas et al. (2004) addresses some of the issues of
this point. In the case where data fusion and decision-making
processes are integrated in a single architecture, the inter-process
dependencies exist because one process, data fusion, is estimating
a situation and the other process is deciding about situations;
these interdependencies are discussed in Llinas (2014). Further,
the Action Planning and Action-Taking processes that depend on
the possibly complex viable action-spaces of available resources
(that is, the various situation-affecting actions that a given
resource can execute) can lead to the need for an optimization-
based approach to select the best resource to execute a particular
situation-affecting action. Situation OpTempo and overall timing
control again need to be considered since there can be delays in
making the action-taking decisions (e.g., solving an optimization
problem) and delays in employing a resource and realizing its
intended effects. Consideration of these factors aids in estimating
the time it takes to make a decision and the time for resources
to act on the situation. An a priori/ongoing estimate of the sum
of these times provides the time specification to the Situation
Prediction function so that the system is predicting the situational
state at the expected time of action from the resources; also
discussed in Llinas (2014).

Partially Observable Markov Decision
Process
Control Theory offers a foundational problem formulation for
many problems requiring Situation Control. Such problems
presume an active interaction between an intelligent agent and
its environment where:
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• The agent exercises repetitive cycles of sensing the
environment, executing actions and modifying them based
upon feedback
• The agent seeks to maximize cumulative rewards received

from the environment
• The agent iteratively maps an error signal into actions.

In the POMDP formulation, these problem elements are
expressed as sets, and mappings between the sets. More
specifically, the environment offers a set of states (S) and a set
of rewards (R). The agent will iteratively draw from a set of
observations (O), and choose from a set of actions (A). Here,
the dynamics of the situation are characterized by a set of
state transition probabilities (P), providing a mapping from a
particular state at time t to a state at time t + 1 (P: st→st+1).
The agent’s observations which are related to environmental state
(S), are characterized by a set of observation probabilities (Z)
which map state at time t to an observation at a time t or a
later time t + n (Z: st→ot+n, n =0). Similarly, the relationship
between rewards and underlying state received by the agent
may be modeled deterministically or stochastically as related
to state; If stochastic, the relationship between the states (S)
and rewards (R) will be characterized by a reward probability
mapping, Q (Q: st→rt+m, m ≥ 0). For further information on
a POMDP modeling approach, the reader is referred to Bertsekas
(1987).

Although the POMDP offers a principled problem
formulation for complex situation control problems, it is well
established that, for realistic problems, POMDP solutions
often suffer from “the curse of combinatorial explosion” and
approximate solutions methods are required for solution
(Bertsekas, 1987). These approximate methods include, perhaps
most notably, Reinforcement Learning methods (Spaan,
2012) which have been used extensively in some artificial
intelligence solutions.

The authors contend that the POMDP offers a starting
point for the control aspects of the situation control problem
formulation but effective solutions for complex situation control
problems will require that the relationships between pertinent
situational factors governing state transition probabilities (P),
observation probabilities (Z), and reward probabilities (Q) be
understood. In practice, identifying the relevant situational
factors and accurately modeling the relationships governing
these mappings will be derived experientially, through situation
learning as described in section “Situation Learning and Situation
Understanding” above. Further, the temporal considerations we
have cited such as the situation’s op tempo guiding the agent’s
observation rate, and the need for situation prediction over
multiple horizons accounting for both state and action dynamics,

must be taken into account in order to properly assess situation
error, a key step in the process model.

SUMMARY

There is a large literature on Situation Awareness and Situation
Assessment that, to a large degree, treats the estimation of
these states in isolation from many other functions needed to
frame a complete, closed-loop process that not only estimates
these states but addresses the overarching central issue for
so many applications of situation control. Jakobson and a
number of others, largely from the community of authors
and attendees of the IEEE Cognitive Situation Management
(CogSIMA) Conferences, have addressed many issues related to
situation control and have tried to move the science forward by
expanding the process view to a more holistic framework. This
paper is a contribution to that collection of works, and also offers
some limited remarks from the point of view of computational
neurodynamics that is intended to lay the foundation for a dialog
regarding the exploitation of Machine Intelligence within and
central to the situation control paradigm. This is a complex
space of thinking, of process architecting, of algorithmic design
and development, and of human-machine interaction. As the
broad technical communities of the world grapple with the
development and exploitation of AI, ML, Machine Intelligence,
and of the role of humans and of autonomous systems and
behaviors, the need to frame the situation control process will
be a central topic in the broadest sense; this paper is a small
contribution to that goal.
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