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Visual short-term memory is an important ability of primates and is thought to be stored
in area TE. We previously reported that the initial transient responses of neurons in
area TE represented information about a global category of faces, e.g., monkey faces
vs. human faces vs. simple shapes, and the latter part of the responses represented
information about fine categories, e.g., facial expression. The neuronal mechanisms of
hierarchical categorization in area TE remain unknown. For this study, we constructed
a combined model that consisted of a deep neural network (DNN) and a recurrent
neural network and investigated whether this model can replicate the time course of
hierarchical categorization. The visual images were stored in the recurrent connections
of the model. When the visual images with noise were input to the model, the model
outputted the time course of the hierarchical categorization. This result indicates that
recurrent connections in the model are important not only for visual short-term memory
but for hierarchical categorization, suggesting that recurrent connections in area TE are
important for hierarchical categorization.

Keywords: visual category, visual cortex, short-term memory, deep learning, modeling

INTRODUCTION

Visual short-term memory is an important ability of primates. When primates see objects, the
information about the objects is processed from the retina to the visual cortex in the brain.
In the visual cortex, the object information is processed from V1 to area TE of the inferior
temporal cortex (Mishkin et al., 1983). Visual short-term memory is thought to be stored in
area TE (Sugase-Miyamoto et al., 2008) and the prefrontal cortex (Freedman et al., 2001). In
area TE, some neurons respond to complex objects, faces, and so on and represent information
about a global category, e.g., human vs. monkey vs. simple shapes, earlier than fine category
information about faces, e.g., facial expression or identity (Sugase et al., 1999; Matsumoto et al.,
2005a; Sugase-Miyamoto et al., 2014). In our previous study, we constructed a deep neural
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network (DNN) to compare information representation in
each layer and information encoded by a neural population
in area TE with a visual stimulus set that included human
and monkey faces (Matsumoto et al., 2021). We found that
the time course of hierarchical categorization could not be
replicated with the DNN. Furthermore, global categorization
occurred in the lower layers of the DNN. In this study, we
hypothesize that visual short-term memory is retrieved from
global to fine information of images via recurrent connections
in area TE. To test this hypothesis, we constructed a combined
model of a DNN, i.e., Xception net (Chollet, 2017), and a
recurrent neural network, i.e., Hopfield model (Hopfield, 1982).
The Hopfield model is known as an associative memory model
(Anderson, 1972; Kohonen, 1972; Nakano, 1972). An associative
memory model is considered a short-term memory model
because it can store and retrieve original images from noise-
degraded images. The combined model performed better for
adversarial examples than using only the Xception net. The
combined model also outputs the time course of hierarchical
categorization. This indicates that recurrent connections in the
Hopfield model are important for hierarchical categorization,
suggesting that recurrent connections in area TE are important
for such categorization.

MATERIALS AND METHODS

Model
We constructed our combined model consisting of an Xception
net and a Hopfield model to investigate whether it can replicate
the time course of hierarchical categorization (Figure 1A). Model
parameters including weight values of the original Xception
net were downloaded from https://github.com/keras-team/keras.
The downloaded weight values were determined from images in
the ImageNet database (Russakovsky et al., 2015). The weight
values of the Xception net were fixed in this study. The top layer
of the original Xception net is a fully connected layer that outputs
the probability of each category. The fully connected layer was
removed from the original Xception net, and the Hopfield
model was inserted instead as a model of area TE. This was
done because our previous studies showed that the information
representation in fully connected layers of a DNN was similar to
the representation in area TE (Matsumoto et al., 2021) and that
an associative memory model was able to reproduce the neural
activities of area TE (Matsumoto et al., 2005b). We compared the
performance of the combined model with another model, i.e., the
Xception model without the Hopfield model (Figure 1B). The
inputs to the models were visual images (250 × 250 pixels, RGB
color) and the outputs were the image category probabilities.
In the learning phase, the weights of a binary dense layer
(Hubara et al., 2016) and fully connected layers were learned
using a backpropagation algorithm (Rumelhart et al., 1986) in
both models, and weights of the Hopfield model were learned
by the Storkey rule (Storkey, 1997) or the covariance rule for
the combined model. In the test phase, adversarial examples
generated from the learned images or learned images with
Gaussian noise were given as input to the combined model. The

code of the model was written using TensorFlow (Abadi et al.,
2015) and Keras (Chollet, 2015).

The Hopfield model consists of N neurons. The internal
potential of neuron i at time t is denoted as hi(t) and updated
as given by the following equation,

hi (t) =
∑N

j 6=i
Jijsj(t), (1)

where Jij denotes a synaptic weight of recurrent connection from
neuron j to neuron i, and sj(t) denotes the state of neuron j at time
t (sj(t) = {1,−1}):

sj (t + 1) = sign (hj (t)), (2)

where sign[hj(t)] is a sign function: if hj(t) ≥ 0, sign[hj(t)] = 1:
otherwise, sign[hj(t)] = −1. A feature vector of the binary dense
layer was used as the memory pattern ξµ for each image and set
as an initial state, s(0), of the Hopfield model. The weight was
determined by the Storkey rule (results are shown in Figure 2),

Jνij = Jν−1
ij +

1
N
ξ νi ξ

ν
j −

1
N
ξ νi f νji −

1
N
ξ νj f νij , (3)

where ν={1,. . .,µ}, Jij = Jij
µ, and fijν obeys:

f νij =
∑N

k6=i,j
Jν−1
ik ξ νk . (4)

The weight Jij was also determined by the covariance rule (results
are shown in Figure 3),

Jij =
1
N

∑p

µ

(
ξ

µ
i −m

) (
ξ

µ
j −m

)
, (5)

where m is the average of ξi
µ.

RESULTS

Adversarial Examples
We tested whether our combined model can retrieve the correct
category of images from noise-degraded images, i.e., adversarial
examples. Adversarial examples were generated using VGG16
(Simonyan and Zisserman, 2014) and the fast gradient sign
method (FGSM) (Goodfellow et al., 2014). We changed a
perturbation parameter to obtain different amounts of noise
(Figure 2A). In the learning phase, the weights of the binary
dense layers and fully connected layers were learned from the 250
images by using the backpropagation algorithm. The weights of
the Hopfield model (N = 5,000) were learned using the Storkey
rule (Storkey, 1997) with 250 original images of 50 categories
(Supplementary Table 1) taken randomly from the ImageNet
database. In the test phase, the largest difference between the
accuracies of the estimating categories of adversarial examples for
the combined model and the Xception model was 9.2%, i.e., the
accuracies were 72.4% (combined model) and 63.2% (Xception
model), at the perturbation parameter 0.26 (Figure 2B). At the
perturbation parameter 0.26, the combined model outputted
the Rifle category at t = 0 for the image in Figure 2A and
then outputted the Retriever category (Figure 2C). In other
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FIGURE 1 | The model structures for (A) combined model and (B) Xception model.

FIGURE 2 | (A) Adversarial examples for perturbation parameter. The original image is taken from the ImageNet database. (B) Accuracy in estimating correct
category for perturbation parameters of the Xception model (red line) and combined model (blue line). (C) Time course for the probability of each category for
Retriever image (A) at perturbation parameter 0.26.

words, the model has an error-correcting ability of an associative
memory model. At the perturbation parameter 0.26, the number
of adversarial examples for each model performance is shown in
Table 1.

Images With Gaussian Noise
To examine whether the hierarchical categorizations were
observed in the combined model, the combined model was tested

using images with Gaussian noise. In the learning phase, the
weights of the binary dense layers and fully connected layers were
learned from the 30 original images of six categories (Human,
Woman, Japanese, Dogs, Dalmatian, and Poodle) by using the
backpropagation algorithm. The weights of the Hopfield model
(N = 2,048) were learned using the covariance rule with 20
original images of four categories (Woman, Japanese, Dalmatian,
and Poodle). Images of super-categories, i.e., Human and Dog,
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FIGURE 3 | Time course of the probability of each category for Woman and
Poodle images with Gaussian noise. (A,C) Woman and Poodle images with
Gaussian noise. (B,D) Time course of the probability of each category for
Woman and Poodle images. Cyan: Human, magenta: Woman, black:
Japanese, red: Dog, green: Dalmatian, blue: Poodle.

TABLE 1 | Number of adversarial examples classified by performance for the
Xception model and the combined model at the perturbation parameter 0.26.

Xception: correct Xception: incorrect

Combined: correct 148 34

Combined: incorrect 59 9

were not learned in the Hopfield model. In the test phase, the
learned images with Gaussian noise (mean: 0, variance: 0.1, size:
15 × 15 pixels) (Figures 3A,C) were given as input to the

combined model. The model outputted the probability of each
category at each time step. When a Woman or Poodle image with
Gaussian noise (Figures 3A,C) was presented to the combined
model, the model initially responded with the Human or Dog
category, then responded with the correct category, i.e., Woman
or Poodle (Figures 3B,D). The Hopfield model did not process
information at the initial time step, t = 0. Therefore, the combined
model was the same as the Xception model at only t = 0. The sum
of the probability of each category was 1. At the initial time step
t = 0, multiple categories had small probabilities, so the difference
between Dog and Dalmatian became small. At t = 10 only a few
categories had values of probability, and therefore, the difference
among the categories became large. In Figure 3B, the output
was Human (super-category) at t = 0, followed by Woman (sub-
category). In Figure 3D, the output was Dog (super-category) at
t = 0, followed by Poodle (sub-category), then Dalmatian, and
finally Poodle again. In other words, the combined model has
an error-correcting ability of an associative memory model as
shown in the previous paragraph. Two of the three images that
were assigned the correct category had this trend of hierarchical
categorizations.

To understand the temporal behavior of the Hopfield model,
we projected the neuronal states into this model, i.e., 2,048-
dimensional vectors, for 20 images into a two-dimensional
space by principal component analysis (PCA) (Matsumoto
et al., 2005a), as shown in Figure 4. The horizontal and
vertical axes indicate the first and second principal components
(PC1, PC2). The red points indicate Woman or Japanese.
The blue points indicate Dalmatian or Poodle. At t = 0, the
distributions for state vectors of Dalmatian and Poodle, and
Woman and Japanese overlapped (Figure 4A). At t = 5, many
state vectors for Dalmatian and Poodle were projected into
the left side of Figure 4B, and most state vectors for Japanese
were projected into the right side of Figure 4B. At t = 30,
there were four clusters. A cluster contained the vectors of
Woman and Japanese (Figure 4C). The others contained all
four categories, i.e., Woman, Japanese, Dalmatian, and Poodle.
Therefore, different categories were encoded in a different time
course with the Hopfield model.

FIGURE 4 | Two-dimensional space of state vectors of Hopfield model obtained by principal component analysis (PCA) at (A) t = 0, (B) t = 5, and (C) t = 30. Red
circles: Woman, red crosses: Japanese, blue squares: Dalmatian, blue diamonds: Poodle.
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DISCUSSION

We constructed a model that combined an Xception net and a
Hopfield model to investigate whether it can replicate the time
course of a hierarchical categorization. The combined model
for adversarial examples performed better than the Xception
model. The combined model also outputted different categories
during the time course. These results indicate that recurrent
connections in the Hopfield model are important not only
for short-term memory but also for hierarchical categorization,
suggesting that recurrent connections in area TE are important
for hierarchical categorization.

In our previous study, we showed that the behavior of an
associative memory model was qualitatively similar to that of
neurons in area TE (Matsumoto et al., 2005b). The model we
constructed for that study used random bit patterns not visual
images as input. In another study, we constructed a DNN, i.e.,
AlexNet (Krizhevsky et al., 2012), to compare the information
represented in each layer and the information encoded by a
neural population in area TE with a visual stimulus set that
included human and monkey faces (Matsumoto et al., 2021).
Thus, the representation in the fully connected layers of AlexNet
most resembled the representation of TE neurons for human and
monkey faces. Studies have suggested that recurrent processing
is important for visual recognition (Spoerer et al., 2017; Kar
et al., 2019). These models consist of recurrent connections
in all layers, and each layer is not a Hopfield model. In a
combined model which consisted of a DNN and a recurrent
network, e.g., long short-term memory (LSTM) in Koo et al.
(2019), to output hierarchical categories, a feature vector from
top to bottom layer was given as input to LSTM at each time
step. The feature vector in the top layer was inputted to LSTM
at t = 0, the vector in the second-top layer was inputted to
LSTM at t = 1. Therefore, the feature vectors in all layers should
be stored in the memory. In our combined model a feature
vector from a single layer of the Xception net was given as
input to the Hopfield model at initial time step t = 0. The
vector was updated by recurrent connections of the Hopfield
model. Therefore, the structures of our combined model and
the combined model of Koo et al. (2019) are different, and
the structure of our model requires less memory consumption

than that of the model of Koo et al. (2019). In our combined
model, we added recurrent connections only to the Hopfield
model layer to investigate whether recurrent processing in area
TE is important for hierarchical categorization. We considered
the Hopfield model as modeling for area TE in the higher
visual cortex. The fully connected layers in our model were
considered to be the prefrontal cortex or other higher brain
areas that judge categories of visual images. Thus, our model
can retrieve hierarchical categorical information from noise-
degraded images and be considered as a model for short-
term memory.
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