
ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fnsys.2022.833625

Edited by:

Xin Di,
New Jersey Institute of Technology,

United States

Reviewed by:
Sihua Xu,

Shanghai International Studies
University, China

Qunlin Chen,
Southwest University, China

*Correspondence:
Ala Yankouskaya

ayankouskaya@bournemouth.ac.uk

Received: 11 December 2021
Accepted: 18 March 2022
Published: 07 April 2022

Citation:
Yankouskaya A, Denholm-Smith T,

Yi D, Greenshaw AJ, Cao B and Sui J
(2022) Neural Connectivity Underlying

Reward and Emotion-Related
Processing: Evidence From a
Large-Scale Network Analysis.

Front. Syst. Neurosci. 16:833625.
doi: 10.3389/fnsys.2022.833625

Neural Connectivity Underlying
Reward and Emotion-Related
Processing: Evidence From a
Large-Scale Network Analysis
Ala Yankouskaya1*, Toby Denholm-Smith1, Dewei Yi2, Andrew James Greenshaw3,
Bo Cao3 and Jie Sui4

1Department of Psychology, Bournemouth University, Bournemouth, United Kingdom, 2School of Natural and Computing
Sciences, University of Aberdeen, Aberdeen, United Kingdom, 3Department of Psychiatry, Faculty of Medicine & Dentistry,
Edmonton, AB, Canada, 4School of Psychology, University of Aberdeen, Aberdeen, United Kingdom

Neuroimaging techniques have advanced our knowledge about neurobiological
mechanisms of reward and emotion processing. It remains unclear whether reward
and emotion-related processing share the same neural connection topology and how
intrinsic brain functional connectivity organization changes to support emotion- and
reward-related prioritized effects in decision-making. The present study addressed
these challenges using a large-scale neural network analysis approach. We applied
this approach to two independent functional magnetic resonance imaging datasets,
where participants performed a reward value or emotion associative matching task with
tight control over experimental conditions. The results revealed that interaction between
the Default Mode Network, Frontoparietal, Dorsal Attention, and Salience networks
engaged distinct topological structures to support the effects of reward, positive and
negative emotion processing. Detailed insights into the properties of these connections
are important for understanding in detail how the brain responds in the presence of
emotion and reward related stimuli. We discuss the linking of reward- and emotion-
related processing to emotional regulation, an important aspect of regulation of human
behavior in relation to mental health.

Keywords: self-prioritization, reward processing, emotion processing, default mode network, frontoparietal
network, salience network, interaction

INTRODUCTION

Neurobiological mechanisms underlying motivational factors (including reward, emotion,
self-relevance) that influence goal-oriented cognition and behavior are of major interest in
translational clinical and cognitive research. Well-documented studies indicate that dysfunction
in emotion- and reward-related processing may be a prominent transdiagnostic feature for
a number of psychiatric disorders (Ryan and Skandali, 2016; Sabharwal et al., 2016; Zhang
et al., 2016; Barkus and Badcock, 2019; Scalabrini et al., 2020). Recent theoretical and empirical
work has advanced our understanding of the neural underpinnings of emotion and value-
based reward processing, including findings on social motivation and associated brain functions
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(Palminteri et al., 2015; Kragel and LaBar, 2016; Young
et al., 2016; Fox, 2018; Hoemann et al., 2020; Jauhar et al.,
2021). However, important questions remain concerning the
intersection between reward and emotion at the neural level
(Sander and Nummenmaa, 2021).

The effects of value-based reward- and emotion-related
processing share many commonalities in their influence on
cognition and goal-directed behavior. For example, both the
presence of reward- and emotion-related stimuli generate robust
facilitation effects on visual attention selection (Anderson and
Yantis, 2013; Ono and Taniguchi, 2017; Stolte et al., 2017, 2021);
enhance perceptual learning (Fox et al., 2002; Anderson et al.,
2011; Sui et al., 2015b; Watson et al., 2020) and carryover
effects (Fiori and Shuman, 2017; Vartak et al., 2017). These
commonalities between them have been conceptualized in
several theoretical accounts of emotion as an emergent property
of motivationally driven neural activity (Panksepp, 1998; Buck,
2000; Laming, 2000; Lang and Bradley, 2008; Pessoa, 2009).
Support for such accounts came from multiple meta-analyses
indicating that neural processes triggered bymotivational stimuli
may overlap in the cingulate cortex, anterior insula, ventral
striatum, dorsolateral, and ventromedial prefrontal cortices
(Bartra et al., 2013; Lindquist et al., 2016; Cromwell et al.,
2020). Engagement of these regions was observed across a range
of reward and emotion tasks regardless of emotional valence
(i.e., positive or negative) of stimuli, leading to a hypothesis that
the same underlying system is responsive to the basic properties
of general affect (Lindquist et al., 2016; Park et al., 2019).

Although attractive, testing this hypothesis yielded
inconsistent empirical results. Activation studies that aimed
to directly examine common and distinct neural processes
triggered by emotional and value-based reward stimuli reported
no evidence for between-task overlap, indicating dissociable
neural processes for reward and emotion (Park et al., 2018).
Assessment of whether positive and negative reward-predictive
emotional stimuli would lead to compatible effects based on
the integration of overlapping and non-overlapping basic
valence did not produce a conclusive result. For example,
positive reward vs. positive no-reward stimuli failed to yield
differential neural activation, whereas some areas in the inferior
frontal gyri, superior medial gyrus, left insula, and the inferior
parietal lobule responded to interaction between reward and
negative emotion (Park et al., 2019). Combined meta-analytical
and empirical procedures have addressed common neural
mechanisms of reward and emotion processing by investigating
their influence on cognitive control (Brandl et al., 2019).
Indirectly supporting the initial hypothesis, a large overlap
of cognitive reward- and emotion-control activation patterns
has been reported, suggesting a common mechanism for the
control of motivational and emotional states (Brandl et al., 2019).
Specifically, a significant overlap was found across sensomotor
areas, dorsolateral prefrontal cortex (dLPFC), ventrolateral
prefrontal cortex (vLPFC), dorsomedial prefrontal cortex
(dMPFC), anterior insula, and parietal cortices. This common
reward/emotion activation pattern may be defined by intrinsic
co-activity networks mapped into domain-general networks,
such as frontoparietal (FPN), default-mode (DMN), cingulo-

opercular (or Salience, SN), and dorsal attention networks
(DAN; Brandl et al., 2019), that drive motivated behavior (Sui
and Gu, 2017).

The involvement of these FPN, DMN, SN, and DAN
has been conceptualized in the Triple Network Model of
psychopathology (Menon, 2011). The model proposed that
deficits in engagement and disengagement of these three core
networks plays a significant role in many psychiatric and
neurological disorders with symptomatic deficits in reward-
and emotion-related processing (e.g., schizophrenia, bipolar
disorder, major depression). Several recent studies reported
involvement of these intrinsic brain networks in value-based
reward or emotion processing in healthy individuals (Jiang et al.,
2018; Pan et al., 2018; Lin et al., 2019; Flannery et al., 2020;
Grill et al., 2021) and aberrant functioning of these networks in
patients (Whitton et al., 2015; Alegria et al., 2016), demonstrating
a general agreement on the importance of the DMN, DAN,
SN, and FPN in processing reward- and emotion-related
information. These studies, however, fall short of providing an
understanding of how these large-scale neural networks interact
to support value-based reward or emotion processing. Questions
remain unanswered concerning whether the brain forms the
same components of interconnected networks for prioritizing
value-based reward and emotional information. There is also
a lack of understanding on how networks associated with
value-based reward overlap with those associated with emotion;
whether value-based reward engages the same networks as
positive emotion processing or are distinct separate networks
involved in reward- and emotion-related processing.

Analysis of large-scale neural networks has proven useful
for a better understanding cognitive functioning in healthy
populations and patients (Bassett and Sporns, 2017; Shi et al.,
2021; Zhu et al., 2021). The underlying assumption of this
approach is that the brain’s functional network architecture
during task performance is shaped primarily by intrinsic
networks which are temporally correlated during different tasks
(Smith et al., 2009; Cole et al., 2014, 2016). The large-scale
neural network analysis approach can be used to identify the
structure of interconnected intrinsic networks (also knowns
as topological clusters) among the set of all connections
between brain networks. We applied this approach to fMRI
data where healthy young adults performed value-based reward-
and emotion-associative matching tasks which have previously
been shown to yield reliable prioritized responses to emotion-
and reward-related stimuli (Sui et al., 2012; Yankouskaya et al.,
2017). Overcoming methodological issues in previous research,
experimental procedures in our tasks followed an identical
procedure differing only in stimuli to elicit value-based (high
reward value vs. low reward value) or emotion (happy vs. neutral,
sad vs. neutral) effects. We mapped these effects separately
onto a set of brain networks to identify topological clusters
among the set of all connections using a network-based statistics
approach (NBS; Zalesky et al., 2010). To resolve inconsistent
findings regarding the role of brain networks in reward and
emotion-related processing, we tested two hypotheses using
this large-scale neural network analysis approach. Based on the
previous research (Lindquist et al., 2016; Park et al., 2019), our
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primary hypothesis is that value-based reward engages the same
set of interconnected networks as positive emotion processing.
Accepting this hypothesis would provide further evidence for
the overlap between brain systems responsive to the basic
properties of general affect. Alternatively, the brain may form
partly overlapping but different components of interconnected
networks such as DMN, DAN, SN, and FPN to prioritize
value-based reward and emotional information. Accepting the
alternative hypothesis would inform the Triple Network Model
of psychopathology (Menon, 2011) by identifying components
sensitive to context-specific motivational information.

MATERIALS AND METHODS

Datasets and Experimental Design
We employed fMRI data from two experiments where young
adults performed emotion- (Yankouskaya and Sui, 2021), dataset
1 (21 participants, 10 males, 11 females, age M = 23.6, SD = 2.8)
and value-based reward (Yankouskaya et al., 2017, dataset 2;
19 participants, nine males, 10 females, ageM = 25.8, SD = 7.31)
associative matching tasks. The idea of this task is to associatively
‘‘tag’’ a basic stimulus such as a simple geometrical shape
with value-based reward or emotion information. Following
this ‘‘tagging,’’ perceptual responses to a stimulus associated
with higher reward value or emotionally valenced information
enhanced (Sui et al., 2012; Stolte et al., 2017). The procedure
offers tight control over confounding factors (such as complexity
and familiarity of stimuli). In the emotion task, 21 individuals
learned associations between simple geometrical shapes and
schematic emotional expressions depicting sadness, happiness
and neutral emotional expression. After the learning stage
(1–2 min), participants performed a matching task indicating
whether a displayed pairing matched or mismatched the learned
associations. In the value-based task, nineteen participants
learned associations between simple geometrical shapes (e.g.,
square, circle) and value labels (e.g., square—$£8, circle—$£2).
After the learning stage, they performed ‘‘shape-label’’ matching,
indicating whether a presented shape-label pair matched or
mismatched associations learned earlier (Figure 1).

Both the emotion and value-based tasks followed an identical
experimental protocol. Geometric shapes (circle, hexagon,
square, rectangle, diamond and triangle) were randomly assigned
to conditions in each task. The stimulus display contained a
fixation cross (0.8◦

×0.8◦) at the center of the screen with a shape
(3.8◦

×3.8◦) and a label on either side of fixation. The distance
between shape and label was 10◦. Presentations of the shapes
and labels were counterbalanced across trials. Each trial started
with a fixation cross for 200 ms, followed by the stimulus display
for 100 ms and a blank interval which remained for 1,000 ms.
Trials were separated by a jittered interstimulus interval (ranging
between 2,000 and 6,000 ms). In each study, before entering
the scanner, participants performed a short practice session
(12 trials per task). Feedback on accuracy (words ‘‘Correct!’’
or ‘‘Incorrect!’’) and overall response time were provided after
each trial during practice only (detailed information about these
tasks is presented in Supplementary Table 1). Participants’

FIGURE 1 | Experimental design and examples of stimuli in the value-based
(A) and emotion (B) tasks. Panels (C,D) depict experimental trials for the
value-based and emotion tasks respectively.

responses were recorded using an MRI compatible response
box and controlled by Presentation software1. In both studies,
participants reported no use of psychotropic medications or
past diagnoses for psychiatric, neurological disorders and have
normal or corrected-to-normal vision size. As a part of the
pre-screening procedure of dataset 1, participants completed the
Mood and Anxiety Symptom Questionnaire (MASQ), a 77-item
self-report questionnaire that assesses depressive, anxious and
mixed symptomatology. Only participants with low scores on
each of five subscales were invited to the scanning session.
Participants in dataset 2 received amonetary incentive for correct
responses to matched trials. The monetary incentives were scaled
according to the value assigned to a shape (2%) and implemented
to ensure reward motivation. The monetary incentives were not
presented on the screen during the task and were paid off after
the experiment was completed as a lump sum.

Imaging data acquisition for each dataset is summarized
in Supplementary Table 2. Both studies were approved by
the Central University of Oxford Research Ethics Committee
(CUREC). All participants provided written informed consent.

Behavioral Data Analysis
In each task, we measured accuracy (percent correct responses)
and response times. Here we report data analysis for matched
trials only (full data analyses are presented in Supplementary
Table 3). Only correct responses were used for reaction time
analyses. A one-way repeated measures ANOVA was carried out
to examine the effect of stimuli on response time in each task.

1http://www.neurobs.com
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fMRI Data Preprocessing
The datasets were pre-processed and analyzed separately using
SPM12 (Wellcome Trust Centre for Neuroimaging, London,
UK2) running in Matlab R2021a (Mathworks, Inc., Natick, MA,
USA). The pre-processing pipeline, modeling and analytical
steps were identical for each dataset. Pre-processing included
slice-timing correction, functional realignment and unwarp,
segmentation and normalization. First, all scans were corrected
for differences in slice acquisition times to make the data
on each slice correspond to the same point in time. Slice
timing correction was performed using the middle slice as
reference. Next, the data were aligned across and within
functional sessions and unwarped using a least squares approach
and a 6-parameter spatial transformation. Anatomical data
were registered to the first functional frame and spatially
normalized to Montreal Neurological Institute (MNI) space
using SPM12 unified segmentation–normalization algorithm
(Ashburner and Friston, 2005). Functional data were resampled
to a 91× 109× 91 bounding box with 2 mm isotropic voxels. No
additional spatial smoothing was applied to minimize artificial
local spatial correlations in the whole-brain analysis.

After the initial pre-processing in SPM12, the datasets were
submitted separately to the CONN toolbox (version 20a) for
additional denoising steps and functional connectivity analyses.
First, we used the ART procedure implemented in CONN for
artifact detection. The results of gross head movements detection
indicated that our sample did not contain participants with a
head displacement exceeding 3 mm in more than 5% of volumes
in any sessions. It has been suggested that functional connectivity
can also be influenced by small volume-to-volume ‘‘micro’’ head
movements (Van Dijk et al., 2012). To ensure that micro-head
movement artifacts did not contaminate our findings, functional
data with frame-to-frame displacements greater than 0.40 mm
were censored (Power et al., 2014). After the denoising step, we
performed a quality control (QC)–functional connectivity (FC)
check implemented in CONN to assess residual effects of subject
motion (Ciric et al., 2017). This method computes functional
connectivity between randomly selected pairs of points within
the brain and evaluates whether these connectivity values are
correlated with other QC measures such as subject-motion
parameters. The QC-FC showed that the QC-FC 100% matched
with the null hypothesis indicating that functional connectivity
did not associate with the residual effects in both datasets
(Supplementary Figure 1).

Recent studies showed that FC results can be severely affected
by physiological noise (Birn et al., 2014). To address this issue,
we used an anatomical Component based noise Correction
method (aCompCor, Behzadi et al., 2007) that derives potential
physiological and movement effects on the BOLD timeseries
by evaluating the signal within white matter and CSF areas. It
was suggested that this method does not suffer severely from
systematic introduction of negative correlation (Murphy et al.,
2009) while retaining some of the advantages of global signal
regression (GSR; Chai et al., 2012). The principal components
of the signal from eroded white matter and CSF masks were

2www.fil.ion.ucl.ac.uk/spm

regressed out. However, GSR was not performed due to the
ongoing controversy associated with this step (Caballero-Gaudes
and Reynolds, 2017) and recent evidence that removing global
signal eliminates an important source of neural activity when
assessing FC between networks (Scalabrini et al., 2020). The
noise components fromwhitematter and CSF, estimated subject-
motion parameters (three rotation, three translation parameters
plus their associated first-order derivatives) and outlier scans
were regressed out as potential confounding effects. We also
included session and task effects as additional noise components
to reduce the influence of slow trends and constant task-induced
responses in the BOLD signal (Cole et al., 2019). Finally, a
high-pass filter (e.g., [0.008 inf] which implements the standard
128 s high-pass used in SPM for regular task analyses) was
applied to functional data as an acceptable compromise between
minimizing cross-talk/spillage of the BOLD signal between
session/conditions while still benefiting from the increased SNR
afforded by filtering.

Network Analysis
After the pre-processing and denoising steps, the residual time
series from each run within each dataset were concatenated
to form a condition-specific time series of interest. For the
first-level analysis, we used ROI-to-ROI connectivity (RRC)
measures of large-scale networks. The large-scale networks ROIs
were defined from default CONN’s networks atlas (derived
from ICA analyses based on the Human Connectome Project
(HCP) dataset of 497 subjects). The networks atlas delineates
an extended set of 32 classical networks: Default Mode Network
(four ROIs), SensoriMotor (two ROIs), Visual (four ROIs),
Salience/Cingulo-Opercular (seven ROIs), DorsalAttention (four
ROIs), FrontoParietal/Central Executive (four ROIs), Language
(four ROIs), Cerebellar (two ROIs). The Cerebellar ROIs
(Anterior and Posterior) were not included as it only had partial
coverage in the participants. Detailed list of these network and
their notes is provided in Supplementary Figure 2. In total, we
analyzed 830 connections across 30 ROIs. However, rather than
focusing on any of these networks in isolation, we treated all ROIs
as ‘‘nodes’’ within a whole-brain network.

To define network components associated with value-
based, emotion and valence processing, we used the network-
based statistical analysis (NBS; Zalesky et al., 2010). First, we
defined condition-specific functional connectivity strength
(i.e., functional connectivity during each task/condition), by
computing weighted RRC matrices using a weighted Least
Squares linear model with temporal weights identifying
individual experimental conditions of interest in each dataset.
The weights were defined as a condition-specific boxcar
timeseries convolved with a canonical hemodynamic response
function. Weighted RRC matrices of Fisher-transformed
bivariate correlation coefficients between all ROIs/nodes
(30 × 30) were calculated for each task/condition/participant.
These matrices were submitted to the second-level analysis
where the differences between conditions constituting value-
based-prioritization (high reward value > low reward value),
emotion-prioritization (happy + sad > neutral) and valence-
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prioritization (happy > neutral, sad > neutral) were calculated
for every edge/connection using a General Linear Model (GLM).

The resulting statistical parametric map for each contrast
was thresholded using a priory connection threshold (‘‘height’’
threshold; uncorrected p < 0.001) to construct a set of
suprathreshold links among all ROIs/nodes of between-
condition differences. It has to be noted that this connection
threshold is a user-determined parameter in NBS analysis. It
has been suggested that sensitivity to the connection threshold
might reveal useful information about the nature of the effect
(Zalesky et al., 2010). For example, effects presented at only
conservative connection threshold (e.g., p < 0.001) are likely
to be characterized by strong, topologically focal differences
between conditions constituting the effect. Effects presented
only at relatively liberal threshold (e.g., p < 0.05) are likely
to be subtle yet topologically extended. Effects presented at
both thresholds combine features of topologically focal and
distributed differences. Although our analysis focused on the
former threshold, we also explored changes in connectivity using
the lower threshold. This evidence may be tested in future studies
with large sample size.

Next, in the set of suprathreshold links, we identified any
connected components (topological clusters) and defined the
size of each component as the sum of T-squared statistics
overt all connections within each component. The critical
assumption inherent to the NBS here is that connections
for which the null hypothesis is false are arranged in an
interconnected configuration, rather than being confined to a
single connection or distributed over several connections that
are in isolation of each other. In other words, the presence of
a component may be evidence of a non-chance structure for
which the null hypothesis can be rejected at the level of the
structure as a whole, but not for any individual connection
alone (Fornito et al., 2015). Finally, a FWE-corrected p-value
for each component were computed using permutation testing.
The basic assumption of the permutation procedure is that
under the null hypothesis, random rearranging correspondence
between data points and their labels does not affect the test
statistics. This would not be the case if the null hypothesis
were false. The labels for each tested contrast (e.g., high reward
value > low reward value) were randomly rearranged for
corresponding data points according to a permutation vector
of integers from 1 to the total number of data points. The
same permutation vector was used for every connection (830 in
total) to preserve any interdependencies between connections
and constrained to remain within the same participant. The size
of the largest component was recorded for each permutation
yielding an empirical null distribution for the size of the largest
component size. This procedure was performed 1,000 times. The
FWE-corrected p-value for a component of given size was then
estimated as the proportion of permutations for which the largest
component was of the same size or greater and, thus, representing
the likelihood under the null hypothesis of finding one of more
components with this or larger mass across the entire set of
networks.

To characterize the properties of each component, we
report ‘‘size’’ as the number of suprathreshold connections,

‘‘intensity’’ (mass) measures as their overall strength (i.e., sum
of absolute T-values over these suprathreshold connections)
and p-values associated with these measures. In addition, we
provide complementary statistics for each connection such as
effect size for significant components calculated by averaging the
test statistic values across significant connections and dividing by
the square root of the number of subjects and between-subject
variability for each connection within a component to gain more
insight into contrasts of interest. It has to be noted that we do
not violate the NBS inference about a component as a whole
by providing effects sizes for each connection. The information
about effect sizes helps to interpret the nature of connections
within each component.

RESULTS

Value-Base Reward and Emotion
Prioritization Effects in Behavior
Participant’s responses in both tasks were accurate (95.23% in
the reward task and 85.76% in the emotion task; for details see
Supplementary Table 3).

In the value-based task, there was a main effect of reward
value [F(1,18) = 6.61, p = 0.019, MD = −46.34, 95% CI (−58.98,
−37.12)] indicating that participants were faster in responding
to shapes associated with high reward value compared to shapes
associated with low reward value (Figure 2A).

In the emotion task, there was a main effect of emotional
relevance on response time [F(1,20) = 62.64, p < 0.001,
MD = −65.76, 95% CI (−87.45, −49.18)] indicating that
participants responded faster to shapes associated containing
emotional information than to neutral shapes (Figure 2B).
Assessment of the effect of valence on response times revealed
that reaction times for happy and sad associations were faster
compared to associations with neutral emotional expression
[F(2,40) = 29.70, p< 0.001; t(20) =−6.83, p< 0.001, MD =−69.38,
95%CI (−84.93,−47.35); t(20) =−6.51, p< 0.001, MD =−66.14,
95% CI (−82.97; −47.78)]. The difference between happy and
sad associations was not significant (t(20) = −0.32, p = 0.75;
Figure 2C).

Functional Connections Explaining
Value-Related Prioritization Effect
Contrast [high reward > low reward] for p < 0.001 connection
threshold (uncorrected) and p-FEW corrected cluster threshold
(p < 0.05) revealed one topological cluster (mass = 187.61,
p-FWE = 0.001, size = 5; Figure 3A). In this cluster, the DMN
(MPFC) showed positive connectivity with the Salience network
(ACC; t(18) = 5.82, p-FWE = 0.004) and negative connectivity
with the Frontoparietal network bilaterally (posterior parietal
cortex, PPC; t(18) = −6.66, p-FEW = 0.001; t(18) = −4.64,
p-FWE = −4.64, p-FWE = 0.03 respectively for the right and
left PPC). The left PPC of the Frontoparietal network and ACC
part of the Salience network showed positive connectivity to
DAN (left IPS), but the former connection was at the border
of significance (t(18) = 4.36, p-FWE = 0.046; t(18) = 8.29,
p-FWE = 0.0001 respectively).
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FIGURE 2 | Mean reaction time in the value-based task (A) and emotion task (B,C) for matched (correct pairings) associations between shapes and labels. In the
emotion task, we calculated effects of emotional relevance (averaged effect of emotions) (B), and emotional valence (C). The error bars represent ± SEM. *p < 0.05;
NS, non-significant.

FIGURE 3 | Connectogram of networks (top row), corresponding glass brain
(middle row) and effect sizes of individual connections within a cluster (low
row) for value-based (A) and emotion (B) prioritization effects [the connectivity
threshold p < 0.001, cluster threshold p-FWE corrected (p < 0.05)]. Vertical
color bars indicate T-test statistics for individual connections. Glass brain
figures visualize spatial location of connections comprising each component
where a sphere represents the center of the corresponding network. The red
and blue lines depict positive or negative correlations between networks.
Effect sizes: the Y axis represents Pearson correlation values where the sign
indicates the direction of the effect. Error bars represent standard deviations.
The color of the effect size bars corresponds to the color of relevant
connections in the connectogram.

No significant components were found when we decreased
the connectivity threshold to p < 0.05. In contrast, systematically

increasing the threshold by 10% showed that the effect occurred
at only a conservative threshold (see details in Supplementary
Table 4) indicating that the value-related prioritization effect
is likely to be characterized by strong, topologically focal
differences in functional connectivity.

Functional Connections Explaining
Emotion-Related Prioritization Effect
To explore connectivity for emotion-prioritization effect, we
tested the interaction between networks using contrast [emotion
(happy + sad) > neutral. The contrast with connectivity
threshold p < 0.001 reveal one cluster (mass = 116.67,
size = 6, p-FWE = 0.006). The cluster comprises positive
connectivity between the DMN (MPFC) and three other
networks: Frontoparietal (left PPC; t(20) = 4.23, p-FWE = 0.048),
Salience network (left RPFC; t(20) = 4.62, p-FWE = 0.03) and
DAN (bilateral FEF; t(20) = 4.62, p-FWE = 0.03; t(20) = 4.84,
p-FWE = 0.034). There was also negative connectivity between
the Salience network (left RPFC) and the Inferior Frontal Gyrus
(t(20) = −4.04, p-FWE = 0.05; Figure 3B). Systematically varying
the connection threshold indicated that the cluster is formed by
topologically focal connections (see details in Supplementary
Table 5).

Functional Connections Explaining
Valence-Related Prioritization Effect
The negative emotion prioritization effect defined by contrasting
[sad > neutral] was associated with a significant network
including the DMN (MPFC), Dorsal Attention network (bilateral
frontal eye fields) and Visual Medial network (mass = 82.91,
p-FWE = 0.013; size = 4; Figure 4A). Systematically varying the
connectivity threshold indicated that this effect occurred only at a
more conservative threshold (p < 0.004–0.0006; Supplementary
Table 6).

A positive emotion-prioritization defined by contrast
(happy > neutral) corresponded to one topological cluster
comprising the MPFC of DMN network, Frontoparietal
network (left posterior parietal cortex, PPC) and Salience
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FIGURE 4 | Connectogram of networks (top row), corresponding glass brain
(middle row) and effect sizes of individual connections within a cluster (low
row) for happy (A) and sad (B) prioritization effects [the connectivity threshold
p < 0.001, cluster threshold p-FWE corrected (p < 0.05)]. Vertical color bars
indicate T-test statistics for individual connections. Glass brain visualizes
spatial location of connections comprising each component where a sphere
represents the center of the corresponding network. The red and blue lines
depict positive or negative correlations between networks. Effect sizes: the Y
axis represents Pearson correlation values where the sign indicates the
direction of the effect. Error bars represent standard deviations. The color of
the effect size bars corresponds to the color of relevant connections in the
connectogram.

network (left rostral prefrontal cortex, RPFC; p < 0.001,
mass = 56.50, p-FWE = 0.034; size = 2; Figure 4B). Decreasing
the connectivity threshold (p < 0.003) revealed a slightly
larger component represented by additional connection
between the DMN (MPFC) and Language network (posterior
superior temporal gyrus, p-STG) yielding in total statistics
with mass = 78.93, p-FWE = 0.032; size = 3). Further
decreasing the ‘‘height’’ threshold revealed no significant
results (Supplementary Table 7).

Common and Distinct Network
Connections Between Value-Based
Reward and Emotion Prioritization Effects
To summarize our main findings, mapping brain connectivity
involved in the value-based and emotion prioritization effects
indicated their overlap in the medial prefrontal node of the
Default Mode network regardless of emotional valence. Positive
emotion showed larger overlap with value-based processing

FIGURE 5 | Venn diagram illustrating shared and distinct networks among
value-based and emotional valence prioritization effects. DMN.MPFC (medial
prefrontal node of the default mode network), FPN.PPC [left (l) and right (r)
posterior cingulate cortex of the Frontoparietal network], DAN.FEF (bilateral
frontal eye field of the Dorsal Attention network), DAN.IPS (intraparietal sulcus
of the Dorsal Attention network), SN.RPFC (rostral prefrontal cortex of the
Salience network), SN.ACC (anterior cingulate cortex of the salience
network), VisM (visual medial network).

by shared involvement of the medial prefrontal node of the
Default Mode network and the left posterior parietal node of
the Frontoparietal network compared to negative emotion with
overlap only with respect to the medial prefrontal node of the
Default Mode network (Figure 5).

DISCUSSION

The current study demonstrates that the brain forms distinct
but partly overlapped components of interconnected networks
for prioritizing value-based reward and emotion processing.
The finding of partial overlap does not support the hypothesis
that there may be an underlying system that is responsive
to the basic properties of general affect (Park et al., 2019).
However, the involvement of the MPFC node of the DMN
in the value-based reward and emotion processing revealed by
our NBS analysis may shed light on emotion regulation in
the relationship between these behavioral drivers at the neural
connection level.

Common Connections Between
Value-Based Reward and Emotion
The specific node in the MPFC of the DMN has been
consistently associated with value-based decision making (Orsini
et al., 2018), emotion regulation (Waugh et al., 2014) and
self-related processes (Northoff, 2005; Sui et al., 2013; Hu
et al., 2016) in a healthy population. Functional abnormalities
within this node have been identified in virtually every
psychiatric disorder with impaired processing of socially
relevant cues such as reward, facial emotional expressions and
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self-relevance (Bittar and Labonté, 2021 for review). Converging
evidence indicates that the MPFC node may function as a
central hub in the brain (Sui, 2016), mediating processing
of socially relevant information. This is supported by a
substantial number of experimental human and laboratory
animal studies demonstrating rich anatomical and functional
connections between the MPFC and other cortical and
subcortical areas (Riga et al., 2014). However, mapping the
results of previous studies has been a challenging task due to
a profusion of experimental and methodological approaches
used in studies of reward and emotion processing (Oldham
et al., 2018; Zhang et al., 2019; Flannery et al., 2020).
We employed datasets with an identical experimental design
allowing for tight control of factors triggering the value-
based reward and emotion prioritization effects. The functional
connectivity results associated with the DMN in our study
provide an intriguing possibility to bridge two contrasting
accounts of the neural overlap between value-based and
emotion/valence processing (Chiew and Braver, 2011 for review).
Particularly, the presence of the MPFC as a common node
among clusters of neural networks involved in respective
value-based, emotion and valence prioritization effects points
toward its generic role in encoding the subjective value of
incoming signals regardless of whether they are motivational
or emotional (Sui and Gu, 2017). This can explain the
similarities in behavioral performance for these effects, such
as enhanced responses to stimuli with higher social value
(i.e., higher reward value vs. lower reward value and stimuli
containing emotional valence compared to neutral stimuli).
This finding is in line with previous studies on reward
processing (Peters and Büchel, 2010, for review) and lends
further support to the proposal that the MPFC encodes
emotion with a value signal similar to that for reward
(Winecoff et al., 2013).

Distinct Connections Between Reward and
Positive (or Negative) Emotion
An interesting finding in our study is that value-based reward
shares functional connections between the MPFC node of the
DMN and the PPC node of the FPN with emotion processing,
particularly with respect to positive emotion. However, the
engagement of this connection emerges in the opposite direction:
negative in the processing of value-based reward and positive
in the processing of both happy and sad emotions. The
PPC node of the FPN, in the dorsal angular gyrus, appears
to be particularly sensitive to stimuli that can potentially
become the focus of attention of the top-down attention
system, such as reward incentives and emotion (Winecoff
et al., 2013; Elward et al., 2015). Our results indicate that
to facilitate value-based reward, the IPS node of DAN, a
key node of salience processing (Sui et al., 2015a), forms a
strong positive connection with the ACC node of the Salience
network—a key region involved in the evaluation of engaging
control to alter default actions in favor of better alternatives
(Rushworth et al., 2011; Kolling et al., 2016). This finding
resonates with a theoretical account proposing that maximizing
potential reward relies on robust interactions between the

attentional network and valuation networks, including the ACC
and PPC (Pessoa and Engelmann, 2010). Previous studies
demonstrated dynamic opposition between activation of the FPN
and deactivation of the DMN and explained this relationship
as transitions between rest and task-engaged states (Ossandón
et al., 2011; Raichle, 2011; Chen et al., 2013; Sui et al.,
2013). Disruptions in this dynamic opposition between these
networks have been linked to attentional lapses and suboptimal
performance in healthy subjects (Weissman et al., 2006; Prado
and Weissman, 2011). We hypothesize that anticorrelation
between the PPC and MPFC nodes observed here in the value-
based reward task may play a role in regulating attentional
control of the task. If steadfast, this hypothesis may advance
our knowledge about neural mechanisms of attentional biases
in addictions (Thomsen, 2015) and impairments in the ability
to learn about reward in patients suffering from depression
and schizophrenia.

Positive Emotion
The NBS analysis showed that positive emotion involves the
RPFC node of SN and this node does not overlap with the
value-based reward processing. Affective neuroscience provides
evidence that the RPFC has been implicated in emotional
regulation strategies (Viviani et al., 2010; Campbell-Sills et al.,
2011; Mitchell, 2011) and appraisal or interpretation of emotion
(Maier et al., 2012; Kreplin and Fairclough, 2013). However,
recent clinical studies indicate that the role of the RPFC
node of the Salience Network in emotion processing may be
more complex than previously thought. For example, alterations
in network functional connectivity associated with depressive
symptoms were directly linked to dysfunctions in the RPFC
(Fadel et al., 2021). It is worth mentioning that the left RPFC
node in our study overlaps with previously reported ‘‘the dorsal
nexus’’—a so-called area in the prefrontal cortex that showed
aberrant functional connectivity with the DMN, attention
network and cognitive control network by hot-wiring them
together in depression (Sheline et al., 2010). Moreover, some
authors suggested that alterations in the dorsal nexus functional
connectivity may serve as a biomarker for antidepressant effects
(McCabe et al., 2011; Scheidegger et al., 2012). Exploring the
precise role of the RPFC in the processing of positive emotion
may provide a better understanding of its role in the development
of mood disorders and clarify the Triple Network Model of
psychopathology (Menon, 2011).

Negative Emotion
Our results suggest that two networks involved in the
cluster supporting negative emotion biases (FEF and VisM)
do not overlap with the reward processing. The role of
the FEF node of the DAN is recognized in maintaining
selective attention and providing attention-related feedback
signals that regulate the quality of sensory processing in the
visual cortex (Reynolds and Chelazzi, 2004; Squire et al.,
2013). The importance of sensory sensitivity is underwritten
by a recent trend in computational psychiatry that focuses
on modeling sensory prediction errors within a predictive
coding framework (Adams et al., 2013; Clark et al., 2018).
However, despite the proposal that failure of regulating sensory
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sensitivity may be a key etiological factor in many mental
health conditions with emotional dysfunctions (Acevedo et al.,
2018 for review), the precise role of the FEF and VisM
in the processing of negative emotional stimuli is yet to
be established.

The NBS results in emotion processing showed that all
nodes form positive connections with the MPFC of the DMN,
indicating that the MPFC node plays a critical role in generating
emotion biases. This finding is not surprising giving the wealth
of studies reporting abnormal connectivity between the MPFC,
FPN and SN in patients with mental health conditions. For
example, hypoconnectivity between the MPFC and PPC nodes
was observed in social anxiety disorder, where the reduction
in this connection has been suggested as a possible neural
basis for impairments in the perception of socially relevant
emotional states (Qiu et al., 2011). Furthermore, aberrant
connectivity between the MPFC and FPN/SN nodes has been
found in patients with major depression (Zheng et al., 2015;
Fadel et al., 2021), schizophrenia (Manoliu et al., 2014), bipolar
disorder (Lopez-Larson et al., 2017; Wang et al., 2020) and
psychosis (Wotruba et al., 2014). However, previous research
provided inconsistent evidence of the role that the MPFC
plays in the processing of emotional valence. For example,
some studies proposed that positive and negative affective
processing exhibit dissociable functional hubs outside the MPFC
(Zhang et al., 2015), while others suggested the MPFC as
a functional hub for both positive and negative emotions
(Yang et al., 2018) or positive only (Lindquist et al., 2016;
Machado and Cantilino, 2017). The results of our study
indicate that the MPFC may serve as a connectivity hub for
both positive and negative emotions with the differences in
functional connections between the MPFC and FPN, DAN and
SN, indicating the mainstream for processing happy and sad
emotions.

LIMITATIONS

It is important to note that our findings do not represent
causal relationships due to the nature of the analyses used.
That is, the clusters of interconnected networks do not
unveil the directions of their interactions. In addition, our
findings need to be validated on separate and larger datasets.
Although the NBS method overcomes some limitations of
graph analytical approaches (Fornito et al., 2013), network-
based data analysis does not have a notion of sample size.
Unlike standard statistical inferences in activation studies
(i.e., typically, t-test or parametric analysis of variance), NBS
and similar methods use second-order metrics, multi-threshold
and permutation techniques, non-parametric statistics that are
more robust than the standard approaches (Braun et al., 2012).
This calls for developing methods for calculating sample size
in network-based research. Until then, validation of findings
on separate datasets can be used to estimate the reliability of
these findings. Third, studies on brain networks use different
parcellation scales and nomenclature (Uddin et al., 2019),
which limits comparisons between the results of our study and
previous work.

CONCLUSION

Value-based reward and emotion prioritization effects overlap
in the MPFC node of the DMN regardless of emotional
valence. Positive emotion processing shares the MPFC node
and the PPC node of the FPN, with value-based reward
processing showing a larger overlap compared to negative
emotion processing. Value-based reward and emotion biases
differentially involve nodes of the DMN, FPN, DAN, and SN.
These findings support the alternative hypothesis that the
brain forms partly overlapping but different components of
interconnected networks such as DMN, DAN, SN, and FPN
to prioritize value-based reward and emotional information.
Facilitating our understanding of how information flows
between these networks will require shifting the debate
about overlapping neural substrates for value-based reward
and emotion processing toward mapping the relationship
between these networks, advancing our understanding
behavioral drivers in relation to normal and psychopathological
processes.
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