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Audiovisual perception results from the interaction between visual and auditory
processing. Hence, presenting auditory and visual inputs simultaneously usually
improves the accuracy of the unimodal percepts, but can also lead to audiovisual
illusions. Cross-talks between visual and auditory inputs during sensory processing were
recently shown to occur as early as in the primary visual cortex (V1). In a previous
study, we demonstrated that sounds improve the representation of the orientation of
visual stimuli in the naïve mouse V1 by promoting the recruitment of neurons better
tuned to the orientation and direction of the visual stimulus. However, we did not
test if this type of modulation was still present when the auditory and visual stimuli
were both behaviorally relevant. To determine the effect of sounds on active visual
processing, we performed calcium imaging in V1 while mice were performing an
audiovisual task. We then compared the representations of the task stimuli orientations
in the unimodal visual and audiovisual context using shallow neural networks (SNNs).
SNNs were chosen because of the biological plausibility of their computational structure
and the possibility of identifying post hoc the biological neurons having the strongest
influence on the classification decision. We first showed that SNNs can categorize the
activity of V1 neurons evoked by drifting gratings of 12 different orientations. Then,
we demonstrated using the connection weight approach that SNN training assigns
the largest computational weight to the V1 neurons having the best orientation and
direction selectivity. Finally, we showed that it is possible to use SNNs to determine
how V1 neurons represent the orientations of stimuli that do not belong to the set
of orientations used for SNN training. Once the SNN approach was established, we
replicated the previous finding that sounds improve orientation representation in the
V1 of naïve mice. Then, we showed that, in mice performing an audiovisual detection
task, task tones improve the representation of the visual cues associated with the
reward while deteriorating the representation of non-rewarded cues. Altogether, our
results suggest that the direction of sound modulation in V1 depends on the behavioral
relevance of the visual cue.

Keywords: neuronal representations, shallow neural network, primary visual cortex (V1), sound modulation,
orientation representation, audiovisual detection task, sensory processing
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INTRODUCTION

Multi-sensory integration leads to a multimodal unified percept.
It was long thought that multimodal integration was performed
in higher-order multisensory cortices such as the posterior
parietal cortex (Molholm et al., 2006; Song et al., 2017)
once the parallel unimodal processing of the different sensory
modalities was completed. However, several recent studies
have demonstrated the presence of direct mutual anatomical
connections (Falchier et al., 2002; Rockland and Ojima, 2003;
Cappe and Barone, 2005; Iurilli et al., 2012; Ibrahim et al., 2016;
Deneux et al., 2019; Garner and Keller, 2021) and cross-modal
sensory processing modulations (Iurilli et al., 2012; Ibrahim
et al., 2016; Meijer et al., 2017; Deneux et al., 2019; Knöpfel
et al., 2019; McClure and Polack, 2019; Garner and Keller,
2021) at the earliest stages of cortical sensory processing in
primates and rodents. Hence, we have recently demonstrated
that sounds modulate the visually evoked response of neurons
of the primary visual cortex (V1) to the presentation of oriented
stimuli (McClure and Polack, 2019). We showed that sounds
potentiate the responses of neurons well-tuned to the stimulus
orientation and direction while suppressing the responses of
neurons not tuned for the orientation and/or the direction of
the visual cue. As a result, sound modulation improved the
representation of the orientation and the direction of the visual
stimulus in V1 (McClure and Polack, 2019). If studies on cross
modal interactions have mainly reported facilitatory interactions
(Vroomen and De Gelder, 2000; Odgaard et al., 2004; Lippert
et al., 2007; Gleiss and Kayser, 2014), others have shown context-
dependent suppressive effects (Iurilli et al., 2012; Hidaka and Ide,
2015; Meijer et al., 2017; Deneux et al., 2019). Altogether, those
studies suggest that the sign of sound modulation in V1 depends
on the behavioral relevance of the visual and auditory stimuli.

To test this hypothesis, we performed calcium imaging in
the V1 of mice alternating, during the same recording session,
between the performance of a unimodal visual and an audiovisual
task. To compare the representations of the visual stimuli in V1
between the unimodal and the audiovisual context, we tested
a novel approach for this type of analysis: the shallow neural
networks (SNNs). SNNs are simple neural networks having only
one or two inner layers. Like other neural networks, they are
classifiers that can be trained at identifying patterns with a very
high proficiency (Fukushima, 1980). This approach was selected
to fulfill the following criteria: (1) to be as biologically plausible
as possible; (2) to use all the recorded neurons as an input instead
of requiring the selection of “active” neurons; (3) to be able
to classify V1 responses to orientations that do not belong to
the training set; and (4) to allow determining which neurons
carry the most weight in the classification of the visual stimulus.
SNNs fulfill those four criteria as: their structure is inspired by
the computational structure of the visual cortex (Fukushima,
1980); they do not require any criteria-based selection from the
experimenter for including neurons; their output being a vector
of probabilities assigned to each orientation of the training set,
we can take advantage of the continuity of the orientation space
and use circular statistics to decode any orientation; finally, their
simplicity (i.e., their shallowness) allows for a straightforward

access to the weight given in the classifying decisions to each
individual recorded neuron.

We first tested the SNN approach using a calcium imaging
dataset from a prior study to investigate how pure tones affect
the representation of oriented stimuli in the V1 L2/3 of mice
passively receiving the stimuli (McClure and Polack, 2019). We
found that the weight assigned to each recorded neuron by
the classifier during training was highly correlated with the
neuron’s tuning properties (preferred orientation and selectivity),
suggesting that an optimal classifier uses the same features of
the neuronal responses that we capture with the traditional
approach of orientation tuning curves. Then, we used the trained
SNNs to classify orientations that were not part of the training
set. We showed that the presentation of a pure tone improved
the visual stimulus representation. Those results reproduced the
findings obtain when analyzing the same database using an active
neurons selection approach (McClure and Polack, 2019). Then,
we extended the method to our new dataset and showed that
when pure tones have a behavioral relevance in the audiovisual
task, the modulation of the representation of visual information
in V1 can be bidirectional.

MATERIALS AND METHODS

All the procedures described below have been approved by
the Institutional Animal Care and Use Committee (IACUC) of
Rutgers University–Newark, in agreement with the Guide for the
Care and Use of Laboratory Animals (National Research Council
of the National Academies, 2011).

Surgery
Head-Bar Implants
Ten minutes after systemic injection of an analgesic (carprofen,
Zoetis, Parsippany-Troy Hills, NJ, United States; 5 mg per kg
of body weight), adult (3–6 months old) male and female
Gad2-IRES-Cre (Jackson stock #019022) × Ai9 (Jackson stock
#007909) mice were anesthetized with isoflurane (5% induction,
1.2% maintenance) and placed in a stereotaxic frame. Body
temperature was kept at 37◦C using a feedback-controlled
heating pad. Pressure points and incision sites were injected
with lidocaine (2%). Eyes were protected from desiccation with
artificial tear ointment (Dechra, Northwich, United Kingdom).
Next, the skin covering the skull was incised and a custom-
made lightweight metal head-bar was glued to the skull using
Vetbond (3M, Saint Paul, MN, United States). In addition, a
large recording chamber capable of retaining the water necessary
for using a water-immersion objective was built using dental
cement (Ortho-Jet, Lang, Dental, Wheeling, IL, United States).
Mice recovered from surgery for 5 days, during which amoxicillin
was administered in drinking water (0.25 mg/mL).

Adeno-Associated Virus (AAV) Injection
After recovery from the head-bar surgery, mice were anesthetized
using isoflurane as described above. A circular craniotomy
(diameter = 3 mm) was performed above V1. The AAV vector
AAV1.eSyn.GCaMP6f.WPRE.SV40 (UPenn Vector Core,
Philadelphia, PA, United States) carrying the gene of the
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fluorescent calcium sensor GCaMP6f was injected at three sites
500 µm apart around the center of V1 (stereotaxic coordinates:
−4.0 mm AP, +2.2 mm ML from bregma) using a MicroSyringe
Pump Controller Micro 4 (World Precision Instruments,
Sarasota, FL, United States) at a rate of 30 nl/min. Injections
started at a depth of 550 µm below the pial surface and the tip
of the pipette was raised in steps of 100 µm during the injection,
up to a depth of 200 µm below the dura surface. The total
volume injected across all depths was 0.7 µl. After removal of the
injection pipette, a 3-mm-diameter coverslip was placed over the
dura, such that the coverslip fits entirely in the craniotomy and
was flush with the skull surface. The coverslip was kept in place
using Vetbond and dental cement. Mice were left to recover
from the surgery for at least 3 weeks to obtain a satisfactory
gene expression.

Functional Imaging
Calcium Imaging Setup
During the last week of recovery, mice were trained to stay on
a spherical treadmill consisting of a ball floating on a small
cushion of air that allowed for full 2D movement (Polack et al.,
2013). During three daily 20-min sessions, the mouse head-
bar was fixed to a post holding the mouse on the apex of the
spherical treadmill. Ball motion was tracked by an IR camera
taking pictures of the ball at 30 Hz. Eye motion was monitored
at 15 Hz using a second IR camera imaging the reflection of
the eye on an infrared dichroic mirror. Functional imaging was
performed at 15 frames per second using a resonant scanning
two-photon microscope (Neurolabware, West Hollywood, CA,
United States) powered by a Ti-Sapphire Ultra-2 laser (Coherent,
Santa Clara, CA, United States) set at 910 nm. The microscope
scanning mirrors were hermetically sealed in a chamber to bring
the scanning hum below the room ambient noise (<59 dBA). The
laser beam was focused 200 microns below the cortical surface
using a 16×, 0.8 NA Nikon water-immersion objective. The
objective was tilted 30◦ such that the objective lens was parallel
to the dura surface. Laser power was kept below 70 mW. Frames
(512 × 796 pixels) were acquired using the software Scanbox
developed by Neurolabware.

Naïve Imaging Session
Mice were placed head fixed in the functional imaging rig in
front of a screen such that it covered the visual field of the
right eye, contralateral to the craniotomy. Visual stimuli of the
test block consisted of the presentation of one of two vertical
sinewave gratings that drifted toward the right and were rotated
clockwise by 45◦ and 135◦ (temporal frequency = 2 Hz, spatial
frequency = 0.04 cycle per degree, contrast = 75%; duration:
3 s; intertrial interval: 3 s). Visual cues were presented in a
pseudorandom order, such as the same stimulus could not be
presented more than three times in a row. At the end of the
imaging session, after a break of at least 5 min, we assessed
the orientation tuning of the imaged neurons by presenting an
orientation tuning block that consisted of the presentation of
a series of drifting sinewave gratings (12 orientations evenly
spaced by 30◦ and randomly permuted). The spatiotemporal
parameters of the orientation tuning stimuli were identical to

those for the task block except for their duration (temporal
frequency = 2 Hz, spatial frequency = 0.04 cycle per degree,
contrast = 75%; duration: 1.5 s; intertrial interval: 3 s). Auditory
stimuli consisted of the presentation of one of two sine wave
pure tones (10 kHz and 5 kHz; 78 dB; duration: 3 s). Each
audiovisual trial resulted from the random combination of one
of the two pure tones with one of the two drifting gratings
(four possibilities: 5 kHz tone + 45◦ drifting grating, 10 kHz
tone + 45◦ drifting grating, 5 kHz tone + 135◦ drifting grating,
and 10 kHz tone + 135◦ drifting grating). As scanning was
not synced to the stimuli, a photodiode located at the top left
corner of the screen was used to detect the exact timing of
the visual stimulus onset and offset. The photodiode signal was
acquired along with the following signals: (1) a signal provided
by the two-photon microscope, which indicated the onset of each
frame, and (2) two analog signals encoding the orientation of the
drifting grating. These signals were digitized (NiDAQ, National
Instruments, Austin, TX, United States) and recorded with the
software WinEDR (John Dempster, University of Strathclyde).
Imaging sessions started by recording one thousand frames with
the green and red channels. The red channel was used to exclude
GABAergic neurons from the analysis.

Behavioral Training
After the naïve recording session, mice were water-deprived up
to 85% of their body weight and acclimated to head fixation
on a spherical treadmill in custom-built, soundproof training
rigs. Each rig was equipped with a monitor (Dell), a water
dispenser with a built-in lickometer (to monitor licking, infrared
beam break). Data acquisition boards (National Instruments
and Arduino) were used to actuate water delivery and vacuum
reward retrieval as well as monitor animal licking. The monitor
and data acquisition boards were connected to a computer that
ran the custom-made training program scripted in MATLAB
(MathWorks, Natick, MA, United States). Once animals reached
the target weight and were acclimated to the training setup,
they were trained to perform the orientation discrimination task.
In this task, drifting sine-wave gratings oriented 45◦ below the
vertical were paired with a water reward, and the animal was
expected to lick (Go). Drifting gratings orthogonal to the Go
stimulus signaled the absence of reward, and the animal was
expected to withhold licking (NoGo, orientation 135◦) during
those trials. When the stimulus instructed the animal to lick,
the water delivery had to be triggered by the mouse licking
during the third second of the stimulus presentation. No water
was dispensed in the no-lick condition or if the mouse failed
to trigger water delivery in the lick condition. If the animal
responded correctly [Hit or Correct Rejection (CR)], the intertrial
interval was 3 s. If the animal responded incorrectly [Miss or
False Alarm (FA)], the intertrial interval was increased to 9.5 s
as negative reinforcement. Animals were considered experts if
their performance during training sessions was greater than 1.7
(probability of chance behavior <0.1%, Monte Carlo simulation;
Einstein et al., 2017). All the mice were also trained to perform the
same task but using the 5 kHz tone as a NoGo cue and the 10 kHz
tone as the Go cue. Half of the mice started training with the
visual task while the other half started training with the auditory
task. The order of training did not impact the mice’s performance.
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Recording Sessions
As training was performed on a training setup located in a
different room, trained mice were habituated to perform the
task on the imaging setup (typically for one or two sessions)
until they could perform the task above the expert threshold.
Recording sessions consisted of five blocks (see Figure 5D). The
first block contained unimodal (either visual or auditory; the
modality was selected at random at the beginning of the session)
and was followed by an audiovisual block. For trained mice, the
reward in this audiovisual block was associated to the modality
(visual or auditory) of the preceding unimodal block. Hence
if the first block was unimodal visual, the second block was
audiovisual with the visual cue indicating the presence or absence
of reward. The third block was a unimodal block (visual if the
first unimodal block was auditory, auditory if the first unimodal
block was visual). The fourth block was an audiovisual block
(same rule for the reward as for the second block). The last block
was an orientation tuning block, consisting in the presentation
in pseudorandom order of twelve evenly spaced oriented visual
stimuli (0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦,
300◦, 330◦; the 12 orientations needed to be presented before
starting a new series).

Data Analysis
All the analyses detailed below were performed using
custom MATLAB scripts.

Imaging Data Pre-processing
Calcium imaging frames were realigned offline to
remove movement artifacts using the Scanbox algorithm
(Neurolabware). A region of interest (ROI) was determined
for each neuron using a semi-automatic segmentation routine.
For every frame, the fluorescence level was averaged across
the pixels of the ROI. Potential contamination of the soma
fluorescence by the local neuropil was removed by subtracting
the mean fluorescence of a 2–5 µm ring surrounding the
neuron’s ROI, excluding the soma of neighboring neurons, and
then adding the median value across time of the subtracted
background. We then computed the fractional fluorescence from
the background-subtracted fluorescence data. The fractional
fluorescence (1F/F = (F–F0)/F0), was calculated with F0 defined
as the median of the raw fluorescence measured during every
inter-trial interval. The response of neurons to a trial was then
measured as the mean fractional fluorescence measured during
the first second of the visual stimulus presentation minus the
mean fractional fluorescence measured during the second and a
half preceding the stimulus presentation. The orientation tuning
curve of each neuron was computed using a resampling-based
Bayesian method (Cronin et al., 2010; McClure and Polack, 2019)
from the area under the curve of the fractional fluorescence
responses recorded during the different trials of the tuning curve
blocks. The preferred orientation was defined as the peak of
the orientation tuning curve. When a neuron was not direction
selective (i.e., responding equally to the same oriented stimulus
moving in opposite directions), the preferred orientation was
defined as the orientation included in the range (0◦–180◦). The

responses of all the neurons to all the trials as well as the neurons’
tuning curve parameters were stored in a SQL database.

Shallow Neural Networks
Rationale for the Choice of Shallow Neural Networks
The SNN approach was selected to be as biologically plausible as
possible (criterium #1). Indeed, the structure of neural networks
was inspired by the computational structure of the visual cortex
(Fukushima, 1980), and it was shown that neural networks
provide pertinent computational models of the visual cortex
(Lindsay, 2021). Therefore, we can assume that the output of the
SNN in this study might have a biological relevance. We also
wanted the classifier to work on the entire recorded population
and therefore not to require the selection of “active” neurons
(criterium #2). Indeed, the activity of cortical neurons follows
a long-tailed gamma or log-normal distribution (Decharms and
Zador, 2000; Wohrer et al., 2013). As a result, most neurons’
evoked activity is very similar to their resting state and only
a few neurons significantly increase their firing rate when a
visual stimulus is presented (Barth and Poulet, 2012; Wohrer
et al., 2013). Therefore, simple strategies of analysis such as
averaging the activity across recorded neurons have limited
interpretative power, as they are poorly sensitive to the change
of activity of the minority of neurons responding to the stimulus.
A common strategy used to circumvent this issue is to determine
a threshold above which neurons are considered “active.”
However, this approach reveals limitations when working on
the modulation by the behavioral context of the V1 population
activity. Indeed, those extrinsic modulatory factors inactivate
some neurons while activating others (Iurilli et al., 2012; Ibrahim
et al., 2016; Meijer et al., 2017; McClure and Polack, 2019),
complicating the comparison of the different “active” populations
responding in the different behavioral contexts. To investigate
sensory representations, some other analysis strategies such as
dimensionality reduction (Cunningham and Yu, 2014; Carrillo-
Reid et al., 2019) or decoding (Quian Quiroga and Panzeri,
2009; Stringer et al., 2021) avoid selecting neurons. These
approaches capture the availability of the information about
the stimulus feature embedded in the population activity using
diverse metrics of statistical distance between different arrays
of data. However, because the result of those computations
is abstract, those strategies can only provide limited insights
about the implementation by the biological networks of the
computations realized by those methods. Indeed, if those
techniques inform us about what information is present and
can point out discrepancies between what an optimal decoder
and an animal can discriminate (Stringer et al., 2021), they do
not directly tackle the question of how the available information
is used by the biological system. This is not the case of the
SNN whose output allows taking advantage of the continuity
of the orientation space to determine the representation in V1
of visual stimuli that do not belong to the classifier training
stimuli. Finally, the simplicity of SNNs (i.e., their shallowness)
allows to straightforwardly access the weights assigned to each
recorded neuron in the classifying decisions. Here, we chose the
Connection Weight Approach (Olden and Jackson, 2002; Olden
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et al., 2004) to determine which neurons carry the most weight in
the classification of the visual stimulus.

Implementation
The shallow neural network was a two-layer feedforward network
with a sigmoid transfer function in the hidden layer and a softmax
transfer function in the output. It was generated in MATLAB
using the patternnet function. The input layer was made of 250
computational neurons that receive the evoked activity of 250
cortical neurons, the single hidden layer was made of 10 hidden
computational neurons, and the output layer was composed of
12 computational neurons corresponding to the 12 orientations
of the tuning block. The input layer was connected to 250
cortical neurons randomly selected in either the naïve or trained
mouse database using an SQL query. This sampling method
pools cortical neurons from different mice. Pooling neurons
across mice breaks the correlational structures between neurons.
However, those correlations were found to have little influence
on sensory information encoding. Indeed, although correlations
are prevalent in the visual cortex, the additional information
they provide is small (about 4% in an analysis window greater
than 100 ms; Golledge et al., 2003) and offset by the redundancy
arising from the neurons’ similar tuning properties (Montani
et al., 2007). As a result, the spaces encoding sensory and
behavioral variables are essentially orthogonal (Stringer et al.,
2019; Rumyantsev et al., 2020). As the cortical neurons used
for each SNN were selected from different recording sessions,
the SNNs were trained using resampled trials from the tuning
block (100 resampled trials for each of the 12 orientations).
Those resampled trials consisted in the random selection for
each selected cortical neuron of one trial corresponding to
the presentation of that stimulus. The network was trained by
scaled conjugate gradient backpropagation using the trainscg
MATLAB function. For the SNN training, the data was split into
training, validation, and test sets: 70% for training; 15% for cross-
validation to validate that the network is generalizing and to
stop training before overfitting, and 15% to independently test
network generalization.

Cortical Neuron’s Connection Weights
We evaluated the relative weight of the cortical neurons
connected to each input computational neuron using the
Connection Weight Approach (Olden and Jackson, 2002; Olden
et al., 2004). First, input-hidden-output connection weights were
obtained as the product of input-hidden and hidden-output
connection weights for each input and hidden computational
neuron; then overall connection weights were defined as the
sum of the input-hidden-output connection weights for each
input variable (Olden and Jackson, 2002). This approach that
uses raw input-hidden and hidden-output connection weights in
the neural network provides the best methodology for accurately
quantifying variable importance (Olden et al., 2004).

Statistics
Permutation Tests
To determine if the mean across trials computed from two
different pools was significantly different, we compared the value

obtained from the distribution of 1,000 or 10,000 differences
obtained when the pool labels were shuffled. The two-tailed
confidence intervals of the null hypothesis at the alpha level 0.05
were defined as the 2.5 and 97.5 percentile of the distribution
obtained from the permutations. The difference between the
observed means was considered significant if located outside the
confidence interval of the null distribution.

Circular Statistics
Circular statistics were computed with the Circular Statistics
Toolbox for MATLAB (Berens, 2009).

RESULTS

Representation of the Visual Stimulus
Orientation in the Naïve Mouse V1
One of the main goals of this study was to determine the
relevance of using an SNN to assess how the orientations of
drifting gratings were represented at the population level by
V1 layer 2/3 (L2/3) neurons. To test this approach, we used a
dataset of two-photon calcium imaging experiments in which
mice placed on a spherical treadmill in front of a screen and
a speaker were shown visual, auditory, and audiovisual stimuli
(Figure 1A). During the recording sessions, three types of
stimulus blocks were presented (Figure 1B): unimodal blocks
consisting of either visual or auditory stimuli (45◦ and 135◦
drifting gratings or auditory: 5 kHz or 10 kHz sinewave tones,
respectively), an audiovisual block (where the two visual and
the two auditory cues were randomly paired), and a tuning
block (during which series of 12 different drifting gratings were
presented). The first block of the session was a unimodal block
either visual or auditory, followed by an audiovisual block. Then,
the alternate unimodal block was presented (either auditory
or visual, respectively) followed by a second audiovisual block
(Figure 1C). Each recording session ended with the presentation
of a tuning block to allow determining the tuning-curves of the
imaged neurons (Figure 1C). Calcium imaging was performed
while simultaneously tracking the locomotion and the pupil size
(Figures 1D,E) as locomotor activity and arousal (correlated to
the pupil size) modulate the neuronal response of V1 neurons
(Niell and Stryker, 2010; Polack et al., 2013; Vinck et al., 2015).
We had already analyzed this database in a previous study and
shown that sound modulation improves the representation of
the orientation and direction of the visual stimulus in V1 L2/3
(McClure and Polack, 2019). We had also shown that arousal
and locomotion are similar in the unimodal and audiovisual
blocks in this dataset (McClure and Polack, 2019). The analytic
method applied in that study was a thresholding approach used
to determine which neurons were included in the analysis. In
this study, we wanted to use a method that allows determining
how the V1 population is representing the orientation of the
visual stimulus without having to select “responsive neurons” in
the recorded neuronal population. We decided to test SNNs as
they are very effective for pattern classification (Fukushima, 1980)
and therefore were a good candidate to identify the population
activity patterns evoked by specific oriented stimuli. For this,
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we trained single hidden layer SNNs to identify the neuronal
patterns evoked by 12 different drifting gratings evenly spaced in
the orientation space (note that we will use the term “orientation”
to indicate both the orientation and drifting direction of the
gratings). The SNN output estimates the probability that the
presented pattern belongs to each of the output categories. Hence,
a SNN presented with a pattern that it has been trained to identify,
theoretically returns an output of 1 for the corresponding
category (30◦ and 60◦ in the example shown in Figures 2A,B).
Because of the continuity of the orientation space, we then
assumed that the presentation of an oriented stimulus equidistant
from two trained orientations such as 45◦ (which is equidistant
from 30◦ and 60◦) would be classified as 50% “30◦ drifting
grating” and 50% “60◦ drifting grating” (Figure 2B), as it activates
a subpopulation of neurons responding both to the 30◦ and
60◦ stimuli (Figure 2A). Hence, we trained SNNs to classify the
neural patterns of subpopulations of V1 neurons (250 cortical
neurons randomly picked in a database of 1,353 imaged neurons
in eight mice). Each SNN was composed of an input layer of 250
computational neurons fully connected to a layer of 10 hidden
computational neurons which were in turn fully connected to
an output layer of 12 computational neurons (Figure 2C). The
training of the network was performed using 100 resampled
trials for each of the twelve evenly spaced oriented visual stimuli
presented during the tuning block (0◦, 30◦, 60◦, 90◦, 120◦, 150◦,
180◦, 210◦, 240◦, 270◦, 300◦, 330◦). Each resampled trial for
an orientation corresponded to the random selection for each
cortical neuron of one response to the presentation of that
stimulus (mean 1F/F across the visual stimulus presentation).
Once trained, the SNNs were able to accurately classify all the
resampled trials (probability of correct classification with cross-
validation > 0.99). We then used the trained SNNs to classify 100
resampled trials collected when presenting visual stimuli of the
unimodal block, i.e., drifting gratings having orientations that the
SNNs were not trained to recognize (45◦ and 135◦; Figure 2D).
The 100 outputs of each SNN were averaged and the circular
mean of this mean output provided the orientation estimated
by the SNN (Figure 2E). The accuracy (precision index) of this
represented orientation was measured as the projection of the
circular mean vector onto the radial axis of the visual stimulus
orientation (Figure 2F). To determine the variability of the
representation across the population of imaged V1 neurons, we
repeated the analysis hundreds of times, creating each time a new
SNN from a new pseudo-population of 250 V1 neurons.

Relationship Between Tuning Curves and
Shallow Neural Network Weights
In an effort of comparison, our first goal was to assess whether
the SNN would use the same features of the neurons’ response
statistics that are captured by the traditional tuning curves.
Therefore, we tested the hypothesis that the weight of the cortical
neurons in the SNN decision corresponded to their orientation
tuning properties. In a neural network, the relative contributions
of the input variables to the predictive output depend primarily
on the magnitude and direction of the connection weights
between computational neurons. Input variables with larger

connection weights represent greater intensities of signal transfer
(Olden and Jackson, 2002). Therefore, they are more important
in the prediction process compared to variables with smaller
weights. To determine whether the orientation tuning of the
cortical neurons would be a predictor of their connection weight
in the SNN, we first determined the preferred orientation,
orientation selectivity index (OSI) and direction selectivity index
(DSI) for all the neurons of the dataset. For each neuron, the
responses to the different visual stimuli of the tuning block
(Figure 3A) were fitted using a resampling-based Bayesian
method (Cronin et al., 2010; McClure and Polack, 2019;
Figures 3B,C). We then estimated the weights of every input
cortical neuron for each of the 12 SNN outputs (corresponding
to the 12 visual stimuli of the tuning block) using the Connection
Weight Approach (Olden and Jackson, 2002; Olden et al., 2004),
and repeated this measurement in 250 SNNs (250 inputs × 250
iterations = 62,500 datapoints). Finally, we sorted the cortical
neurons by preferred orientation and displayed their connection
weights for each of the 12 decision outputs (Figure 3D). We
found that the SNNs assigned the largest connection weights to
neurons tuned to the visual stimulus presented (Figures 3D,E).
We then plotted the connection weights of cortical neurons as a
function of their orientation selectivity (Figure 3F) and direction
selectivity indexes (Figure 3G). Those two relationships were best
fitted by an exponential curve indicating that cortical neurons
with high orientation and/or direction selectivity had a much
larger connection weights, and therefore a much larger impact
in the SNN decision than most of the other cortical neurons,
even though they represented only a fraction of the total neuronal
pseudo-population in V1 (Figures 3H,I). Hence, we show that
SNNs classify the orientation of the visual stimuli of the tuning
block by learning and using the orientation tuning properties
of the V1 neurons.

Sound Modulation of Orientation
Representation in Naïve Mice V1
Once we had confirmed that SNNs were using the orientation
tuning properties of the V1 neurons to classify the visual stimuli
of the tuning block, we tested the hypothesis that the SNN
approach could be used to determine how sound modulates
the representation of the orientation representation in V1 L2/3.
We trained 1,000 SNNs to classify the stimuli of the tuning
block. Then, we presented the SNNs with the response of their
input cortical neurons to the presentation of the 45◦ drifting
gratings recorded during the unimodal visual block (average
output of 100 resampled trials). The circular means of the 1,000
SNNs outputs were displayed on a polar plot (Figure 4A, blue
dots, see Figures 2E,F for the approach). We repeated the
same analysis for the 45◦ drifting gratings recorded during the
audiovisual blocks when the visual stimulus was paired with
the low tone (5 kHz, red) or the high tone (10 kHz, green).
The same approach was used with the neuronal response to the
presentation of the 135◦ drifting gratings (Figure 4B; unimodal:
blue, audiovisual 5 kHz: red, audiovisual 10 kHz, blue) and for
the unimodal auditory tones (Figure 4C). In the unimodal visual
and audiovisual conditions, the output vectors of the SNNs were
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FIGURE 1 | Recording sessions in naïve mice. (A) Schematic representation of the recording setup. (B) Stimuli presented during the unimodal, audiovisual, and
tuning blocks. (C) Organization of the unimodal, audiovisual, and tuning blocks in a recording session. (D) Two-photon image of V1 neurons recorded in a naïve
mouse. The preferred orientation of the segmented neurons is indicated by the color scale in inset. White contours indicate segmented neurons that were not
estimated orientation selective by the algorithm. (E) Example of the activity of neurons indicated in panel (D) during the presentation of the visual stimuli of the
audiovisual block. The neuronal activity was recorded simultaneously with the locomotion of the animal as well as the pupil size (bottom traces).

indicating the orientation of the visual stimulus (Figures 4D–F;
circular mean ± confidence interval; For 45◦: unimodal visual:
42.3◦ ± 1.0, visual + 5 kHz tone: 47.7◦ ± 0.8, visual + 10 kHz
tone: 48.0◦ ± 0.7; For 135◦: unimodal visual: 105.4◦ ± 4.4,
visual + 5 kHz tone: 123.0◦ ± 2.7, visual + 10 kHz tone:
127.9◦ ± 2.7), while in the unimodal auditory condition the
output vectors were both similarly attracted toward 90◦, i.e., at
equidistance between 45◦ and 135◦ (5 kHz tone: 84.6◦ ± 5.0,
5 kHz tone: 89.0◦ ± 4.3; Figure 4C). To determine how
sounds modified the representation of the visual stimuli in
V1, we compared the accuracy of the representation of the
visual stimulus in the unimodal and audiovisual conditions by
computing for each SNN the difference between the precision
index (see Figure 2F) obtained with the audiovisual responses
and the precision index obtained with the unimodal responses.
We then plotted the distribution of those differences as violin
plots (Figure 4G). We found that the precision index of the
representation of the 45◦ and 135◦ stimuli was improved in
the audiovisual conditions compared to the unimodal context
(Figure 4G; difference between 45◦ + 5 kHz and 45◦ unimodal;
5.4%; 45◦ + 10 kHz and 45◦ unimodal; 6.1%; 135◦ + 5 kHz
and 135◦ unimodal; 7.6%; 135◦ + 10 kHz and 135◦ unimodal;
9.4%; p < 0.0001 for all audiovisual combinations; random
permutation test). We also compared the proportion of SNN
outputs that changed direction (e.g., moving from a 225◦ output
to 45◦) when the visual stimulus was presented with one of the
two sounds. We found that the representation of the stimulus

direction was more accurate when the stimulus was presented
with a tone (Figure 4H; random permutation; p = 0.02, and
p < 0.0001, respectively for 45◦ and 135◦combined with either
tone). This improvement of the representation of the 45◦ and
135◦ visual stimuli was mainly due to the improvement of the
SNNs that performed the worst, as illustrated by the quiver
plots indicating how the SNNs outputs were modified by sound
as a function of the output of the SNN for the unimodal
stimulus (Figures 4I,J, the base of the arrow corresponds to
the unimodal stimulus while the arrowhead corresponds to the
audiovisual stimulus). Altogether, those results replicated our
previous findings that orientation is better represented in the V1
of naïve mice when sounds are presented simultaneously with the
oriented visual stimulus (McClure and Polack, 2019).

Sound Modulation of Orientation
Representation in Mice Performing an
Audiovisual Task
We then tested the hypothesis that the modulation of the
representation of the orientation of visual stimuli by sounds
depended on the relative importance of the auditory and visual
stimuli for the completion of the task. To test this hypothesis,
we used a new database in which mice were performing an
audiovisual discrimination task using the same stimuli as the
one presented to the naïve mice. Water-restricted mice were
placed on the same apparatus as the naïve mice, but this time a
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FIGURE 2 | Analysis of orientation representation in V1 using shallow neural networks. (A) Schematic representation of the distribution of the preferred orientations
of V1 neurons. Each dot represents a neuron. The hue represents the preferred orientation of the neuron, and the hue intensity represents the amplitude of the
neuronal response to the presentation of its preferred orientation. (B) Schematic representation of the response of a SNN trained to discriminate the V1 population
response to the presentation of a 30◦ drifting grating (top panel) and to the presentation of a 60◦ drifting grating (middle panel). When the SNN is provided with the
response of its input cortical neuron population for the presentation of a 45◦ drifting grating (bottom panel), its output should indicate an equal probability that the
stimulus belongs to the ‘30◦’ and ‘60◦’ categories. (C) Schematic representation of the SNN training. (D) Schematic representation of the SNN testing with a 45◦

stimulus that does not belong to the training categories. (E) Average output across 100 trials of the presentation of a 45◦ drifting grating of a randomly selected
trained SNN. The dot indicates the orientation and length of the circular mean vector computed from the mean distribution of the SNN output. (F) Precision index
defined as the length of the vector resulting from the projection of the circular mean vector onto the axis of the visual stimulus orientation.

lickometer was placed in front of their mouths (Figure 5A). Mice
were successfully trained at performing the unimodal visual and
the unimodal auditory Go/NoGo task (Figure 5B, the training
order was randomly assigned). For those two tasks, mice were
presented with a Go cue (for the visual task a 45◦ drifting grating;

for the auditory task a 10 kHz tone) or a NoGo cue (visual task:
135◦; auditory task: 5 kHz tone). The stimulus was presented
for 3 s. Mice had to lick to obtain a reward when the Go signal
was presented, and to withhold licking during the NoGo signal.
The response window corresponded to the third second of the
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FIGURE 3 | SNN connection weights as a function of the preferred orientation, orientation selectivity and direction selectivity of the input neurons. (A) Activity of the
neurons labeled in Figure 1D during an 18-trial segment of the tuning block. (B) Tuning curves of the neurons 2 to 5 shown in panel (A). Radial axis: area under the
curve of the neuronal response. (C) Tuning curve of the cell 1 shown in panel (A). Top: superimposition of the fractional fluorescence of the neuron for all the trials of
the different stimuli of the tuning block. In red is the average of the fractional fluorescence across trials. Bottom: tuning curve (orange line) fitted to the data points
(dots). Red crosses indicate the median value across trials. Inset: same tuning curve presented as a polar plot. (D) Connection weights (see color scale) of each
input cortical neuron for the 12 SNN outputs (x-axis). The neurons were ranked by their preferred orientation (y-axis). Connection weights were normalized using a
z-score normalization method. (E) Distribution of the preferred orientations in the input cortical neurons’ population. Presentation matching the presentation shown in
panel (D). (F) Distribution of the input neurons’ connection weights as a function of the V1 neurons’ orientation selectivity indexes. Dotted lines: exponential fit.
(G) Distribution of the input neurons’ connection weights as a function of the V1 neurons’ orientation selectivity indexes. (H) Distribution of the orientation selectivity
index in the recorded neuronal population. (I) Distribution of the direction selectivity index in the recorded neuronal population.

stimulus (Figure 5C). Once trained to the first unimodal task,
mice were trained to the other unimodal task. Then, when the
expert level (D′ > 1.7) at those two unimodal tasks was reached,
mice were habituated to the audiovisual context (Figure 5C).

Each session of the audiovisual task started with a unimodal
block (either visual or auditory) followed by an audiovisual block
during which the modality of the preceding unimodal block was
predicting the reward (Figure 5D). This first audiovisual block
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was followed by a unimodal block using the other modality
(either auditory or visual, respectively) then a second audiovisual
block during which the modality of the second unimodal block
was used to dispense the reward. To perform perfectly at the task,
mice would have to perform a modality-specific attention task
(attend visual for the first two blocks then auditory for the last two
blocks in the example provided in Figure 5D). Our analysis of
the mouse behavior showed that mice used an alternate strategy
(Figure 5E). Indeed, they licked whenever one of the Go cues
(auditory or visual) was presented, regardless of the identity of
the rewarded modality for the current block (auditory rewarded
block lick rate (median ± m.a.d.): Gov-NoGoa: 71 ± 12%;
NoGov-Goa: 92 ± 5%; visual rewarded block lick rate: Gov-
NoGoa: 94 ± 5%; NoGov-Goa: 68 ± 20%). Therefore, we sorted
the data by presented stimuli, pooling together audiovisual blocks
where different modalities were rewarded. In the unimodal
condition, mice licked systematically whenever the Go signal
was presented (unimodal auditory hit rate: 92%, n = 10 mice,
Wilcoxon test: p < 0.0001; unimodal visual hit rate: 96%, n = 10
mice; Wilcoxon test: p < 0.0001), and avoided licking in the
presence of the NoGo signal (unimodal auditory False Alarm
(FA) rate: 29%, n = 10 mice, Wilcoxon test: p < 0.0001; unimodal
visual FA rate: 32%, n = 10 mice, Wilcoxon test: p = 0.0004).
In the audiovisual blocks, our analysis of the mouse behavior
showed that mice used an alternative strategy. The performance
of the mice at refraining from licking was improved when the
auditory and visual NoGo cues were presented simultaneously,
compared to the unimodal NoGo conditions (audiovisual NoGo
FA rate: 19%, n = 10 mice, audiovisual NoGo vs. unimodal
auditory NoGo: Wilcoxon test p = 0.0100; audiovisual NoGo
vs. unimodal visual NoGo: Wilcoxon test p = 0.0009). We did
not find an improvement in behavioral performance when the
two Go signals were presented together, compared to the two
unimodal conditions (hit rate 98%, n = 10 mice; audiovisual
Go vs. unimodal auditory Go: Wilcoxon test p = 0.8109;
audiovisual Go vs. unimodal visual Go: Wilcoxon test p = 0.2415),
likely because mice already performed almost perfectly in the
unimodal contexts. When the visual and auditory-visual cues
were in conflict, mice clearly chose to lick (Govisual/NoGoauditory:
hit rate = 79%, n = 10 mice; Wilcoxon test: p < 0.0001;
NoGoauditory/Govisual: hit rate = 82%, n = 10 mice; Wilcoxon
test: p < 0.0001). Hence, when the signal was conflicting (e.g.,
Go visual paired with NoGo auditory), mice licked by default
(Figure 5E). The apparent strategy of the animals was to seek the
Go cue regardless of the modality, ignoring the current reward
contingencies. Instead of the intended modality-specific attention
Go/NoGo task, they engaged with the task as a cross-modal Go
detection task (Figure 5F).

Using the SNN approach, we compared the representation of
the Go and NoGo visual cues in the unimodal and audiovisual
contexts (Figures 6A,B). The orientation of the SNNs output
vectors were similar for the unimodal and audiovisual blocks
(circular mean ± confidence interval; For 45◦: unimodal
visual: 61.7◦ ± 4.3, visual + 5 kHz tone: 58.7◦ ± 2.7,
visual + 10 kHz tone: 57.8◦ ± 2.8; Figure 6A; For 135◦:
unimodal visual: 130.5◦ ± 2.3, visual+ 5 kHz tone: 128.7◦ ± 2.9,
visual + 10 kHz tone: 133.1◦ ± 3.1; Figure 6B). The precision

of the representation of the visual Go signal (see Figure 2F)
was slightly but significantly improved by sound (Figure 6C;
difference between 45◦ + 5 kHz and 45◦ unimodal; 2.9%,
p = 0.003; 45◦ + 10 kHz and 45◦ unimodal; 3.2%; p = 0.002,
random permutation test). On the contrary, the representation of
the NoGo signal was significantly less precise in the audiovisual
context (Figure 6C, 135◦ + 5 kHz and 135◦ unimodal; −19.8%,
p < 0.0001; 135◦ + 10 kHz and 135◦ unimodal; −17.1%;
p < 0.0001; random permutation test). This opposite modulation
of the Go and NoGo orientation representation was associated
with a comparable change of the representation of the direction
of the drifting grating with a significant improvement of the
representation of the direction of the Go drifting grating in the
audiovisual context, and a deterioration of the representation
of the direction of the NoGo drifting grating with sound
(Figure 6D). The differential modulation of the Go and NoGo
cue representation by sound was particularly salient in quiver
plots as most of the improvement of the Go cue representation
was carried by SNNs having a poor accuracy in the unimodal
context (Figure 6E), while most of the modulation for the
NoGo visual cue representation was due to highly accurate SNNs
that saw their performance decrease in the audiovisual context
(Figure 6F). Altogether our results suggest that sounds can
have a bidirectional impact on the orientation representation
accuracy in V1, as the modulation interacted with the way the
animals engaged in the task. For the sought-after Go visual
stimulus, sound potentiated the orientation representation, while
it degraded the representation of the NoGo visual stimulus that
the animals tended to ignore.

DISCUSSION

In this study, our goal was to test the SNN approach as a tool to
analyze the representation of the orientation of drifting gratings
by the V1 neuronal population. As an example, and to provide a
comparison with a more traditional analysis approach, we used
this method on a previously published dataset investigating the
modulation by sounds of orientation representation (McClure
and Polack, 2019). We showed that: (1) SNNs with a unique
hidden layer of 10 computational neurons can be trained to
categorize the 12 orientations of the tuning block. (2) For each
output node (corresponding to the different orientations of the
tuning block), SNNs assign to each input node a connection
weight that corresponds to the tuning of the input cortical
neuron for that orientation. (3) The circular mean of the SNN
output can be used to estimate the orientation of drifting
gratings even when the SNN was not trained to categorize
that orientation. (4) Using this approach, we confirmed that
orientation representation is improved in naïve mice when a
sound is presented simultaneously with the visual stimulus. (5)
Finally, we extended the approach to a new dataset and showed
that in mice performing a cross-modal Go detection task the
sound-induced modulation of the V1 orientation representation
depends on the importance of the visual stimulus for the
behavior. Indeed, sounds improved the representation of visual
stimuli that acquired a high behavioral importance for the
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FIGURE 4 | Sound modulation of the V1 population evoked response in naïve mice. (A) Output of 1,000 SNNs made of 250 randomly selected V1 neurons to the
presentation of a 45◦ drifting grating in the unimodal (blue) and audiovisual (5 kHz tone: red; 10 kHz: green) contexts. The orange arrow indicates the orientation of
the presented stimulus. (B) Same representation as in panel (A) for the presentation of the 135◦ drifting grating. (C) Same representation as in panel (A) for the
presentation of unimodal auditory stimuli (5 kHz tone, dark red; 10 kHz, dark green). (D) Distribution of the orientations indicated by the output circular mean of the
1,000 SNNs shown in panels (A,B) when the input is the neuronal activity evoked by the unimodal 45◦ (blue) and unimodal 135◦ (red) drifting grating. (E) Same
representation as in panel (D) when the visual stimulus is paired with the 5 kHz tone. (F) Same representation as in panel (D) when the visual stimulus is paired with
the 10 kHz tone. (G) Modulation by the 5 kHz (red background) and 10 kHz (green background) sounds of the precision indexes of the 1,000 SNN shown in panels
(A,B). The black bar indicates the mean of the distribution. ∗∗∗ Random permutation test (p < 0.0001). (H) Comparison of the percent of SNN outputs shown in

(Continued)
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FIGURE 4 | panels (A,B) changing direction when the visual stimulus was presented with one of the two sounds in panels (B,C) with the probability distribution of
the same measure performed 10,000 times with shuffled data (from left to right: p = 0.02, p = 0.02, p < 0.0001, p < 0.0001). (I) Quiver plot of topographically
clustered modulation vectors illustrating how SNNs with similar outputs for the presentation of the 45◦ drifting grating are modulated by the 5 kHz (red) and 10 kHz
(green) sounds. (J) Same representation as in (I) for the presentation of the 135◦ drifting grating.

FIGURE 5 | Recording sessions in trained mice. (A) Schematic representation of the recording setup. (B) Potential behavioral outcomes for a trial. (C) Trial time
course. Inter Trial interval (I.T.I) after Hit and CR: 3 s; I.T.I after Miss and FA: 12.5 s. (D) Stimuli shown during the unimodal, audiovisual, and tuning blocks in a session
starting with visual reward. Water drops indicate stimuli that are rewarded for that block. (E) Mouse licking probability for the different unimodal and audiovisual
stimuli. (F) Activity of neurons during the presentation of the visual stimuli of the audiovisual block (auditory reward). The neuronal activity was recorded
simultaneously with the licking activity (top trace), the locomotion of the animal as well as the pupil size (bottom traces).

animals (the Go signal) while degrading the representation of the
other visual stimuli (the NoGo signal).

This study is, to our knowledge, the first study using SNNs
to evaluate the representation by the V1 neuronal population
of the orientation of visual stimuli. The use of SNNs to analyze
the structure of neuronal activity of the visual cortex brings
convolutional networks back to their roots, as its original
structure was inspired by the connectivity of the vertebrate visual
system (Fukushima, 1980). Recently, convolutional networks
started to be used to model sensory processing in V1 and were
found to be more effective than other traditional methods (Zhang
et al., 2019). In our study, the SNNs received the input of a subset
of V1 L2/3 neurons and were trained to categorize their activity
patterns evoked by the stimuli of the tuning block. Their high
accuracy for classifying the trained input patterns quickly led us
to abandon the idea of training SNNs to discriminate between
the 45◦ and 135◦ visual stimuli of the unimodal block. Indeed,
this approach leaves very little room for improvement as the
classification of the trained stimuli is highly efficient. Moreover,

training the SNN to classify the unimodal block stimuli would
not be addressing the question of orientation representation, but
estimate the capability of the SNN to use the neuronal activity
to discriminate between the two stimuli; an approach similar to
that of studies using linear discriminant analysis (Stringer et al.,
2021). Thus, we devised the alternate strategy of using the output
of SNNs trained to categorize the V1 neuronal activity evoked
by the 12 orientations of the tuning block, allowing us to assess
how the orientations of the unimodal and audiovisual stimuli
were represented in V1. Indeed, as the output layer of the SNNs
uses a softmax function, SNN outputs indicate the probability
that the presented visual stimulus belongs to the different trained
stimulus orientation categories. By linearizing the categorical
outputs in the orientation space using the circular mean, we were
able not only to estimate the orientation of the visual stimulus,
but also the specificity of this neuronal pattern.

For this report, we chose to train hundreds of SNNs
with different subsets of the cortical neurons present in our
databases. Our goal in using this approach was to assess the
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FIGURE 6 | Sound modulation of the V1 population evoked response in mice performing an audiovisual detection task. (A) Output of 1,000 SNNs made of 250
randomly selected V1 neurons to the presentation of a 45◦ drifting grating (Go cue) in the unimodal (blue) and audiovisual (5 kHz tone: red, NoGo cue; 10 kHz:
green, Go cue) contexts. The orange arrow indicates the orientation of the presented stimulus. (B) Same representation as in panel (A) for the presentation of the
135◦ drifting grating (NoGo cue). (C) Modulation by the 5 kHz (red background, NoGo cue) and 10 kHz (green background, Go cue) sounds of the precision indexes
of the 1,000 SNNs shown in panels (A,B). The black bar indicates the mean of the distribution. Random permutation test (∗∗p = 0.002; ∗∗∗p < 0.0001).
(D) Comparison of the proportion of SNN outputs shown in panels (A,B) changing direction when the visual stimulus was presented with one of the two sounds in
panels (B,C) together with the probability distribution of the same measure performed 10,000 times with shuffled data (for all panels: p < 0.0001). (E) Quiver plot of
topographically clustered modulation vectors illustrating how SNNs with similar outputs for the presentation of the 45◦ drifting grating (Go cue) are modulated by the
5 kHz (red, NoGo) and 10 kHz (green, Go) sounds. (F) Same representation as in panel (E) for the presentation of the 135◦ drifting grating (NoGo cue).

statistical variability of the orientation representation across the
V1 neuronal population. We found large variations in SNN
performance depending on the subset of neurons used. The
poor performance of some SNNs is likely due to samples with a
small proportion of well-responsive neurons. This would explain
why the presence of sounds is particularly efficient at improving
the performance of SNNs poorly responding in the unimodal
context (as shown in the quiver plot analysis Figures 4I,J).
Indeed, we had already shown that the improved representation
of oriented stimuli in the audiovisual context is due to an increase
in the response of tuned neurons and a decrease in response
of neurons not tuned for the stimulus (McClure and Polack,
2019), limiting the risks of misclassification due to outlying
neuronal activities. The main advantage of the SNN approach
compared to the approach used in our previous study (McClure
and Polack, 2019), is that all the neurons are now included in
the analysis. During training, every computational input neuron
is given a connection weight proportional to the importance of

this neuron in the assessment of the classifier output (Garson,
1991; Goh, 1995). The possibility of determining the connection
weights using the Connection Weight Approach (Olden and
Jackson, 2002; Olden et al., 2004) is a great strength of SNNs.
Hence, we show that for each categorical output (i.e., the 12
orientations of the tuning block) the largest weights are attributed
to neurons having similar preferred orientations. Moreover, we
show that neurons with the largest weight are neurons with
the best orientation selectivity and/or best direction selectivity.
Thanks to the Connection Weight Approach, it will be possible
in future studies to determine which neuronal population drives
the sound modulation of orientation representation, and whether
it happens through mechanisms such as potentiation of tuned
neurons, suppression of untuned neurons, or improved trial to
trial reliability of the neurons.

We used the SNN approach on two databases that were
generated to investigate how sound modulates the visually evoked
neuronal activities in V1. Indeed, in the past decade, an increasing
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number of studies have shown that the presence of sounds
modifies the response of neurons to the presentation of visual
stimuli in the mouse V1 (Iurilli et al., 2012; Ibrahim et al., 2016;
Meijer et al., 2017; Deneux et al., 2019; Knöpfel et al., 2019;
McClure and Polack, 2019; Garner and Keller, 2021). Those
studies are characterized by a large array of recording techniques
(electrophysiology and functional imaging), different sounds and
visual stimuli, and a great variety of analysis approaches. The
database of naïve mice used in this study was generated for
our previous report in which we showed that the presence
of pure tones improves the representation of the orientation
and direction of the visual stimulus in V1 L2/3 by favoring
the recruitment of a neuronal population better tuned to the
visual stimulus orientation and direction than the population
responding to the unimodal visual stimulus (McClure and
Polack, 2019). Here, we confirmed using the SNN approach that
the presence of pure tones improves the representation of the
orientation of the visual stimuli. This new approach allows us
to assess orientation representation by the whole population and
not using a subset of selected “active” or “responsive” neurons
(Ibrahim et al., 2016; Meijer et al., 2017; Deneux et al., 2019;
McClure and Polack, 2019). We also confirmed that sound
modulation is stronger in V1 neurons that poorly respond to the
visual stimulus in the unimodal context, or that are biased toward
the opposite direction (Figures 4I,J; McClure and Polack, 2019).
Note that we had already shown that arousal and locomotion
could not account for those results (McClure and Polack, 2019),
and we therefore did not consider those parameters further in
this study. Moreover, several studies have recently demonstrated
that the modulation of the V1 neuronal activity by behavioral
parameters such as locomotion and arousal are orthogonal to
orientation encoding (Hajnal et al., 2021; Stringer et al., 2019).

We also present novel findings suggesting that sound
modulation itself depends on the audiovisual context. Indeed,
we show in mice performing a cross-modal Go detection task
that the presence of sounds improves the representation of the
Go visual cue orientation while degrading the representation
of the NoGo visual cue orientation. This degradation of the
NoGo visual cue orientation representation is mostly carried
by the degradation of the best performing SNNs. This suggests
that this effect is supported by a decrease in the responsiveness
of highly tuned neurons. This result extends previous findings

showing that incongruent audiovisual stimulation (a looming
visual stimulus associated to a frequency-modulated tone) had
a suppressive effect on V1 neuronal responses while congruent
audiovisual stimuli did not significantly change the neuronal
responses in V1 [(Meijer et al., 2017) but see also (Garner
and Keller, 2021)]. In our behavioral paradigm, we did not
find an effect of behavioral congruence as both NoGo and
Go sounds similarly suppressed the NoGo visual cue while
improving the Go visual cue orientation representation. Future
experiments will be necessary to determine the cellular and
network mechanisms underpinning the differential modulation
of V1 visual processing by sound.
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