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Editorial on the Research Topic

From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and

Noise

It is a fundamental challenge to understand how brain function is related to its functional and
structural organization, i.e., what shapes the neuronal activity patterns observed across scales that
define cognitive and behavioral processes, as well as their breakdown in mental health disorders
(Park and Friston, 2013). Few theories integrate the various dimensions in this ambitious endeavor
[such as Free Energy Principle (Friston et al., 2006) and Structured Flows on Manifolds (Jirsa and
Sheheitli, 2022)], but all acknowledge the multi-scale organization of brain function. Investigation
of the complex structure-function relationship can be performed at the macro- and meso-scopic
levels (Messé, 2020; Suárez et al., 2020), where dynamical modeling at large scales constitutes one
of the promising methodologies (Ghosh et al., 2008; Deco et al., 2009; Honey et al., 2009). At the
microscopic level, the dynamics of neuronal networks strongly depends on intrinsic properties
of the neuro-anatomical connectome and the functional relationships among neurons, and this
goes beyond the connectivity matrix. In particular, the adaptation of the strengths of the synaptic
connections through synaptic plasticity (Markram et al., 1997; Abbott and Nelson, 2000; Dan and
Poo, 2004), the evolution of the functional connectivity in time, the inevitable time delays resulting
from both neurophysiological time constants and finite propagation velocity, noise, and inherent
inhomogeneities play key roles in the emergent behavior of neuronal systems across spatial and
temporal scales (Deco et al., 2009). A detailed characterization of these effects on the collective
dynamics of neuronal networks is an important contemporary problem, which may thus provide
the means for studying the link between functional and structural connectivity and brain function
in health and disease (Cabral et al., 2017; Jirsa et al., 2017; McIntosh and Jirsa, 2019; Popovych et al.,
2019).
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This Research Topic focuses on the structure-function
relationship in neuronal networks at different temporal and
spatial scales. The latter range from fast-spiking and bursting
dynamics of individual neurons organized in recurrent networks
(Berner and Yanchuk; Protachevicz et al.; Rongala et al.; Sawicki
and Schöll; Sánchez-Claros at al.), to neuronal populations’
activity examined in terms of neural mass or neural field models
(Al-Darabsah et al.; Bi et al.; Hutt et al.; Laing et al.; Tavakoli and
Longtin) and to slow and ultra-slow fluctuations of neuronal and
metabolic activity at the whole-brain scale (Coronel-Oliveros et
al.; Gerster et al.).

Special attention is paid to the modeling of neuronal
plasticity (Berner and Yanchuk), to the impact of time delays
in coupling and intrinsic activity (Protachevicz et al.; Rongala
et al., Sánchez-Claros at al.; Tavakoli and Longtin), and to
the effects of noise or stochastic perturbations (Rongala et al.;
Sánchez-Claros at al.; Tavakoli and Longtin), as well as to
heterogeneity of individual and collective neuronal dynamics
(Berner and Yanchuk; Bi et al.; Coronel-Oliveros at al.; Gerster
et al.; Laing et al.; Tavakoli and Longtin; Zhou et al.).

A brief description of the contributions is reported below.
The experimental work of Zhou et al. investigates the

properties of the local field potential (LFP) in the hippocampus
and its spectra as energy is quenched from the system. The
authors examine rat LFPs recorded from the hippocampus
and entorhinal cortex during barbiturate overdose euthanasia.
The data obtained in this study support the energy cascade
theory where the energy flows from large cortical populations to
smaller loops.

All other contributions report numerical or theoretical studies
based on mean-field or network descriptions of neural systems.
In particular, the following papers deal with neural mass and
field models.

Laing et al. present a powerful method for studying the
influence of a network structure on its dynamics by employing
the reduction technique by Ott and Antonsen (2008). In
particular, the authors investigate large heterogeneous networks
of Winfree oscillators with various correlations in (meta-)
parameters, such as degree or parameter assortativity.

Gerster et al. exploit the predictive power of personalized
brain network models. The authors build multi-population
neural mass models for a cohort of 20 healthy subjects and 15
epileptic patients, implementing next generation neural masses
(Montbrió et al., 2015; Taher et al., 2020) for each brain region.
As paradigms for testing the spatio-temporal organization,
the authors systematically simulate the individual seizure-like
propagation patterns.

Al-Darabsah et al. investigate the impacts of delays by
modeling large interacting neural populations as neural-field
systems. Using a master stability function analysis and numerical
simulations, they find that delays can (1) stabilize brain
dynamics by temporarily preventing the onset to oscillatory
and pathologically synchronized dynamics and (2) enhance or
weaken synchronization depending on the underlying eigenvalue
spectrum of the connectivity matrix.

Bi et al. show that the E-I balance can cause various
regimes observable in the brain. The authors classify the

possible dynamical behaviors emerging in balanced E-I networks
with structural heterogeneity. Analytic results show that both
supra- and sub-threshold balanced asynchronous regimes are
observable in the limit of large in-degrees. The coherent rhythms
observed in the system can range from periodic and quasi-
periodic collective oscillations to coherent chaos. These rhythms
are characterized by regular or irregular temporal fluctuations
joined to spatial coherence, similar to coherent fluctuations
observed in the cortex over multiple spatial scales.

Hutt et al. derive a closed-form mean-field representation for
an Erdös-Rényi network with two populations of interconnected
neurons driven by additive noise. Considering Gaussian and
Poissonian stimulation to excitatory neurons, they observe
coherence resonance and show that partial stochastic stimulation
promotes coherence resonance compared to global stimulation.

Coronel-Oliveros et al. consider a whole-brain model based
on the Jasen and Rit neural mass Jansen and Rit (1995) and
a human structural connectivity matrix, to find out which
structural features of the human connectome network define the
optimal neuromodulatory effects. They simulate the effect of the
noradrenergic system as changes in filter gain, and studied its
effects related to the global-, local-, and meso-scale features of
the connectome.

Tavakoli and Longtin explore conditions under which
additional delays in high-dimensional chaotic neural networks
lead to a reduction in dynamic complexity, a phenomenon
recently described as multi-delay complexity collapse. In
particular, they observe that a global delayed inhibitory feedback
can induce such a collapse.

The following contributions deal with recurrent networks
based on spiking neurons or phase oscillators.

Protachevicz et al. study the effect of autapses by examining
a random network with adaptive exponential integrate-
and-fire neurons. They found that autapses can influence
synchronous behavior in neural networks with excitatory
synapses by either increasing or decreasing synchrony,
depending on the parameters. However, when only inhibitory
synapses are considered, synchronization does not suffer
significant changes.

Rongala et al. explore noise and stability issues arising in
recurrent neuronal networks. Their findings show that neuronal
dynamic leak protects recurrent neuronal circuits from self-
induction of spurious high-frequency signals. The authors test
a range of models, from a linear non-spiking summation
model to fully connected recurrent networks of excitatory
and inhibitory neurons with randomly distributed weights and
random sensory inputs.

Sawicki and Schöll discuss a minimal model that explains the
modalities of the influence of music on the human brain. They
report synchronization patterns induced by the sound frequency
in a network of FitzHugh-Nagumo oscillators with empirically
measured structural connectivity. The sound stimulus is modeled
by an input to brain areas related to the auditory cortex. It is
shown that the synchrony can be increased by properly adjusting
the frequency and amplitude of the sound.

Sánchez-Claros et al. study the information flows in a
canonical motif that mimics a cortico-thalamo-cortical circuit
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with three neuronal populations (V-motif). Through numerical
simulations, the authors determine how the amount of
information transferred between the populations depends on the
connection delays and frequency detuning. The results highlight
the role of the transthalamic V-motif in binding spatially
separated cortical computations and suggest an important
regulatory role of the direct cortico-cortical connection.

Berner and Yanchuk introduce a methodology for studying
synchronization in adaptive networks with heterogeneous
adaptation rules. The authors consider a network of phase
oscillators with distance-dependent adaptations. For such
system, the master stability function approach (Berner et al.,
2021) is extended to networks with heterogeneous adaptation.
Utilizing the proposed methodology, they explain mechanisms
leading to synchronization or desynchronization by enhanced
long-range connections.

The presented collection of papers in this Research Topic
is united by the common theme of how the structure-function
relationship contributes to our better understanding of this

complex issue and can inspire further investigations in this
direction.
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