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Stroke is the second cause of disability and death worldwide, highly impacting

patient’s quality of life. Several changes in brain architecture and function

led by stroke can be disclosed by neurophysiological techniques. Specifically,

electroencephalogram (EEG) can disclose brain oscillatory rhythms, which

can be considered as a possible outcome measure for stroke recovery,

and potentially shaped by neuromodulation techniques. We performed a

review of randomized controlled trials on the role of brain oscillations

in patients with post-stroke searching the following databases: Pubmed,

Scopus, and the Web of Science, from 2012 to 2022. Thirteen studies

involving 346 patients in total were included. Patients in the control groups

received various treatments (sham or different stimulation modalities) in

different post-stroke phases. This review describes the state of the art

in the existing randomized controlled trials evaluating post-stroke motor

function recovery after conventional rehabilitation treatment associated with

neuromodulation techniques. Moreover, the role of brain pattern rhythms to

modulate cortical excitability has been analyzed. To date, neuromodulation

approaches could be considered a valid tool to improve stroke rehabilitation

outcomes, despite more high-quality, and homogeneous randomized clinical

trials are needed to determine to which extent motor functional impairment

after stroke can be improved by neuromodulation approaches and which one

could provide better functional outcomes. However, the high reproducibility

of brain oscillatory rhythms could be considered a promising predictive

outcome measure applicable to evaluate patients with stroke recovery

after rehabilitation.
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Introduction

A stroke is defined as a sudden onset of signs and
symptoms related to focal or global cerebral deficits of
brain function, lasting more than 24 h, not attributable
to any apparent cause other than cerebral vasculopathy
(Sacco et al., 2013). Six months post-stroke, nearly 50% of
survivors have some residual motor deficits (Benjamin et al.,
2017). Advances in acute stroke therapeutic management
(intravenous thrombolysis, mechanical thrombectomy) have
improved the prevention possibilities of long-term disability
(Tong et al., 2012). Being the second cause of disability
and death worldwide (GBD 2016 Stroke Collaborators, 2019),
stroke has high relevance to a patient’s quality of life and
significant impact on health care costs. Functional impairment,
resulting in poor performance in activities of daily living, is
common (Benjamin et al., 2017). Environmental conditions are
required for post-stroke motor recovery (Power et al., 2011;
Wenger et al., 2017). Internal processes combinations such
as functional undamaged neural structures recovery and/or
brain network remapping could promote impaired functions
spontaneous restoration (Gazzaniga, 2005). The phenomenon
behind these recovery processes is lifetime—continuous motor
system neuroplasticity (Power et al., 2011; Remsik et al., 2016).
Traditional rehabilitation techniques enhance motor function
recovery (Kollen et al., 2006; Fleet et al., 2014; Laver et al.,
2015) leveraging this motor learning circuitry, thus improving
patient outcomes (Thakor, 2013). The relationship between
brain activity and movements is important for motor learning,
thus integrating motor system modulation and rehabilitation
techniques in treatment settings could aid stroke recovery
(Pfurtscheller et al., 2005; Felton et al., 2007; Schalk et al.,
2008). Several neurological disorders (i.e., stroke) are associated
with altered electroencephalogram (EEG) brain rhythms,
which sustain motor, cognitive, and perceptive functions
(Muralidharan et al., 2011; Ortner et al., 2012). EEG signal
oscillations detectable in sensorimotor areas, especially in the
mu (8–13 Hz) and beta (13–30 Hz) bands, present characteristic
modulation during motor tasks. Interestingly, alpha and beta
rhythms modulations caused by sensory stimulation, a motor
act or motor imagery, are correlated with a decrease or
increase in the underlying neuronal population’s synchrony
(McFarland et al., 2000; Pfurtscheller et al., 2006; Nicolas-Alonso
and Gomez-Gil, 2012). Modulations of sensorimotor rhythms
resulting from sensory stimulation, motor act, or its imagination
can be of two types, namely, event-related desynchronization
(ERD) and event-related synchronization (ERS) of mu and beta
rhythms (Jeannerod, 1995; Pfurtscheller and Neuper, 2001).
Specifically, ERDs consist of a decrease in the amplitude of
rhythms, while ERS is an increase in the amplitude of rhythms
(Felton et al., 2007). Alpha (mu) and beta oscillations can be
used as control rhythms for a “brain–computer interface” (BCI)
system (Schalk et al., 2004). BCI systems can transform brain

activity into control signals for external devices (Schalk et al.,
2004; McFarland and Wolpaw, 2011; Lee et al., 2020), and can be
used for tasks that require users to activate or deactivate specific
brain regions (Rathee et al., 2019). Therefore, non-invasive BCI
systems can facilitate recovery in patients with chronic post-
stroke by linking brain activity with distal motor effectors in
the peripheral nervous system (Song et al., 2014). Feedback-
regulated motor imagination could be used to improve
functional recovery, enhancing antagonistic ERD/ERS patterns,
and, consequently, supporting stroke-affected hemisphere
activation and contralateral unaffected hemisphere inhibition
(Pfurtscheller and Neuper, 2006). Therefore, in the BCI system,
brain activity can be transformed into control signals for
external devices including “functional electrical stimulation”
(FES) (McFarland and Wolpaw, 2011). Thus, non-invasive EEG-
BCI-FES systems may facilitate recovery in patients with chronic
post-stroke by linking brain activity with distal motor peripheral
nervous system effectors and may be used as biomarkers to
predict rehabilitation outcomes (Song et al., 2014, 2015).

To modulate and explore brain function, non-invasive brain
stimulation (NIBS) could be applied. To date, there are different
NIBS protocols with therapeutic applications, reflecting synaptic
mechanisms of long-term potentiation (LTP) or long-term
depression (LTD), even in stroke rehabilitation (Terranova et al.,
2019). The NIBS after effects are short lasting (∼30–120 min) in
humans (Abraham and Williams, 2003), but other mechanisms
are also involved [i.e., post-tetanic potentiation (PSP) and short-
term potentiation (STP)] (Ugawa, 2012). The most applied
NIBS are transcranial magnetic stimulation (TMS), transcranial
direct current stimulation (tDCS), transcranial alternating
current stimulation (tACS), and transcranial random noise
stimulation (tRNS) (Paulus, 2011; Terranova et al., 2019). TMS
motor-evoked potentials are obtained from the contralateral
muscles of the stimulated hemisphere (Barker et al., 1985).
TMS can modulate cortical excitability in different ways: (i)
Inducing electrical field causing local effects immediately under
the coil and/or remote effects (i.e., excitatory and inhibitory
effects) (Rothwell et al., 1999) and (ii) applying a transient
weak current to the brain through a pair of saline-sponged
electrodes (Nitsche et al., 2008) and changing the polarity of the
current. Repetitive transcranial magnetic stimulation (rTMS)
produces long-term changes, reducing cortical excitability
at low frequency (≤ 1 Hz), and boosting it up at high
frequency (≥ 5 Hz) (Maeda et al., 2000; Siebner and Rothwell,
2003; Quartarone et al., 2005). However, it has been shown
that continuous 5 Hz rTMS decreases instead of increasing
corticospinal excitability (Rothkegel et al., 2010). When rTMS
is administered in a complex burst pattern, i.e., theta burst
stimulation, it produces more reliable effects than conventional
rTMS (Huang et al., 2005; Hamada et al., 2008; Suppa et al.,
2016). Another rTMS approach, namely, theta burst stimulation
(TBS) (intermittent or continuous), uses 5 Hz short bursts at a
repetitive high frequency mimicking the brain’s natural firing
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patterns (Oberman et al., 2011; Hoy et al., 2016). Compared
to rTMS, intermittent TBS (iTBS) may be applied to induce
greater and longer-lasting motor cortical effects on cortical
excitability (Huang et al., 2005; Di Lazzaro et al., 2008). It is
applied using biphasic stimulus pulses that induce an initial
posterior-anterior current through M1 (Huang et al., 2005).
The use of short 5-Hz high-frequency repetitive bursts that
mimic the brain’s natural firing patterns would result in greater
neuromodulatory potential than the standard approach. Thus,
the effects on the functional brain network of patients with
stroke would be greater and longer lasting in regions remote
from the stimulated site (Oberman et al., 2011; Hoy et al.,
2016; Suppa et al., 2016). Continuous TBS (cTBS) decreases
cortical excitability, while intermittent TBS has a booster-up
effect (Hamada et al., 2008). However, tDCS is mainly applied
in clinical practice, while tACS and tRNS are more used in a
research context (Paulus, 2011). Anodal tDCS modulates the
cortical excitability of depolarizing neurons, whereas cathodal
tDCS reduces the excitability of hyperpolarizing neurons
(Antal et al., 2004). In 1–2 mA tDCS, electrical current is
delivered over the skull through sponge electrodes, changing
neurons firing frequency (Paulus, 2011); anodal stimulation
induces cortical facilitation, whereas cathodal stimulation has
an opposite effect (Paulus, 2011). However, despite TMS and
tDCS having different mechanisms of action (acting TMS
as neurostimulator and tDCS as neuromodulator), they both
induce cortical excitability long-term after effects, which engage
neural plasticity mechanisms (Fregni et al., 2005; Khedr et al.,
2010). Transcranial alternating current stimulation (tACS) is a
variant of TMS at a predetermined frequency (Alekseichuk et al.,
2016). Transcranial random noise stimulation (tRNS) is another
NIBS technique using a low-intensity biphasic randomly
alternating current at a variable frequency (Fertonani et al.,
2011). While researchers are still debating over the functional
meaning of these synchronization and de-synchronization
patterns of rhythmic activity, practical applications based on
the accumulated knowledge are already emerging. On such a
basis, this review aims to evaluate the role of brain oscillatory
activity on motor function recovery in patients with post-stroke
undergoing conventional rehabilitation treatment integrated
with different NIBS.

Search strategy and selection
criteria

A computerized literature search was performed in Pubmed,
Scopus, and the Web of Science from 2012 to 2022, using the
following string: “brain rhythms” and “stroke” and “EEG.” The
screening process and analysis were conducted separately by 3
independent observers.

First, the articles were screened by title and abstract. The
following inclusion criteria for relevant articles were used during

the screening: (1) Randomized controlled trials (RCTs), (2)
English language, (3) published in indexed journals over the
last 10 years (2012–2022), (4) including only adult human
(>18 years), and (5) dealing with brain rhythms and their
analysis and applications in stroke rehabilitation. The exclusion
criteria were non-English articles, reviews, non-randomized
controlled studies, and trials on other nervous system diseases
different from a stroke.

In the second step, the full texts of the selected articles
were screened, with further exclusions according to the
previously described criteria and focusing our attention on
motor functions.

A flowchart is given in Figure 1.
The following data were retrieved: (1) treatment groups,

(2) sample size and patients’ features, (3) time since stroke, (4)
therapeutic protocols, (5) outcome measures, (6) time points of
follow-up evaluations, and (7) summary of clinical results.

Intervention protocols

We analyzed the RCT discussing rehabilitative interventions
on motor impairment after stroke and the applied innovative
NIBS and BCI systems. We grouped the studies considering
the impaired involved limb/site and the applied techniques as
follows:

a) Upper limb involvement applying theta burst stimulation
(TBS) or repetitive transcranial magnetic stimulation
rTMS or tDCS.

Four out of thirteen articles investigated upper limb
functions through transcranial stimulation (Nicolo et al., 2018;
Ding et al., 2021; Dionísio et al., 2021; Kuzu et al., 2021).

Dionísio et al. (2021) compared cTBS vs. placebo
stimulation, finding that contralateral inhibitory stimulation
led to a significant excitatory impact on the cortical oscillatory
beta band patterns of the contralateral affected hemisphere. In
Ding’s (2021) study, the authors found that iTBS modulates
brain network functioning in stroke survivors, normalizing
brain connections, re-gaining the natural oscillation frequency,
and promoting motor function recovery. Kuzu et al. (2021)
showed improvements in upper extremity motor function and
activities of daily living by combining physical therapy and
cTBS or rTMS. However, these treatments showed limited
evidence of improving spasticity (Kuzu et al., 2021). Nicolo et al.
(2018) demonstrated that stimulation treatments combined
with physical therapy did not enhance clinical motor gains in a
heterogeneous sample of patients with sub-acute stroke.

Other studies have shown that tDCS enhanced perilesional
beta-band oscillation coherence compared with cTBS and
the sham groups (Carmichael, 2006; Murphy and Corbett,
2009). Moreover, tDCS produces and modulates the ongoing
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FIGURE 1

Preferred reporting items flowchart resuming the paper’s selection process.

synaptic activity during motor activation determining a weak
polarization of large assemblies of neurons (Carmichael,
2006; Murphy and Corbett, 2009). The modulation of inter-
hemispheric driving and peri-lesional beta-band connectivity
was related to functional recovery across all the patients
(Carmichael, 2006; Murphy and Corbett, 2009). One of the
potential mechanisms explaining these results could lie in the
functional connectivity that increases with adaptive cortical
plasticity induction caused by tDCS (Carmichael, 2006; Murphy
and Corbett, 2009).

b) Upper limb involvement applying different kinds of
stimulation.

Six out of thirteen articles investigated upper limb functions
exploring mirror therapy and BCI (Bae et al., 2012; Ramos-
Murguialday et al., 2013; Remsik et al., 2019; Lee et al., 2020;

Ray et al., 2020; Sebastián-Romagosa et al., 2020). Some authors
have shown that mirror therapy and its effect on mu-rhythm
suppression positively influence brain activity (Bae et al., 2012).
Other authors investigated the action observation training
(AOT) effect associated with EEG-based BCI-controlled FES
system on motor recovery of the upper extremity and cortical
activation in patients with stroke (Remsik et al., 2019; Lee
et al., 2020), showing that the AOT plus BCI-FES group had an
increase in alpha and beta waves concentration, with improved
functional outcome scores (Remsik et al., 2019; Lee et al.,
2020), as previously reported (Prasad et al., 2010; McCrimmon
et al., 2014; Chung et al., 2015). Other authors supported
the importance of BCI devices to improve upper extremity
functions in stroke survivors (Remsik et al., 2019). Intervention
corresponds with greater mu-rhythm de-synchronization in the
ipsilesional hemisphere during the impaired hand attempted
movements (Remsik et al., 2019).
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Different authors explored the efficacy of daily body mass
index (BMI) in stroke survivors (Ramos-Murguialday et al.,
2013; Ray et al., 2020).

Ray et al. (2020) evaluated the relationship between
oscillatory sensorimotor brain activity and motor recovery
in chronic stroke, identifying a correlation between alpha
de-synchronization during the rehabilitative intervention
and clinical improvement. These results showed that inter-
hemispheric balance plays an important role in motor
recovery using BMI associated with physiotherapy, which
exerts an add-on effect on hand motor function recovery
(Ramos-Murguialday et al., 2013).

Other authors investigated the correlation between EEG
parameters, such as the “Brain Symmetry Index” (BSI) and
the laterality coefficient (LC) (Sebastián-Romagosa et al., 2020).
The authors calculated LC values in two frequency bands,
namely, 8–13 Hz (α band, mu frequency rhythm) and 13–
30 Hz (β band), disclosing the most relevant results in the
alpha band (Sebastián-Romagosa et al., 2020). Specifically,
the LC values calculated during M1 tasks with the healthy
hand (LCh) were significant compared to those of the paretic
hand MI tasks (LCp). These results showed that the LCh in
the alpha band presented numerous significant correlations
with functional scales, whereas the correlation between the
LCp and the functional scales is less common (Sebastián-
Romagosa et al., 2020). This could occur because the affected
hemisphere does not present a normal activation pattern,
but the healthy hemisphere maintains the normal patterns of
de-synchronization during the ipsilateral motor movements.
The ERD/ERS patterns observed in the healthy hemisphere
should be more stable than those in the affected brain side
(Sebastián-Romagosa et al., 2020).

c) Lower limb involvement applying iTBS

Ding et al. (2022) first reported that iTBS increase the
natural frequency in the ipsilesional motor cortex and is
useful in upper limb stroke rehabilitation. Unfortunately,
such improvement has not been proven for the lower limbs
(Lin et al., 2019).

d) Upper and lower limbs involvement applying tDCS

Kasashima et al. (2012) demonstrated that, in severe stroke
hemiparesis, anodal tDCS could increase ERD in the mu-band,
inducing long-term after-effects on cortical excitability through
neural plasticity mechanisms (Fregni et al., 2005; Khedr et al.,
2010). Such an effect makes tDCS a possible conditioning tool
for BCI (Kasashima et al., 2012). Specifically, in the affected
hemisphere, mu ERD increased after anodal tDCS during motor
imagery, in both the stroke and healthy participants, possibly
because of a decreased synchrony of the underlying neuronal
population (Kasashima et al., 2012). Therefore, modulating

mu ERD in BCI treatment could increase cortical excitability,
normalizing stroke EEG-ERD values (Kasashima et al., 2012).

e) Upper and lower limbs involvement applying BCI

Tsuchimoto et al. (2019) analyzed a motor image-guided
robotic approach in post-stroke hemiplegia using an EEG-based
neurofeedback system. Specifically, the alpha band reflected the
prominent component of activity in the sensory cortex and the
beta band maintained activity in the motor cortex (Tsuchimoto
et al., 2019). Moreover, the authors found that the integration of
EEG and sensorimotor feedback led to increased co-activation
of the sensory and motor cortices during the neurofeedback
intervention (Tsuchimoto et al., 2019). On such a basis, alpha-
and beta-band EEG may be used as physiological biomarkers of
motor learning in stroke recovery (Tsuchimoto et al., 2019).

Discussion

After a stroke, brain oscillatory changes are likely due to
the activation of inflammatory pathways and increased oxidative
stress (Moskowitz et al., 2010), leading to motor, speech, and
cognitive impairments (Sun et al., 2014; Hatem et al., 2016).
Neuroplasticity and exercise are used to promote recovery in
stroke survivors (Alia et al., 2017; Caglayan et al., 2019; Inoue
et al., 2020). Thus, NIBS may modulate brain rhythms in chronic
stroke. Specifically, brain oscillations are rhythmic patterns,
occurring at different frequencies (i.e., delta 1–3 Hz, theta 3–
7 Hz, alpha 8–12 Hz, beta 13–25 Hz, and gamma 25–100 Hz),
generated by the synchronized interaction of neuronal firing
(Colgin, 2016). Multiple studies found that neural oscillations
after stroke influence recovery outcomes (Rabiller et al., 2015).
Specifically:

a) Just after stroke:
- Alpha oscillations are lower in frequency and more

synchronized (Petrovic et al., 2017).
- Beta oscillatory power is increased in both the hemispheres

(Assenza et al., 2009).
- Gamma oscillations are disrupted

(Buzsáki and Wang, 2012).
b) In chronic stroke:

- Alpha oscillation de-synchronization is associated with
improved motor outcomes (Westlake et al., 2012; Ray et al.,
2020).

- Increased beta coherence between the motor cortex and
other regions in the acute phase is associated to improve
functional outcomes 3 months after stroke (Nicolo et al.,
2018). Higher beta power in the affected hemisphere is
associated to improve motor function, whereas in the
unaffected hemisphere, it correlates with worse clinical
outcomes (Thibaut et al., 2017; Espenhahn et al., 2020).
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TABLE 1 Synopsis of all the RCTs included in the review.

References Study
design

Stroke
phase

Patients
features

Therapeutic protocol Score baseline Follow-up Results Overall
performance

Bae et al. (2012) RCT
(mirror

therapy vs.
sham

therapy)

> 6 Months 20
(10 vs. 10)

Sex:
M: 6 F: 4

vs.
M: 7 F: 3

Age:
55.2± 8.5

vs.
52.6± 11.2

EG: mirror therapy for 30 min each time,
5 times per week, for 4 weeks.

CG: sham mirror therapy

EEG, MFT, MMSE, MAS,
Brunnstrom stage of hand

Prior to and after the
intervention

Mirror therapy had an effect on mu
rhythm suppression, improving brain

activities and positively influencing
motor function recovery. Therefore,
it is considered to be useful as part of
a rehabilitation program for subacute

stroke patients.

Mirror therapy+

Ding et al.
(2021)

Single-blind
RCT (Active
Intermittent
theta burst
stimulation

vs. Sham
iTBS)

> 18 Months 30
(15 vs. 15)

Sex:
M: 12 F: 3

vs.
M: 9 F: 6

Age:
65.1± 11.9

vs.
61.1± 12.1

EG: Intermittent theta burst stimulation
consisted of bursts containing 3 pulses at
50 Hz repeated at 5 Hz was applied over

the M1 in the ipsilesional hemisphere
CG: sham intermittent theta burst

FMA, ARAT Resting-state EEG was
recorded at baseline

and immediately after
iTBS

iTBS modulates brain network
functioning in stroke survivors. Acute

increase in interhemispheric
functional connectivity and global

efficiency after iTBS suggest that iTBS
has the potential to normalize brain

network functioning following
stroke, which can be utilized in stroke

rehabilitation.

iTBS+

Dionísio et al.
(2021)

Single-blind
RCT

(continuous
theta burst
stimulation
(cTBS) vs.

placebo
stimulation)

7± 3 Days 10
(5 vs. 5)

Sex:
M: 4 F: 1

vs.
M: 2 F: 3

Age:
70.20± 8.701

vs.
64.00± 17.564

EG: Both single-pulse and continuous
theta burst were administered for each

hemisphere. The intensity which
generated MEPs ranging from 0.5 to 1 mV

and gave 20 single pulses at 100% of the
rest intensity determined for the

respective hemisphere
CG: performed sham stimulation by
reducing the intensity to zero level
stimulation and using a sham noise

generator.

Wolf motor function test, EEG,
EMG

Before (T0), after
stimulation (T1), and

at 3-months’ follow-up
(T2)

Excitatory response (increase in
event-related desynchronization) in

the sensorimotor cortical areas of the
affected hemisphere, after

stimulation. This contralateral
inhibitory stimulation paradigm

changes neurophysiology, leading to
a significant excitatory

impact on the cortical oscillatory
patterns of the contralateral

hemisphere.

cTBS+

Kasashima et al.
(2012)

RCT
(anodal tDCS

vs. sham
tDCS)

> 6 Months 13
(6 vs. 7)

Sex:
NA

Age:
mean age,

56.8± 9.5 years

EG: anodal tDCS over the motor area of
the affected

hemisphere. The order of the stimulations
was randomized and the interval between
the stimulation was more than 2 days. One

ERD assessment session consisted of 20
trials. One trial consisted of an 8-s period
of relaxation, a 2-s period of ready state,
and a 5-s period of imagery. Before and

after tDCS or sham stimulation, 3 sessions
were conducted with approximately 5 min

of rest between each
session

CG:
sham tDCS

Fugl-Meyer assessment upper
extremity motor score,

Ashworth
scale for finger flexors

Before and after anodal
tDCS

Anodal tDCS can increase mu ERD
in patients with hemiparetic stroke,

indicating that anodal tDCS could be
used as a conditioning tool for BCI in

stroke patients.

Anodal tDCS+

(Continued)
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TABLE 1 (Continued)

References Study
design

Stroke
phase

Patients
features

Therapeutic protocol Score baseline Follow-up Results Overall
performance

Kuzu et al.
(2021)

Double-blind
RCT (rTMS
vs. cTBS vs.
sham cTBS)

> 6 Months 20
(7 vs. 7 vs. 6)

Sex:
M: 4 F: 3 vs.
M: 6 F: 1 vs.

M: 2 F: 4
Age:

56.3± 11.5
vs.

61.3± 9.8
vs.

65± 4.6

EG:
10 sessions of 20 min rTMS

non-lesional hemispheric upper
extremity motor area (M1)

EG:
10 sessions of non-lesional

hemispheric upper
extremity motor area (M1)cTBS for

40 s
CG:

Sham cTBS
PT

MAS, UE-FM, FIM, MAL-28,
Brunnstrom- upper

extremity brunnstrom- hand

Pre-treatment,
post-treatment and

at 4 weeks

Real cTBS or real rTMS
combined with PT provided

improvement on upper extremity
motor functions and daily living

activities in chronic ischemic
stroke patients, but improvement

in spasticity was limited

cTBS+
rTMS+

Lee et al.
(2020)

Single-blind
RCT

(AOT plus
BCI-FES+

conventional
physical

therapy vs.
FES treatment

and
conventional

physical
therapy)

Within
12 months
post-stroke

26
(13 vs. 13)

Sex:
M: 4 F: 9
M: 6 F: 7

Age:
55.15 (11.57)

vs.
58.30 (9.19)

EG: 30 min of AOT plus BCI- FES
training on the upper extremity, 20

sessions 5 times per week during the
4-week intervention period

CG: FES treatment+ conventional
physical therapy

FMA-UE, WMFT, motor
activity log (MAL) and

modified
barthel index (MBI).

Pre- prior to
randomization and
post-within a week

after the last training
session.

After intervention, there were
significant differences between

two groups in FMA-UE, WMFT,
MAL and MBI and the results of
EEG including alpha power, beta

power, concentration and
activation. AOT plus BCI-FES
can enhance motor function of

upper extremity and cortical
activation in patients with stroke.

AOT plus
BCI–FES+

Lin et al.
(2019)

Single-blind
RCT

(TBS vs.
Sham)

> 6 Months 20
(10 vs. 10)

Sex:
M: 9 F: 1

vs.
M: 8 F: 2

Age:
60.8± 8.1

vs.
61.1± 9.7

EG:
10 sessions 2/week for 5 weeks of brief

train of basic theta bursts (5 Hz)
lasting for 2 s (10 bursts, each

containing three pulses of 35 Hz) and
administered every 10 s for a total of

40 trains (a total of 1,200 pulses;
iTBS1200)

CG:
Sham iTBS
+

PT

NIHSS, BRS,
mRS, FMA,

Before and after
iTBS

Within-group differences were
significant in the Berg balance
scale for both groups, in the
Fugl-Meyer assessment and

overall stability index of Biodex
balance system of iTBS group. No

significant between-group
differences were found

iTBS –
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Nicolo et al.
(2018)

Double- blind
RCT

(neuronavigated
cTBS vs.

cathodal tDCS
vs. sham

TMS/sham
tDCS)

≥ 10 Weeks 41
(14 vs. 14 vs. 13)

Sex:
M:7 F:7

vs.
M: 8 F:6

vs.
M:8 F:5

Age:
62.4± 12.3

vs.
68.5± 10, 8

vs.
64.3± 17.1

EG: 9 sessions, over 3 weeks of NIBS
cTBS+ 30 min of PT

EG: 9 sessions, over 3 weeks of NIBS
cathodal tDCS+ 30 min of PT
CG: sham stimulation over the

contralesional primary motor cortex.

UE-FMA, BBT, NHPT Two
pre-intervention

baseline assessments
separated by 1 week

(T1 and T2),
post-intervention
assessments after
(T3) and 30-days
after stimulation

treatment

Neither stimulation treatment
enhanced clinical motor gains.

The inhibition of the
contralesional primary motor

cortex or the reduction of
interhemispheric interactions was

not clinically useful in a
heterogeneous group of subacute

stroke subjects. An early
modulation of perilesional

oscillation coherence
seems to be a more promising
strategy for brain stimulation

interventions.

tDCS =

Ramos-
Murguialday
et al. (2013)

RCT
(BMI vs. sham

BMI)

≥ 10 months 30
(16 vs. 14)

Age:
49.3± 12.5

vs.
50.3± 12.2

Sex:
M:9 F:7

vs.
M:9 F:5

EG: Brain activity moved the orthoses
CG: Random orthoses movement not

linked to the control of brain
oscillatory activity

+

PT

FMA, Ashworth Scale 8 weeks and 2 days
before treatment,

after 8 weeks
treatments

Addition of BMI training can be
used to induce functional

improvements in motor function
in chronic stroke patients

BMI+

Ray et al.
(2020)

Double blind
RCT

(combined
brain–machine
interfaces and
physiotherapy

vs. BMI
independent

of brain activity)

> 8 Months 30
(16 vs. 14)

Sex:
M: 18 F: 12

Age:
49.8± 12.4

Each subject performed 17
± 1.8 sessions of BMI-training within

a period of up to 6 weeks+
physiotherapy after the BMI training

FMA At the post test
and two tests prior to

the intervention.

Initial alpha desynchronization
might be key for stratification of

patients undergoing BMI
interventions and that its

interhemispheric balance plays an
important role in motor recovery.

BMI+
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Remsik et al.
(2019)

RCT
(EEG-BCI-FES
intervention vs.

sham BCI)

Varied times
since stroke

21
Age:

mean age
61.6± 15.3 years

Sex:
M: 9 F: 12

The number of EEG-BCI-FES
intervention sessions varied

across subjects with a mean of
13.8± 1.3. Each session consisted of
multiple runs of the “Cursor Task”

(mean of 31.3± 10.5 runs per session),
about 1/3rd of which included only
visual feedback, and roughly 2/3 of

which were comprised of BCI facilitated
functional electric stimulation of the

impaired hand and lingual electrotactile
stimulation through a tongue display

unit

ARAT, SIS, NIHSS, Barthel
scale, grip strength, 9-HPT

At baseline,
mid-therapy and at

completion of therapy

Intervention corresponds with
greater desynchronization of Mu

rhythm in the ipsilesional
hemisphere during attempted

movements of the impaired hand
and this change is related to

changes in behavior as a result of
the intervention.

BCI+

Sebastián-
Romagosa
et al. (2020)

RCT
(BCI Cortical
group vs. BCI

Subcortical
group vs. BCI

Cortical+
Subcortical

group vs. rEEG)

at least 4 days
before the first

assessment

68
(5 vs. 17 vs. 12 vs.

32)
Age:

57.6± 27.3 vs.
66.4± 12.7 vs.
67.0± 09.4 vs.

42.3± 15.4
Sex:

M: 4 F: 1
M: 9 F: 8
M: 9 F: 3

M: 13 F: 19

136 Assessment sessions were
performed in total (4 per patient), 4
assessment sessions (2 sessions per

week) and 25 therapy sessions

FMA, Barthel index, FTRS_h,
Modified Ashworth Scale,

9HPT, 1TPDT_h

Just after the last
session, 1 month after

the last session

Significant differences in the BSI
(Brain symmetry index) between
the healthy group and Subcortical

group and also between the healthy
and Cortical+ Subcortical group.

No significant differences were
found between the healthy group

and the Cortical group. The
quantitative EEG tools used here

may help support our
understanding of stroke and how

the brain changes during
rehabilitation therapy.

BCI+

Tsuchimoto
et al. (2019)

Double blind
RCT

(EEG-SMR-
based

neurofeedback
intervention vs.

sham
EEG-SMR)

3–234 Months
(median 6.8)

17
Age:

58± 10 y
Sex:

M: 14
M: 3

The patients were asked to imagine
extension of the affected finger without

actual execution during 5 s after
voluntary relaxation for 5 s; thus, each

trial lasted 10 s, and the decoding
session was conducted without

feedback for 15 trials.

FMA, SIAS One intervention on a
given day and the

other intervention 1
or 2 weeks later

Although the neurofeedback
intervention delivered fewer total

sensorimotor stimulations
compared to the sham-control,

rsfcMRI in the ipsilesional
sensorimotor cortices was

increased during the
neurofeedback intervention

compared to the sham-control.
Higher coactivation of the sensory

and motor cortices during
neurofeedback intervention

enhanced rsfcMRI in the
ipsilesional sensorimotor cortices.

EEG-SMR-based
neurofeedback+

AOT, action observation training; ARAT, action research arm test; BBT, Box and Block test; BCI, brain-computer interface; BRS, Brunnstrom Stage; EEG, electroencephalography; EEG-SMR, electroencephalography signal of sensorimotor rhythm; ERD;
EEG event-related desynchronization; ERS; EEG event-related desynchronization; FES, functional electronic stimulation systems, FIM, Functional Independence Measure; FMA, Fugl-Meyer motor function assessment; FTRS_h, Fahn Tremor Rating
Scale for the healthy hand; rsfcMRI, functional magnetic resonance imaging; MAL-28, Motor Activity Log-28; MAS, Modified Ashworth Scale; MEPs, motor evoked potentials; MFT, manual function test; MMSE, mini-mental state examination; MRS,
Modified Rankin Scale; NA, not available; NHPT, Nine Hole Peg Test; NIHSS, National Institutes of Health Stroke Scale; RCT, randomized clinical trial; SIS, Stroke impact Scale; TBS, theta burst stimulation; tDCS, transcranial direct current stimulation;
1TPDT_h_t, Two Point Discrimination Test; UE-FM, Upper Extremity Fugl-Meyer Motor Function;+, better results in the experimental group compared to the control group; –, worse results in the experimental group compared to the control group; = ,
no differences between experimental and control groups.
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Thus, in stroke recovery, changes in beta oscillations across
the brain may be not congruent.

- An increase in gamma power in the affected hemisphere
is a good recovery target associated with improved clinical
outcomes (Tecchio et al., 2007).

To date, neuromodulation approaches, i.e., FES-NIBS,
are valid tools to improve stroke rehabilitation outcomes.
In addition, BCI systems could support motor function
enhancement by providing visual/somatosensory feedback
(Pillette et al., 2020), whereas EEG could provide real-time brain
rhythms feedback (Enriquez-Geppert et al., 2017). The high
reproducibility of ERD/ERS could be considered a promising
predictive outcome measure for evaluating patients with stroke
recovery after rehabilitation.

The core articles included in this review are shown in
Table 1. Specifically, it has been shown that the above-reported
techniques are more effective in the chronic stroke phase,
whereas in the acute/post-acute phase, their effectiveness should
be better explored. However, these data need to be cautiously
taken because of several study limitations. First, this review
was conducted as a broad overview of a topic-related research
area. Moreover, the search method depends on a non-predefined
protocol, which may involve subjective selection bias. Many of
these studies have been plagued by methodological problems
(i.e., the heterogeneity of the population, the rehabilitation
sessions and duration, the ischemic areas involved, timing
from the acute event, and the different EEG-BCI-FES-NIBS
applied). The Inclusion criteria of studies for review also rely
on researchers’ experiences. Finally, the selected studies reported
different functional outcomes and the scarcity of the data
prevented performing systematic review. However, devising
novel clinical trials, which consider such limitations, may be
helpful to define proper treatment settings, integrating motor
system modulation and rehabilitation techniques, to shed new

light on the role of brain oscillations in patients with post-
stroke rehabilitation.
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