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The assessment and management of pain and nociception is very challenging

in patients unable to communicate functionally such as patients with disorders

of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the

detection of signs of pain and nociception by the medical staff is therefore

essential for the wellbeing and management of these patients. However, there

is still a lot unknown and a lack of clear guidelines regarding the assessment,

management and treatment of pain and nociception in these populations. The

purpose of this narrative review is to examine the current knowledge regarding

this issue by covering different topics such as: the neurophysiology of pain

and nociception (in healthy subjects and patients), the source and impact of

nociception and pain in DoC and LIS and, finally, the assessment and treatment of

pain and nociception in these populations. In this review we will also give possible

research directions that could help to improve the management of this specific

population of severely brain damaged patients.

KEYWORDS

pain, nociception, disorders of consciousness, locked-in syndrome, pain assessment,
pain management, theories of pain

1. Introduction

Pain refers to an “unpleasant sensory and emotional experience associated with, or
resembling that associated with, actual or potential tissue damage” (Raja et al., 2020).
Integrating several dimensions (physiological, sensory, cognitive, and emotional aspects),
pain is based on subjective experience and therefore, on conscious processing of the stimulus.
Like any subjective experience, communication with the patient is the most appropriate way
to assess it. In severely brain injured subjects, such as patients with disorders of consciousness
(DoC) and locked-in syndrome (LIS), verbal communication is impaired but does not
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exclude the possibility that they experience pain. Even more, the
absence of behavioral signs of consciousness does not preclude
the patient to show (at least a minimum of) cortical activity
preservation, suggesting partial preservation of consciousness and
pain processing. Therefore, it is important not to neglect the
assessment of pain and nociception in these patients with limited
or no ability to communicate, regardless of the diagnosis. In
the last years, clinicians tended to identify behavioral patterns
related to conscious perception of pain, with important ethical
and clinical implications in terms of diagnosis, prognosis, and
treatment. Nonetheless, the absence of clinical signs of pain does
not preclude a conscious (i.e., cortically mediated) pain experience
nor a physiological impact of the nociceptive stimuli. Indeed,
nociception refers to “neuronal process allowing the encoding and
processing of a noxious stimulus” (Loeser and Treede, 2008) and
while it does not require conscious perception of the stimulus, it
leads to changes in the autonomic control of target organs (e.g.,
changes in heart rate, sweating, bronchial resistance to air flow, and
pupil diameter) and behavioral responses (e.g., flexion withdrawal).

Disorders of consciousness could be due to various traumatic
(TBI) or non-traumatic (NTBI) brain injuries (e.g., strokes or
anoxia). In the United States, 2.5 million people suffer from a
TBI each year (288,000 hospitalizations and 56,800 deaths) and
some of them will become unresponsive wakefulness syndrome
(UWS) or minimally conscious state (MCS) patients (Capizzi
et al., 2020). In the United States, the prevalence of patients
with DoC (adults and children) is estimated between 4,000 and
25,000 for patients in UWS and between 112,000 to 280,000 for
patients in MCS (The Multi-Society Task Force on PVS, 1994;
Pisa et al., 2014). In Europe, the cases of UWS patients are
estimated between 4,362 and 58,160 in a population of 727,000,000
(Ashwal, 2004). The current literature does not allow to give the
prevalence of LIS patients on a global or national level. Due
to the absence of or impaired communication in these patients,
pain assessment and management is a major clinical and ethical
issue. DoC include different clinical entities based on cognitive
level and motor abilities (see Figure 1). For instance, a patient
who shows signs of arousal characterized by eye opening periods
but no signs of awareness (i.e., only reflexive movement and
absence of cortical processes), will be categorized as in UWS
(The Multi-Society Task Force on PVS, 1994; Laureys et al.,
2010). Patients in a MCS show reproducible, responses without
functional communication and have partial cortical processes. They
are classified into two main groups based on language preservation:
patients in MCS minus (MCS−) showing non-reflexive behaviors
(Bruno et al., 2011b; Giacino et al., 2018), and MCS plus (MCS+)
who have a preservation of higher level non-reflexive behavior
and language abilities (Thibaut et al., 2020). The progress of
neuroimaging techniques has also allowed the emergence of new
terminologies to classify patients with “atypical” brain activity
patterns such as: minimally conscious state star (MCS∗, i.e.,
patients behaviorally diagnosed with UWS but preserving residual
brain activity congruent with MCS diagnosis at rest or during a
passive or active paradigm; Thibaut et al., 2021), covert cortical
processing (CCP or higher-order cortex motor dissociation –
HMD, i.e., patient behaviorally diagnosed in a coma, UWS, or
MCS− but retaining brain activity upon passive task; Edlow et al.,
2017), cognitive motor dissociation (CMD, i.e., patient behaviorally
diagnosed in a coma, UWS, or MCS− but retaining brain activity

upon active tasks; Schiff, 2015). Finally, when a patient regains
functional communication or functional use of objects, he or she
is considered to be emerging from MCS (Di Perri et al., 2016).
LIS is not considered as a DoC but could be misdiagnosed with
coma and UWS (Cistaro et al., 2018). This condition results
from a lesion in the corticospinal and corticobulbar pathways of
the brainstem due to vascular pathology, traumatic brain injury,
masses in the ventral pons, infection, or demyelination (Das et al.,
2021). LIS patients suffer from limbs, head, and face paralysis (i.e.,
quadriparesis) as well as verbalization/vocalization, breathing, and
coordination impairments. LIS patients can communicate using
eyelid blinks, vertical eye movements, or head movements (i.e.,
yes/no communication code or letter spelling communication;
Lugo et al., 2015). EEG-based brain–computer interfaces also allow
LIS patients to communicate through brain signals (Annen et al.,
2020). So far, there has been limited scientific research on pain
processing in LIS. However, according to a European survey of
health professionals, 90% of them considered that patients in LIS
are able to feel pain and need to be treated (Demertzi et al.,
2014). For patients with DoC, according to a survey, 96% of
health professionals believed that MCS patients can feel pain,
compared to 56% believing that UWS patients can do so (Demertzi
et al., 2009). Nevertheless, as explained above, some behaviorally
unresponsive patients can still have a cortical activity preservation
suggesting covert consciousness (and potentially a preservation of
pain processing). It is therefore important to set up pain assessment
tools and treatments that are independent of the clinical diagnosis
to avoid mismanagement.

This manuscript aims at reviewing the current knowledge
about the assessment and management of pain and nociception
in patients with DoC and LIS. We will first give an overview of
the physiology of pain and nociception. We will then look more
specifically at the possible sources and impact of pain in these
populations. Finally, we will describe the tools and treatments
currently in place for the assessment and management of pain
and nociception for this patient population. This narrative review
is based on systematic reviews, meta-analyses, original articles,
and case studies.

2. Neurophysiology of pain and
nociception

In order to understand the difference between pain and
nociception and to comprehend to what extent severely brain-
damaged patients process nociceptive inputs and pain, we must
first look at the neurophysiology of these two phenomena.
When nociceptive stimulation occurs, following tissue damage
for example, a signal will be generated at the endings of the
nociceptive Aδ (i.e., thinly myelinated fibers responsible for
faster signal transmission, mediate nociceptive inputs but also
non-nociceptive heat and cold stimuli) and C-fibers (i.e., non-
myelinated, polymodal nociceptors that are sensitive to chemical,
mechanical, and thermal stimuli, including nociceptive hot –
>48◦C – and noxious cold – <11◦C). These fibers synapse at the
level of the dorsal horn with the second nociceptive neuron that
continues its path into the spinothalamic tract to the thalamus
(for the majority of the fibers). After the thalamus, the signal
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FIGURE 1

Variation in diagnosis of patients with pathological states of consciousness according to the level of recovery of cognitive and motor functions.
UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; LIS, locked-in syndrome; in red, patients able to process nociceptive
inputs and able to experience pain; in blue, patients processing nociceptive inputs but without evidence of pain experience; in purple, patients able
to process nociceptive inputs and having the (probable) neural basis for pain experience (created with BioRender.com, based on Thibaut et al. (2019)
and recent empirical literature).

arrives at several cortical areas [i.e., the primary and secondary
somatosensory cortex and the insula and the anterior cingulate
cortex (ACC)]. All these cortical and subcortical structures and
their connections form a network which is activated following a
painful stimulus. In this review, we will use the term “pain-related
neuromatrix” to refer to these brain regions activated following a
noxious stimulus. However, it is important to note that this network
is not only related to pain processing but has been identified more
as a salience detection network (Melzack and Wall, 1965; Ingvar,
1999; Brown et al., 2018). This supports the multidimensional
aspect of pain sensation, already highlighted by Melzack and Wall
(1965), and subsequently confirmed by neuroimaging studies: pain
is not the result of the activation of a single specific region but of a
network (Mouraux et al., 2011; Mouraux and Iannetti, 2018). The
pain-related neuromatrix can be divided in two parts comprising:
(1) the lateral system, involved in the sensory dimension of
nociceptive stimulus processing (i.e., localization, duration, and
intensity) which includes the lateral thalamic nucleus, the primary
somatosensory cortex (S1), the secondary somatosensory cortex
(S2), and the insula and the posterior parietal cortex; and (2)
the medial system, related to the affective dimension of pain and
comprising the medial thalamic nucleus, the prefrontal cortex,
the ACC, the posterior cingulate cortex (PCC), and the posterior
medial cortex (Bushnell et al., 1999; Hofbauer et al., 2001). These
regions (i.e., prefrontal cortex, thalamus, and ACC) are also part
of the external and internal networks of consciousness which
underlines the importance of these brain areas in the conscious
perception of pain. The insula also has an important role in the

affective processing of pain because it mediates the signal between
the posterior insula (lateral system) and the rostral part of the ACC
(medial system) (Coghill et al., 1999; Peyron et al., 2002). According
to neuroimaging studies in healthy subjects during acute pain
stimulation, the cortical and subcortical regions most involved in
pain signal processing are S2, the insula and the ACC [for a review
refer to Peyron et al. (2000)]. The use of hypnosis [i.e., a state of
consciousness involving attentional focus and reduced peripheral
attention, characterized by an increased ability to respond to
suggestion (Elkins et al., 2015)] with analgesic suggestions leads
to a decrease of brain activity in the ACC, and makes it possible
to modulate the affective dimension of pain [for a review refer to
Thompson (2019)]. The use of hypnosis has also been shown to
be effective in relieving chronic pain. Indeed, in a 1997 study, a
positive correlation between the perception of painful sensation
and cerebral activity of the ACC was demonstrated (Rainville,
1997). Conversely, when the ACC and the insula are activated just
before a nociceptive stimulation, an increase in pain perception is
observed (Boly et al., 2007). Altogether, the literature shows that the
ACC has an important role in modulating pain perception, notably
by interacting with regions of the limbic system like the amygdala,
the thalamus, and the hippocampus (Moriarty, 2011; Calabrò et al.,
2017). These subcortical and limbic structures participate in the
balance of activity between the fronto-temporo-parietal cortex
(involved in consciousness; Demertzi et al., 2013; Di Perri et al.,
2013, 2016) and the autonomic nervous system.

The ascending pathways described above activate descending
pathways responsible for modulating the transmission of peripheral
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information. Indeed, the descending pathways (cholinergic and
serotonergic) to the dorsal horn of the spinal cord are sensitive to
peripheral stimuli and not only to nociceptive stimuli. There are
also tonic facilitation and inhibition phenomena that originate in
the brainstem and respond to peripheral or non-peripheral stimuli
(Dunckley, 2005). The activation of these descending pathways
starts in the cortex (i.e., in the insula and ACC) and extends through
the hypothalamus and the amygdala to finally be transmitted to
the brainstem in the PAG, the nucleus of the tractus solitarius
and the rostral ventral medulla (Brown et al., 2018). This will
result in an inhibition of neurons from the superficial dorsal horn
relaying information carried by C-fiber to the deep dorsal horn
(Figure 2). The suppression of the C-fibers signal will then facilitate
the transmission of sensory-discriminative information conducted
by the A-fibers (Heinricher et al., 2009). The hypothalamus, the
amygdala and the PAG are also responsible for behavioral changes
related to acute pain stimulation (Veinante et al., 2013). An fMRI
study of awake subjects undergoing acute thermal pain stimulation
has shown a decrease of brain activity in the hypothalamus and
amygdala as well as an increase brain activity in the lateral
PAG (Robertson et al., 2022). The lateral PAG is involved in
the selection of appropriate defensive behaviors in response to
the nociceptive stimulus [i.e., increase in motor, autonomic, and
endocrine activity, as well as alertness, and inhibitory control of
this pain (Bandler et al., 2000)] and is regulated by a number of
regions including the hypothalamus and the amygdala. A lesion in
these different ascending and descending pathways therefore may
lead to a dysfunction in the processing of nociceptive stimuli and
pain control (i.e., which can result in the phenomenon of central
sensitization).

The conscious perception of pain is supported by the activation
of the regions evoked above and the functional connectivity
between these different regions and the thalamus (Baars et al.,
2003; Dehaene and Changeux, 2011). However, even if some of
these regions are essential for pain sensation and sensibility, others
will play a subtler role and their lesion may not always lead to
any noticeable change in terms of pain perception. As explained
above, the pain-related neuromatrix, although well established
in the scientific literature, is still subject to debate, not least
because the regions of this pain-related neuromatrix are more
broadly involved in multimodal processing and not specific to pain
processes (Mouraux et al., 2011; Mouraux and Iannetti, 2018).
A recent opinion paper discussed the idea that pain perception
may originate from the brainstem and not only from the cortex.
The authors based this assumption in part on the fact that cortical
stimulation of specific regions of the pain-related neuromatrix does
not induce pain, unlike other sensory modalities (e.g., primary
auditory or visual cortex stimulation evokes respectively sound
and light). Few studies have nevertheless shown that the electrical
stimulation of regions such as the parietal operculum, the posterior
insula, and the ventral caudal nucleus of the thalamus could
induce pain sensation (Lenz et al., 1993; Mazzola et al., 2006;
Bergeron et al., 2021). However, a lesion of the insula does not
make the sensation of pain disappear (Libet, 1973; Mazzola et al.,
2006; Afif et al., 2008; Isnard et al., 2011). On the contrary,
some patients who have suffered a cortical lesion (i.e., central
post-stroke patients) experience an increased sensation of pain
(Boivie et al., 1989; Andersen et al., 1995). As pain is necessary
for survival, these authors suggest that its conscious perception

must have been in place before the expansion of the cerebral
cortex and therefore be located in the brainstem. Many brainstem
nuclei are involved in nociceptive signal processing [for a review
refer to Napadow et al. (2019)]. fMRI in humans show that,
upon acute cutaneous or visceral stimulation, the PAG, nucleus
cuneiformis, ventral tegmental area, substantia nigra, parabrachial
complex, and dorsolateral pons regions of the brainstem become
activated (Dunckley, 2005; Fairhurst et al., 2007; Sprenger et al.,
2011). The spinal trigeminal nucleus located at the level of the
medulla and caudal pons is activated during painful stimulation
in the orofacial region (Nash et al., 2009). The brainstem also
seems to be involved in the phenomenon of conditioned pain
modulation. For instance, inhibition of orofacial pain via painful
stimulation of another area (such as the leg) results in a reduction
of the fMRI signal in the dorsal reticular nucleus, dorsolateral
pons, and spinal trigeminal nucleus (Youssef et al., 2016). PAG
and rostral ventral medulla also appear to be necessary for the
temporal summation of pain in connection with the phenomenon
of nociceptive wind-up [i.e., facilitation of neural discharges caused
by repetitive stimulation of primary afferent C-fibers, involved in
central sensitization (Mendell, 2022) in humans and animals with
chronic pain (Van Oosterwijck et al., 2013; O’Brien et al., 2018)].
The study of the functionality of these different brainstem nuclei is
challenging, especially in neuroimaging studies due to the location
of these elongated and small cross-sectional nuclei, their proximity
to cardiorespiratory noise sources. The role of these nuclei in pain
processing has yet to be studied in LIS and DoC, however, these
severely brain-injured patients may present cerebral deformations
that make the analysis of robust neuroimaging data difficult.

3. Source and impact of pain and
nociception in DoC and LIS

Due to their physical condition and the clinical environment
in which they find themselves, patients with DoC and LIS may
experience various types of nociceptive insults. For instance, acute
nociceptive events can occur after injuries (e.g., fracture, wounds,
and soft tissue/solid organ injuries) or during daily care (e.g.,
catheterization, surgery, or physiotherapy). If pain is present after
those injuries, it will act as a protective and adaptive signal for
the integrity of the body (Craig, 2003) whereas chronic pain
loses the role of warning signal (Varrassi et al., 2010). Chronic
pain is persistent and/or recurrent pain lasting for more than
3 months and can result in functional and emotional changes
such as depression or anxiety (Grichnick and Ferrante, 1991;
Merskey and Bogduk, 1994; Turk et al., 2011). It can be due
to muscle contractions, pressure sores, peripheral nerve injury,
pain network disruption leading to allodynia, central sensitization,
neuropathic pain, or spastic paresis [for a review see Zasler et al.
(2022)]. Central sensitization results from a dysfunction of the
descending central control system and corresponds to an “increased
responsiveness of nociceptive neurons in the central nervous system
to their normal or subthreshold afferent input” (Loeser and Treede,
2008). Neuropathic pain is defined by the International Association
for the Study of Pain as a type of “pain caused by a lesion or disease
of the somatosensory nervous system” as opposed to nociceptive
pain occurring following nociceptor stimulation. Neuropathic pain
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FIGURE 2

Ascending and descending nociceptive pathways (created with BioRender.com). Based on Brown et al. (2018).

can be of central or peripherical origin depending on the lesion
localization (Raja et al., 2020). At present, neuropathic pain may
be identified by diagnostic testing [e.g., using questionnaires such
as the DN4 (Bouhassira et al., 2005)], sensory testing coupled with
self-report or neuroimaging (to locate the lesion). However, the use
of questionnaires requires functional communication to express
subjective experience and therefore cannot be used in patients with
DoC. The difficulty of assessing this type of pain in DoC patients
has so far not been addressed by any study. Regarding spastic
paresis, a recent study showed that the majority (83%) of patients
with DoC experience pain during physiotherapy sessions (Bonin
et al., 2022b). This result can be explained in part by the high
prevalence of spastic paresis in this population, ranging from 59
to 96% (Martens et al., 2017; Thibaut et al., 2021; Zhang et al.,
2021; Bonin et al., 2022a,b). In addition to limiting patients’ motor
responses, leading to misdiagnosis (Monti et al., 2010; Cruse et al.,
2011), spastic paresis also appears to be related to the presence
of nociception phenomena. Indeed, when looking at the scores
of behavioral scales which respectively assess nociception and
spastic paresis, it seems that both variables are positively correlated
especially in wrist and finger muscles (Bonin et al., 2022a). This
can greatly affect the patient’s ability to respond to commands and
perform other motor-related tasks on which most of the Coma
Recovery Scale-Revised [CRS-R, gold standard to assess the level
of consciousness in DoC patients (Giacino et al., 2004)] items
are based. Due to the fact that LIS patients are bedridden for
long periods of time and therefore have limited mobility, they
will develop pain mainly in the lower and upper limbs instead
of the head, the back, and the abdomen (Bonin et al., 2022a).
They will also be prone to develop spastic paresis, which can lead
to persistent discomfort in the long run (Cairns and Stein, 2002;

Pistoia et al., 2015). A 2022 survey investigated the presence and
management of pain in this specific LIS population. The results
highlighted that half of the LIS patients surveyed have pain but
do not communicate about it and 92% of these patients suffer
from chronic pain (Bonin et al., 2022c). Nociception may also
have an influence on the autonomic nervous system, provoking
an imbalance between sympathetic and parasympathetic activity
(Lee et al., 2020). This can have hemodynamic consequences (e.g.,
increase in blood pressure, tachycardia, and increased heart rate
variability), or influence other target organs of the autonomic
nervous system (pupils and their diameter, sweat glands, and skin
conductance) [for a review see Lee et al. (2020)]. Although no
studies exist on this topic in patients with DoC or LIS, it can
be assumed that repetitive and/or long-term autonomic nervous
system imbalance due to acute or chronic nociception or pain could
have consequences for the patient’s wellbeing, and could lead to
systemic complications (Leo et al., 2016). For instance, it has been
shown that, in moderate to severe traumatic brain injured (TBI)
patients, autonomic nervous system dysfunction is correlated with
an increase in morbidity (Purkayastha et al., 2019).

The perception of pain can vary according to different factors.
Numerous studies carried out over the last few decades have
revealed gender differences in terms of prevalence, perception
and treatment of pain [for a review see Pieretti et al. (2016)].
Although women seem to report signs of pain more often than
men, experimental studies on healthy subjects show mix results
depending on the type of stimulation (i.e., mechanical, electrical,
thermal, ischemic, and chemical) and the type of investigated
parameter [e.g., duration and intensity of the pain sensation or
pain tolerance or sensitivity (Labus et al., 2008; Racine et al.,
2012)]. However, to our knowledge, no study has investigated
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gender differences in terms of pain perception in DoC and LIS
patients. In LIS patients, the position (lying/sitting) can increase
or decrease the pain sensation, depending on each individual
(Bonin et al., 2022c). Pain has a direct influence on patients’
quality of life such as sleep quality, cognitive abilities, and emotion
(Bonin et al., 2022c). Previous studies showed that the majority
of patients with chronic pain have sleep disorders and that poor
sleep quality can increase pain perception (O’Brien et al., 2011;
Rousseau et al., 2015; Frohnhofen, 2018; Bonin et al., 2022c). In
addition, the impact of pain on sleep quality can alter the level
of arousal, as well as motivation in patients with DoC or in LIS.
In this way, their ability to express signs of consciousness may be
impeded, hence compromising the clinical diagnosis (Lanzillo et al.,
2016; Estraneo et al., 2022). Consequently, the implementation
of treatment to alleviate pain could have a positive impact on
sleep quality and allow an improvement in the patients’ level of
arousal/vigilance during clinical examinations. Deleterious effects
of pain on cognitive abilities (i.e., increase of tiredness and mood
swings, and decrease of memory and concentration) and emotional
regulation has been observed in patients with LIS (Bonin et al.,
2022c). Other surveys found that some patients in LIS claim
experiencing anxiety, depression or suicidal thoughts (Bergés et al.,
2007; Rousseau et al., 2015). Furthermore, a past study has found
an anti-correlated relationship between perceived pain and life
satisfaction (Skevington, 1998; León-Carrión et al., 2002). Several
variables can be related to the decrease of life satisfaction in patients
with LIS such as the loss of mobility during recreational activities
or language impairment/speech production (as communication
seems to play a key role in the preservation of the quality of
life in those patients) (Bruno et al., 2011a; Demertzi et al., 2014).
These results underline the importance of identifying the sources
of potential pain by using appropriate tools, to propose patient-
tailored management.

4. Pain and nociception assessment
and management in DoC and LIS

4.1. Assessments

4.1.1. Behavioral scales
There are many behavioral scales allowing the assessment of

pain in non-communicative patients, such as the Neonatal Infant
Pain Scales (NIPS; Lawrence et al., 1993), the Faces, Legs, Activity,
Cry, Consolability pain scale (FLACC; Merkel et al., 1997) or the
Children and Infants Post-operative Pain Scale (CHIPPS; Buttner
and Finke, 2000) that assess pain in newborn, infants or adolescent.
Other scales include the Pain Assessment In Dementia Scale for
patient with dementia (PAINAD; Warden et al., 2003) and the
Checklist of Non-verbal Pain Indicator to assess pain in cognitively
impaired older adults (CNPI; Feldt, 2000). None of these scales
are specific to severely brain-injured patients with DoC and LIS.
The Nociception Coma Scale (NCS) has been developed to fill this
gap (Schnakers et al., 2010) and consists in four subscales assessing
motor, verbal and visual responses, as well as facial expression.
It allows to disentangle reflex (e.g., groaning or oral reflex
movements) from higher-level behaviors (e.g., pain localization
and cry or intelligible verbalization). The visual subscale is the

only subscale of the NCS that does not show significant changes
between a noxious and a non-noxious condition. As its absence
does not alter the sensitivity of the assessment, it was eventually
removed to give the Nociception Coma Scale-Revised [NCS-R;
Chatelle et al. (2012) total score ranging from 0 to 9]. The NCS-
R is sensitive to the level of consciousness, with patients in MCS
having higher NCS scores than patients in UWS, and allows
the distinction between noxious and non-noxious stimulation
(Chatelle et al., 2012, 2014b, 2018). A neuroimaging study in DoC
using labeled Fluoro-Deoxy-Glucose (FDG)-PET found a positive
correlation between brain activity in the ACC and NCS-R scores,
suggesting that these scores are related to a cortical processing
of pain (Chatelle et al., 2014a). This scale might also give an
indication on the probability of recovering consciousness. Indeed,
in a recent study, 76% of the patients in UWS who evolved to
MCS showed significant behavioral changes at the NCS-R and NCS
1 week before the new diagnosis. Threshold for prediction has been
determined for the NCS-R and the NCS and showed high predictive
accuracies (Cortese et al., 2021). However, the NCS provides a
better classification of patients likely to evolved to MCS than the
NCS-R due to the presence of the visual scale (i.e., visual pursuit
and fixation are among the first signs of consciousness observed in
patient recovering from a UWS). In clinical practice, mechanical
stimulation (i.e., pressure on the nail) is used to perform the
assessment by the NCS-R. One study highlighted that the pain
threshold following mechanical stimulation (i.e., pressure on the
nailbed with an algometer) was lower in patients with DoC than
in healthy subjects (Sattin et al., 2017). However, this stimulation
technique has very high inter-rater variability. If not performed
using an algometer, it allows limited control of the stimulus
intensity. Another study conducted in 2019 showed that the use
of personalized stimuli, determined on a case-by-case basis by the
clinical team during patient mobilizations, resulted in higher scores
on the NCS-R compared to standardized stimuli (Formisano et al.,
2020). This could allow a case-by-case assessment depending on
the patient, particularly in prolonged DoC patients suffering from
pain during mobilization at the moment of care (Bonin et al., 2020,
2022b). The NCS-R is a relevant behavioral tool for pain assessment
in non-communicative brain-damaged patients [for a review on
psychometric values refer to Vink et al. (2017)], as NCS-R scores
appear to be related to cortical processing of pain and nociception.

A 2012 study tried to determine an NCS-R cut-off score
allowing discrimination between noxious and non-noxious
stimulation, but the result was not confirmed in a later study
(Chatelle et al., 2012, 2018). Chatelle et al.’s (2018) study
determined an NCS-R cut-off score of 2 as being related to
nociception (i.e., obtainable by reflex behaviors such as flexion
withdrawal or oral reflex movement). Nevertheless, the presence
of these reflex behaviors does not necessarily imply a conscious
perception of pain. Finally, a recent study based on neuroimaging
data (i.e., FDG-PET), determined a conservative NCS-R cut-off
score of 5 as being specific to a cortical processing of pain and
allowing the detection of covert consciousness (e.g., MCS∗). The
study highlights brain metabolism differences between “FDG-PET
confirmed UWS” patients (i.e., patient diagnosed as UWS with the
CRS-R and with a global hypometabolism), patients with potential
pain (i.e., UWS and MCS patients with NCS-R score ≥5) and
healthy subjects at both global and regional levels (i.e., left insula –
involved in the processing of the sensory and affective dimension
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of pain) (Bonin et al., 2020). Although this cut-off score is very
conservative, it has a low sensitivity, which means that patients
with a score of less than 5 should not be overlooked as they may
still suffer and need appropriate treatment.

Studies involving nurses working with DoC patients confirm
the ease of use and clinical relevance of this scale in assessing
signs of pain in this population (Vink et al., 2014; Poulsen et al.,
2019). Nonetheless, respondents considered that the use of a cut-
off score underestimates the number of patients in pain and
suggested that the use of physiological measures to complement
the behavioral assessment should be favored (Poulsen et al., 2019).
In cases of severe spastic paresis or intubation/anarthria, the facial
expression subscale of the NCS-R is the only subscale on which
the clinician can rely (Garuti et al., 2014; Thibaut et al., 2015).
However, some facial expressions assessed by the NCS-R such as
groaning or grimacing are not only associated with nociception
but can be signs of agitation (Corrigan, 1989; Bogner et al.,
2015). A study investigating the clinical relevance of the NCS-R in
tracheostomized DoC patients showed that both the total score and
the verbal subscore of the scale were decreased in DoC patients with
tracheostomy compared to DoC patients without tracheostomy
(Lejeune et al., 2020). However, the presence of a tracheostomy had
no impact on the sensitivity and specificity of the cut-off score of
2. The authors recommend that the NCS-R should still be used in
these patients but that the presence of a tracheostomy should be
specified and taken into account in the assessment. Together, these
studies confirm the experimental and clinical utility of the NCS-
R in the assessment of pain in patients with DoC (Chatelle et al.,
2016). As a corollary, these studies emphasize the need for clear
guidelines regarding its use.

For appropriate daily management of pain, it appears that
the NCS-R is not sufficient alone. The clinical assessment of pain
should be based on a multi-modal approach that also considers
(neuro)physiological markers wherever possible. Behavioral scales
also involving physiological markers have recently been created,
such as the Pain Assessment Scale (PAS), devoted to the
assessment of patients with acquired brain injuries (Poulsen
et al., 2016). It consists of 27 items, divided into four sections,
and assessing physiological/autonomic responses, body language,
verbal communication, and behavior during potentially painful
manipulations. Preliminary results from this study show that half of
the assessed items (7 of which were physiological markers) obtained
very good inter-rater agreement, suggesting that some of them
could be included in a new pain scale. Then, based on these results,
the Brain Injury Nociception Assessment Measure (BINAM) was
developed to measure nociception intensity in patients with severe
brain injury who are unable to communicate (Whyte et al., 2020;
for a comparison of the different scales refer to Supplementary
Table 1). It consists of 10 items assessing both behavioral (e.g.,
facial expression and presence of tears) and physiological (e.g.,
respiration rate and skin temperature) parameters related to the
processing of a nociceptive stimulus. The scores are independent
of the diagnosis or state of agitation of the patients and appear
to be sensitive to pain-inducing conditions (e.g., physiotherapy) as
well as analgesic treatments (Whyte et al., 2020). However, studies
are still needed to validate its clinical utility. The NCS-R is in fact
the only behavioral scale recommended by the guidelines of the
American Academy of Neurology (Giacino et al., 2018).

Regarding patients in LIS, in most cases, communication
through eye movements or the use of Brain Computer Interface
(BCI) technology is possible. Therefore, pain is assessed using
communication codes (e.g., yes/no communication code via
blinking, or alphabetic code) or/and visual analogue scale (VAS)
ranging from 0 to 10 (0 = no pain, 10 = most severe pain). In spite
of these systems, some patients in LIS do not communicate about
their pain. In a 2022 survey, 52% of the painful patients declare
that they do not inform the clinical teams about their pain (Bonin
et al., 2022c) and only 28% of them use a communication code
to communicate their pain. Other means of communication such
as crying or wincing were also used by the patients but might be
confounded with reflexive behavior. These results demonstrate how
important it is for the clinical team to assess the signs of acute and
chronic pain on a daily basis, through the use of communication
codes or BCI techniques (Annen et al., 2020).

4.1.2. Neuroimaging
Patients with DoC suffer from fronto-parietal network activity

and functional connectivity dysfunction, which could lead to
a disturbance in pain and nociception processing. However,
neuroimaging studies carried out in this population have shown
that some brain regions are preserved (see Figure 3; Laureys
et al., 2002; Boly et al., 2008). Indeed, when nociceptive electrical
stimulation (i.e., stimulation intensity judged as highly unpleasant
to painful in healthy subject) is administered to MCS patients,
the cortical activation pattern is close to that observed in
healthy subjects and LIS patients, especially in the secondary
somatosensory cortex, the ACC and the insula (Boly et al., 2008).
Functional connectivity within the pain-related neuromatrix is also
preserved in these patients (Kupers et al., 2005). Although if the
activation of the pain-related neuromatrix is more lateralized and
with a smaller spatial range, these results suggest that patients in
MCS are able to consciously process pain. In contrast, in UWS
patients, nociceptive electrical stimulation results in an isolated
activation of the primary somatosensory cortex with an absence
of functional connectivity with other regions involved in pain
(Laureys et al., 2002). However, in 2003, a Positron Emission
Tomography-H2

15O activation study, tracking regional cerebral
blood flow response to an external stimulus or task was performed
in seven patients in UWS. After a nociceptive electrical stimulation,
an increase in cerebral blood flow in the primary and secondary
somatosensory cortices and in the ipsilateral posterior insula was
observed (Kassubek et al., 2003). Another study using fMRI showed
that during nociceptive electrical stimulation, 50% of patients in
UWS have activation of the sensory network and 30% an activation
of the affective network (Markl et al., 2013). These results suggest
that residues of the pain processing network remain active in some
patients considered as “unconscious” from a behavioral point of
view. In these cases, the re-assessment of the diagnosis should be
considered in patients who do not fit the criteria of a “real” UWS
but rather those of MCS∗.

4.1.3. Neurophysiology
Event-related potentials (ERPs) evaluates the integrity of the

central and peripheral sensory pathways within the nervous system
(Koenig and Kaplan, 2015). For instance, somatosensory evoked
potentials (SEPs), brainstem auditory evoked potentials (BAEPs),
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FIGURE 3

Cortical and subcortical regions involved in the pain-related neuromatrix (created with BioRender.com). In healthy subjects and MCS or LIS patients
the functional connections (red lines) are preserved whereas in “true” UWS patients the somatosensory cortex is activated in isolation [based on
Bouhassira et al. (2005) and Bagnato et al. (2021)].

and visual evoked potentials (VEPs) are used as prognostics tools
in acute comatose patients, with the absence of ERPs at the cortical
level being associated to a poor outcome (André-Obadia et al.,
2018; Rollnik, 2019; Bagnato et al., 2021). It is possible to detect
SEP at the cortical level in comatose patients following a noxious
stimulation. Some studies have highlighted that the presence of
SEPs following median nerve electrical stimulation may appear to
be predictive of a good neurological outcome in comatose patients,
characterized by a score of 1 (i.e., conscious with normal functions)
or 2 (i.e., conscious with moderate disability) at the Glasgow-
Pittsburgh Cerebral Performance Categories (Zanatta et al., 2012,
2015; Markl et al., 2013). However, SEPs support the assessment
of the functioning of the somatosensory system which, unlike the
other ERPs mentioned above, includes several modalities. Indeed,
SEPs assesses both Aδ (i.e., encoding thermal nociceptive and non-
nociceptive inputs) and Aβ fiber pathways (i.e., encoding sensitivity
to pressure or vibration), and therefore reflect the processing of
the stimulus by the both spinothalamic and lemniscal pathway.
In contrast, laser evoked potentials (LEPs) are specifically used
to study nociceptive signal processing by looking at the integrity
of the spinothalamic pathway. They are intimately linked to the
stimulation of Aδ and C nociceptive fibers (i.e., encoding sensitivity
to non-noxious hot and cold, as well as pain) (Treede et al., 2003).
Stimulation of Aδ and C fibers can be done separately depending
on the method used. One study showed that, in some UWS
patients, it was possible to observe LEPs at the cortical level during
C-fiber stimulation even in the absence of LEPs related to Aδ-fiber
stimulation (Naro et al., 2015). On the other hand, the reverse does
not seem to be achievable, which underlines the importance of
including the C-fiber stimulation in the assessment of LEPs in UWS
patients. However, the results of this study must be interpreted
with caution as selective C-fiber stimulation in DoC patients is

very difficult to achieve without a strictly temperature-controlled
laser or without the patient’s cooperation in reporting his or her
sensations. The LEPs recording consists of an early component N1,
a late vertex components N2–P2 and an endogenous component
P3 (only evoked during attentional tasks; Treede et al., 2003).
Several studies have highlighted the presence of the N1 and N2-
P2 complex at the cortical level in some patients with UWS
(de Tommaso et al., 2013, 2015). However, cortical reactivity
to nociceptive stimuli (characterized by prolonged N2 and P2
latencies) was decreased in these patients compared to healthy
subjects, suggesting impaired functional connectivity. A case study
also found a significant relationship between N2-P2 amplitude and
the CRS-R scores in DoC patients. In this study, N1 and N2-
P2 complexes were observed in MCS patients and only in one
UWS patient but with a high CRS-R and NCS-R score (De Salvo
et al., 2015). Coupled with SEPs, LEPs also detects potential lesions
of the spinothalamic pathways in the dorsal brainstem. A lesion
in this region impairs LEPs response while keeping SEPs intact
(Treede et al., 2003). In the study of de Tommaso et al. (2015), the
authors also studied the responses to auditory, visual and electrical
(non-noxious) stimulation and found negative-positive complexes
similar to the responses obtained after noxious laser stimulation.
This confirms that a noxious stimulus will activate the same brain
regions as another type of sensory stimulus (de Tommaso et al.,
2015). Moreover, the presence of LEPs seems to be associated
with cortical arousal in response to salient nociceptive stimuli (i.e.,
potentially dangerous stimulus) rather than with conscious pain
processing.

4.1.4. Physiological markers
Another way to study nociception that is widely implemented

in the clinic is the measurement of physiological markers.
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Numerous brain areas forming the pain-related neuromatrix are
also involved in modulating autonomic nervous system activity
by integrating nociceptive and visceral information in the dorsal
horn, insular cortex, amygdala, nucleus of the tractus solitarius,
PAG, ACC, thalamus, hypothalamus, and via the neurons of
Lamina 1 in the dorsal horn (Benarroch, 2001, 2006; Leone et al.,
2006; Hohenschurz-Schmidt et al., 2020). This highly specialized
organization of nociceptive information in these brain areas may
play a major role in the development of an autonomic, affective,
and emotional responses to pain (Benarroch, 2001, 2006; Leone
et al., 2006; Cortelli et al., 2013; Hohenschurz-Schmidt et al.,
2020). Processing of the nociceptive signal leads to homeostatic
changes like heart rate variability (HRV), skin conductance or
pupillary dilatation reflex (PDR). These physiological markers
can therefore be a good index of the autonomic nervous system
reactivity following nociceptive stimulation. Nociceptive pathways
also have bidirectional interaction with the neuro-endocrine
immune system, leading to a humoral response with potential
consequences on recovery such as chronic pain (i.e., neuropathic
or inflammatory pain) or stress response to surgery. Indeed, in
addition to being sensitive to chemical, thermal, and mechanical
stimuli, nociceptors are also able to detect immune mediators (e.g.,
cytokines, lipids, and grow factors) as well as certain pathogens
(Basbaum et al., 2009; Chiu et al., 2012, 2016). Following the
activation of nociceptors by these different agents, the signal is
transmitted to the central nervous system to induce pain [e.g.,
microglia and T cells are involved in central sensitization (Ji et al.,
2014)]. In response to this stimulation, the nociceptors will release
neuropeptides that regulate the immune response [for a review
refer to Baral et al. (2019)]. The study of interactions between
pain and immune pathways is still poorly developed in DoC
and LIS patients. A better understanding of these mechanisms in
these specific patient populations could lead to new treatments for
chronic neuropathic or inflammatory pain.

The most studied physiological marker to evaluate pain in
DoC is HRV, which corresponds to changes in the time interval
between successive heartbeats. It can provide information about
the sympathetic/parasympathetic balance. This is a non-invasive
measurement using an electrocardiographic (ECG) recording
which takes only a few minutes (Palma and Benarroch, 2014;
Riganello et al., 2018). The calculation is based on the interval
between the R peaks of the QRS complex extracted from the ECG
signal and analysis can be performed in the time or frequency-
domain or using non-linear methods [for a review see Laborde
et al. (2017)]. Numerous studies in healthy subjects as well
as in different patients populations have demonstrated the link
between pain/nociception and HRV [for a review refer to Forte
et al. (2022)]. The changes in HRV observed during nociceptive
stimulation, are not dependent on the method of stimulation
since variations in heart rate have been observed after thermal,
mechanical, and electrical nociceptive stimulation (Sclocco et al.,
2016; Cotton et al., 2018; Courtois et al., 2020). In anesthesia, the
HRV measurement is also used in the calculation of the Analgesia-
Nociception Index (ANI) in order to control the nociception/anti-
nociception balance (De jonckheere et al., 2015). Other studies
in healthy subjects or patients able to communicate have also
shown an association between HRV and subjective measures of
pain such as pain thresholds or pain tolerance (Leźnicka et al.,
2017; Paccione et al., 2022). Noteworthy, some studies have failed

to find a link between pain stimulation/subjective pain measure
and HRV. It has been shown that this physiological marker can
also be used as an indication of nociception in patients with DoC.
Recent studies found a higher HRV complexity in patients in
MCS compared to patients in UWS during nociceptive stimulation
(Tobaldini et al., 2018; Riganello et al., 2019). Indeed, a lower HRV
complexity index was observed after noxious compared to non-
noxious stimulation only in patients in UWS. This decrease in HRV
complexity in patients with UWS reflects adaptation difficulties
and lower reactivity to nociceptive stimulation (Tobaldini et al.,
2018; Riganello et al., 2019; Venturella et al., 2019). In the study by
Venturella et al. (2019), nociceptive stimulus processing in patients
in UWS was also related to higher delta parietal activation [i.e.,
involved in attention and perception processing (Güntekin and
Başar, 2016)], lower left frontal alpha activation (i.e., left frontal
alpha activity related to information inhibition processes), and an
increase of galvanic skin response (GSR). These results suggest
that nociceptive stimulation can generate a cortical and autonomic
response in behaviorally unresponsive patients.

The GSR (also referred to as electrodermal activity or skin
conductance) is a biological electrical activity of the skin linked
to the activity of the sweat glands which are controlled by
the sympathetic system. It is a non-invasive technique allowing
the investigation of emotional response following auditory or
nociceptive stimulation (Gomez and Danuser, 2004; Khalfa
et al., 2008). Studies using the number of skin conductance
fluctuations and the normalized skin conductance level in healthy
subjects showed that these measures could disentangle noxious
stimulation (i.e., heat, mechanical, and cold stimulation) from
other sympathetic stimuli (i.e., stimulation by noise and painful
images). Indeed, the authors noticed that these measures during
noxious stimulation were greater than during other stimulations
and correlated with the subjective measure of pain using self-
reported pain scale (Günther et al., 2016; Sugimine et al.,
2020). Regarding patients with DoC, a study used the GSR and
HRV entropy to investigate the autonomic response related to
trace conditioning learning in patients in UWS after nociceptive
stimulation. Patients in UWS with high GSR showed behavioral
signs overlapping with the diagnosis of MCS 4 weeks after the
experiment (Cortese et al., 2020). Measurement of GSR to assess
the response to nociceptive stimulation during conditional learning
may be an additional tool to improve the assessment of patients
with DoC.

Finally, the pupillary dilatation reflex (PDR), whose variation
results from the balance between the ortho- and parasympathetic
tone, represents a promising tool to objectify nociception in DoC.
The PDR is used to detect pain in brain-injured patients. It is also
sensitive to opioids and allows the assessment of the nociception-
anti-nociception balance during general anesthesia (De jonckheere
et al., 2015). In the absence of intercurrent factors, PDR may
be due to either sympathetic stimulation (e.g., in awake patient)
or parasympathetic inhibition (e.g., in anesthetized patient). It is
important to note that PDR is also sensitive to tactile stimuli and
increased attention/cognitive load or emotional/cognitive arousal
(Gusso et al., 2021). This suggests that PDR, related to nociceptive
stimulus processing, can be divided into two stages: an excitation
stage related to the strength of the stimulus, and an exploration
stage related to the emotional processing of the stimulus (Bradley
et al., 2008; Gusso et al., 2021). The use of pupillometry to detect the
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processing of nociceptive stimulus has not been studied in patients
with DoC yet. The use of pupillometry to detect the processing of
nociceptive stimulus has not been studied in patients with DoC yet.
It would be interesting to investigate this topic in future studies,
taking care to control for potential confounding factors due to
the environment (e.g., change in brightness) or patient’s condition
(e.g., presence of eyelid disorder, ptosis or pupil disorder, and
mydriasis/myosis).

4.2. Treatments for pain

Pain prevention in patients with DoC still needs improvement.
Indeed, a recent pilot clinical trial found that, although the majority
of patients showed signs of pain during mobilization, only 33%
of them were treated for pain before inclusion in the study
(Bonin et al., 2022b). In order to reduce pain in severe brain-
damaged patients, both pharmacological and non-pharmacological
treatments can be used (Figure 4).

Even if, in clinical practice, the administration of
pharmacological treatment is common, it is very important
to pay attention to the nature and the dose of these treatments.
There are three levels of analgesics: level 1 corresponds to
non-opioid medications (e.g., acetaminophen), level 2 to weak
opioids (e.g., tramadol) and level 3 to strong opioids (e.g.,
morphine) (Ventafridda et al., 1985). By preventing the release of
acetylcholine in the thalamus, high-doses of opioids may decrease
arousal and thus have an impact on the diagnosis as well (Brown
et al., 2018). In contrast, the use of an optimal dose of analgesic
medications can decrease pain while preserving patients’ level of
arousal and consciousness (Chatelle et al., 2016; Lanzillo et al.,
2016; Whyte et al., 2020). In an open label study by Chatelle
et al. (2016), a decrease in the NCS-R total scores and subscores
was observed after analgesic treatment administration (ranging
from level 1 to level 3 analgesic medications, depending on
patient needs), independently from the diagnosis and etiology.
This decrease in NCS-R scores did not lead to a deleterious
change in the level of consciousness, with some patients even
showing an improvement. Another study showed an increase in
the level of consciousness after the administration of an analgesic
treatment in patients with DoC who demonstrate severe spastic
paresis (Lanzillo et al., 2016). Nonetheless, these results were not
replicated in a recent trial by Bonin et al. (2022b) designed to
evaluate the effects of analgesic treatment on nociception and
pain signs during physiotherapy. This absence of results suggests
either a lack of sensitivity of the NCS-R in detecting behavioral
changes related to analgesic administration during physiotherapy
or a lack of effectiveness of the treatments used. This disparity
in outcomes can be related to the fact that Chatelle et al. (2016)
conducted an open label research on patients with acute DoC,
whereas Bonin et al. (2022b) performed a randomized double-blind
placebo-control trial on patients with chronic DoC. Therefore,
the lack of improvement in NCS-R scores might be attributed to
the ineffectiveness of interventions during the chronic phase or
potential bias during the assessment. Indeed, acute and chronic
DoC have different pain profiles (i.e., chronic DoC are more prone
to develop spastic paresis or neuropathic pain and are thus more
resistant to analgesic therapies). Another study performed in a

large sample of patients with TBI showed that BINAM scores
were also sensitive to the administration of a non-opioid analgesic
medication (Whyte et al., 2020). These studies indicate that the use
of appropriate analgesia could reduce the risk of misdiagnosis and
that the monitoring of pain (i.e., NCS-R and BINAM) as well as
arousal/consciousness (i.e., assessed using the CRS-R) is necessary
to set a good balance between pain relief and side effects of these
treatments. Regarding pain treatment in LIS patients, a recent
study highlighted that the majority of the surveyed patients were
receiving pain killers (73% non-opioids, 20% non-inflammatory,
and 13% weak opioids; Bonin et al., 2022c). In this study, 36% of
the surveyed patients were suspected of having neuropathic pain.
The first-line treatments for this type of pain are antidepressants
and antiepileptics (Foley, 2003). Some of these patients (12%)
were indeed being treated with these two types of drugs, but it was
not clear from the information collected in the study whether it
was given specifically for neuropathic pain or for other reasons.
It is also possible to relieve patients’ pain indirectly by acting
on the source of the pain. For instance, several studies found
beneficial effects of intrathecal baclofen on reducing spastic paresis
as well as on improving consciousness recovery (Francois et al.,
2001; Shrestha et al., 2011). By decreasing spastic paresis, these
approaches could facilitate consciousness recovery by improving
motor function and/or reducing pain (Pistoia et al., 2015; Lanzillo
et al., 2016).

As explained above, pharmacological treatments often induce
side effects that can impact the behavioral responses of patients
during evaluations. Therefore, being able to propose non-
pharmacological treatments seems essential to manage pain in these
patients. The use of invasive brain stimulation techniques such as
deep brain stimulation on the PAG and the rostral ventromedial
medulla or motor cortex stimulation have proven to be effective in
the treatment of chronic pain but remain difficult to implement
in patients with DoC (Bittar et al., 2005; Cruccu et al., 2007;
Lima and Fregni, 2008; Fontaine et al., 2009). Although less
effective than invasive stimulation, a possible alternative to these
methods would be the use of non-invasive stimulation techniques
such as repetitive transcranial magnetic stimulation or transcranial
direct current stimulation (Klein et al., 2015; Lefaucheur et al.,
2017). The effectiveness of physiotherapy or aerobic exercises (in
combination with other methods) has also shown beneficial effects
for pain management in LIS patients (Rice et al., 2019). Regarding
other non-pharmacological approaches, and according to Bonin
et al.’s (2022c) survey, only a minority of LIS patients have ever
tried methods such as osteopathy, acupuncture, or electromagnetic
therapy and none have tried hypnosis, relaxation, or meditation.
None of these methods have been specifically investigated in
patients with LIS, while some techniques could be of particular
interest for these patients. Although used in the clinical setting
on other pathologies, some of the methods are still controversial.
Osteopathy, for instance, shows different results depending on
the type of pain. A systematic review investigating osteopathy
on musculoskeletal pain did not provide convincing evidence of
efficacy in treating such pain (Posadzki and Ernst, 2011). However,
another systematic review focusing on chronic low back pain
found osteopathy to be effective in relieving it (Dal Farra et al.,
2021). A recent meta-analysis showed that acupuncture can be
effective in some cases of chronic pain such as musculoskeletal,
headache, and osteoarthritis pain (Vickers et al., 2018). A study in
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FIGURE 4

Pain treatment options in DoC and LIS patients (created with BioRender.com). Based on Posadzki and Ernst (2011), Klein et al. (2015), Chatelle et al.
(2016), Vickers et al. (2018), Rice et al. (2019), Bicego et al. (2021), and de Pedro Negri et al. (2022).

mice also showed the effectiveness of this technique in relieving
allodynia and improving emotional/cognitive dysfunction caused
by neuropathic pain (Jang et al., 2021). Regarding electromagnetic
therapy, systematic reviews of patients with musculoskeletal or
chronic pelvic pain have shown that this method could be effective,
but further studies are needed to examine the use of more
standardized protocols (Paolucci et al., 2020; de Pedro Negri et al.,
2022). Studies focusing on the use of hypnosis in healthy subjects
and patients with acute or chronic pain highlighted a modulation
of pain perception during the hypnotic state (Rainville, 1997;
Vanhaudenhuyse et al., 2018; Bicego et al., 2021). A multiple-case
study found that self-hypnosis could also be a useful tool to improve
the quality of life of patients suffering from phantom limb pain (i.e.,
sensation of pain in a limb that has been amputated) by reducing
the intensity of the pain, whether sensory or affective (Bicego et al.,
2022). The reduction of pain sensation induced by hypnosis allows
decreasing the doses of analgesics usually administered to these
patients and thus improves their level of arousal and quality of
life. The use of this technique in LIS patients, by avoiding side
effects such as fatigue, could allow them to make the most of their
communication tools. Meditation is an approach that has not yet
been studied in LIS patients. However, experts in meditation show
a decrease in pain sensitivity associated with an increase in brain
activity in regions involved in pain processing, and a decrease
in brain activity in regions involved in emotional processing
and executive functions (Grant et al., 2011; Gard et al., 2012).
It is hypothesized that the decrease in cognitive and emotional
processing of the nociceptive stimulus may facilitate the association

of the noxious stimulus with a neutral rather than unpleasant
valence.

5. Reflections and future directions

Regarding the assessment of pain and nociception in patients
with DoC or LIS, there are currently no clear guidelines and no
clinical consensus. When performing neuroimaging analyses, it is
relevant to mention that differences in terms of structures and
physiological properties may exist between a severe brain-injured
patient and a healthy subject. Therefore, it is essential to perform
a multimodal assessment, not only based on neuroimaging but
also on pain-related behaviors and physiological changes [(i.e.,
increase of heart rate and respiratory rhythm, and skin conductance
(Cowen et al., 2015; Devalle et al., 2018; Riganello et al., 2019)]
to improve pain assessment and indirectly the diagnosis of these
patients. From a behavioral perspective, opinions still differ among
researchers and clinicians regarding some behaviors that could
be reflective of cortical processing (Poulsen et al., 2019). This is
particularly the case for facial expression such as grimacing and
crying. Indeed, even if grimacing is considered as an indicator of
pain, the Multi-Society Task Force on Permanent Vegetative State
does not consider it as a necessary sign of conscious perception,
as it can occur reflexively through subcortical pathways in the
thalamus and limbic system (The Multi-Society Task Force on
PVS, 1994). Patients showing no sign of consciousness except for
grimaces to nociceptive stimuli can therefore be diagnosed as being
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in UWS. Moreover, some patients in LIS suffer from cortical lesions.
This impacts their cognitive functions by impairing, for example,
the recognition of negative facial expressions, or leading to the
development of pathological laughter and crying which may distort
the assessment of pain (Leonard et al., 2019). Many pain scales
take into account the assessment of facial expressions in a more
or less developed way (Feldt, 2000; Gélinas et al., 2006; Chanques
et al., 2009; Chatelle et al., 2012). However, the facial expression
assessment is clinically scored based on gross observation of
facial movements in response to a noxious stimulation. A better
characterization of facial expressions could be an interesting avenue
of research to improve the behavioral assessment of these patients.
For instance, the use of the facial action coding system could
be developed in these patients. This system allows the coding
of different types of emotions (including pain) based on the
anatomical analysis of facial movements. It can distinguish 46
different action units produced by a single muscle or a combination
of muscles (Kunz et al., 2007, 2008; Bartlett et al., 2014).

Numerous studies have highlighted the relevance of measuring
neurophysiological parameters in the assessment of pain and
nociception (Riganello et al., 2019; Cortese et al., 2020). At present,
very few studies have investigated the clinical utility of GSR and
PDR in the assessment of pain in DoC. This is mainly due
to the fact that these measures are not suitable for all types
of DoC patients, some of whom may suffer from ptosis often
associated with the presence of myosis (i.e., pupil constriction)
or other pupillary reactivity disorders, which makes it difficult to
measure PDR. In addition, it is important to note that there is
a gap between research and practice. The scientific literature on
LEPs is well developed, but in practice, this technique is more
complicated to implement in a systematic way. The device allowing
LEP measurement is an expensive non-portable system, difficult
to use in a clinical setting, especially with a sensitive population
such as patients with DoC. Other less costly and easier to use
techniques assessing the integrity of the spinothalamic pathways
are used in other populations and deserve to be investigated
in patients with DoC and LIS. For instance, pinprick-evoked
potentials (PEPs, mechanical stimulation) are useful to assess the
functional integrity of mechano-nociceptive pathways and detect
central sensitization (Iannetti et al., 2013; Rosner et al., 2020; van
den Broeke et al., 2020) but could be difficult to use in non-
collaborative population such as DoC patients. Then, cool-evoked
potentials (CEPs, thermal stimulation) allow the evaluation of
the integrity of the spinothalamic pathways by stimulating Aδ-
fibers and participate in the diagnosis of neuropathic pain without
inducing pain (De Keyser et al., 2018; Leone et al., 2019). Finally,
contact heat-evoked potentials (CHEPs, thermal stimulation) are
also used to specifically assess the nociceptive component of a
stimulus. These new generation of thermal cutaneous stimulators
(i.e., thermodes) are portable and easier alternatives to LEPs for
the recording of robust nociceptive (heat) and non-nociceptive
(cold) responses in patients with DoC (De Schoenmacker et al.,
2021; Lejeune et al., 2022). The aforementioned techniques
could allow better understanding of nociception processing and
facilitate neuropathic pain detection in patients with DoC and
LIS, which is currently understudied. In the future, the NCS-R
could be improved by integrating new physiological parameters
like other recently developed scales, such as the BINAM for TBI
patients or the PAS. Moreover, the measurement of physiological

parameters could facilitate the assessment of the nociception/anti-
nociception balance after analgesic administration. Indeed, to
monitor the effects of analgesics administered during general
anesthesia, anesthesiologists can use different types of tools
measuring the activity of the autonomic nervous system (De
jonckheere et al., 2015). The above-mentioned ANI, for instance,
is based on HRV analysis and allows the measurement of the
relative parasympathetic tone. Its score ranges from 0 to 100, a
low score meaning that the patient is able to process nociceptive
stimulus. The Surgical Pleth Index (SPI) is rather based on the
measurement of the orthosympathetic hemodynamic response
to noxious stimulation, and uses normalized heartbeat intervals
(HBIs) and plethysmography wave amplitude for its calculation
(Rogobete et al., 2021). The PDR and the GSR are also used in
anesthesia to assess the sympathetic tone but have not yet been
studied in detail in patients with DoC and LIS. The functional near-
infrared spectroscopy (fNIRS) applied to pain detection could also
be an avenue of future research to investigate. It is a non-invasive,
low cost, easy-to-use, and portable brain imaging technique that
allows to measure cortical hemoglobin concentration changes
(Barati et al., 2017; Lopez-Martinez et al., 2019). Studies in healthy
subjects have shown that fNIRS can provide an objective and
robust assessment of pain by measuring changes in hemoglobin
in the sensorimotor and prefrontal cortex (Yücel et al., 2015). Its
application for pain detection has also been studied in sensitive
and non-communicative patient populations such as infants and
critically ill patients (Ranger and Gélinas, 2014; Yuan et al., 2022).
The fNIRS is also used in patient with DoC to improve diagnosis
but there is not, to our knowledge, any study specifically related
to the detection of pain in this population (Rupawala et al., 2018).
This measurement technique could also be an avenue to develop in
post-coma patients given its low cost, ease of use and portability.

In the future, it would also be essential to develop non-
pharmacological therapies in order to limit the use of analgesics
and thus avoid the side effects such as fatigue or decreased vigilance.
Few studies have looked at the effects of music therapy on the level
of consciousness of UWS and MCS patients and have shown that it
is a safe and effective method that can improve functional outcomes
of patients [for a meta-analyses refer to Li et al. (2020)]. The effect
of this technique on pain perception in LIS and DoC patients has
not, to our knowledge, been studied yet. However, studies carried
out in other patient populations have shown interesting effects (by
reducing anxiety for instance) which suggest that this may be an
interesting avenue to investigate in future research (Lin et al., 2020;
Santiváñez-Acosta et al., 2020; Dallı et al., 2022; Seyffert et al., 2022).

This review focuses mainly on the physical pain that DoC
and LIS patients may experience. However, LIS patients may
also suffer from emotional pain such as depression or anxiety
(Bergés et al., 2007; Rousseau et al., 2015; Bonin et al., 2022c).
More studies are still needed to better characterize this type of
suffering and its impact on patients’ daily lives in order to propose
appropriate pharmacological (e.g., antidepressants and anxiolytics)
and complementary (e.g., hypnosis and meditation) treatments.

6. Conclusion

There are still many unknowns in the assessment, management
and treatment of pain in DoC and LIS patients. The NCS-R remains
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the most appropriate way to assess pain in patients with DoC but
could be improved by considering the inclusion of physiological
parameters in their behavioral assessment. The measurement of
pain and nociception should be done with a multimodal approach,
also taking into account (neuro)physiological and neuroimaging
data as complementary measures. It is known that some behavioral
UWS patients may show preservation of cortical areas involved in
nociceptive signal processing. Then, pain assessment and analgesic
treatments should be applied in a more systematic way, and
most importantly, independently of patient’s clinical diagnosis. In
particular, titration of analgesic agents should be implemented
to determine the optimal dose of the medications. The NCS-
R and the BINAM represent relevant assessment tools to find a
balance between reduced pain and preserved level of consciousness
following analgesic treatment. For the moment, the guidelines of
the American Academy of Neurology recommend the use of the
NCS-R to assess pain in patient with DoC but these guidelines still
need to be developed further and refined (Giacino et al., 2018).
Regarding patients in LIS, even if they do not communicate their
pain spontaneously, it is important to actively and regularly make
an assessment through the use of simple communication codes.
When signs of pain are detected, it is essential to identify the source
of the physical and emotional pain to be able to propose appropriate
treatments, both pharmacological and non-pharmacological.
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