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How far neuroscience is from
understanding brains

Per E. Roland*

Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark

The cellular biology of brains is relatively well-understood, but neuroscientists

have not yet generated a theory explaining how brains work. Explanations of how

neurons collectively operate to produce what brains can do are tentative and

incomplete. Without prior assumptions about the brain mechanisms, I attempt

here to identify major obstacles to progress in neuroscientific understanding of

brains and central nervous systems. Most of the obstacles to our understanding

are conceptual. Neuroscience lacks concepts and models rooted in experimental

results explaining how neurons interact at all scales. The cerebral cortex is thought

to control awake activities, which contrasts with recent experimental results.

There is ambiguity distinguishing task-related brain activities from spontaneous

activities and organized intrinsic activities. Brains are regarded as driven by external

and internal stimuli in contrast to their considerable autonomy. Experimental

results are explained by sensory inputs, behavior, and psychological concepts.

Time and space are regarded as mutually independent variables for spiking,

post-synaptic events, and other measured variables, in contrast to experimental

results. Dynamical systems theory and models describing evolution of variables

with time as the independent variable are insu�cient to account for central

nervous system activities. Spatial dynamics may be a practical solution. The

general hypothesis that measurements of changes in fundamental brain variables,

action potentials, transmitter releases, post-synaptic transmembrane currents,

etc., propagating in central nervous systems reveal how they work, carries no

additional assumptions. Combinations of current techniques could reveal many

aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in

insects and rodents to start with. But problems defining baseline and reference

conditions hinder interpretations of the results. Furthermore, the facts that pooling

and averaging of data destroy their underlying dynamics imply that single-trial

designs and statistics are necessary.

KEYWORDS

understanding brains, neuroscience concepts, spatial brain dynamics, intrinsic activity,

spontaneous ongoing activity, brain mechanisms, dendrites, axons

1. Introduction

Understanding how a system works, usually means to understand the mechanisms by

which its elements interact. If the major interaction mechanisms are known and ideally

described mathematically, one has a theory of the system. So, the reason why neuroscientists

do not understand how brains and central nervous systems work is that there is no theory

of brains and central nervous systems. A scientific theory of a central nervous system

(CNS) is an experimentally based general set of explanations of how the elements in a CNS

interact at all scales of observation, i.e., from the molecular to the macroscopic scale. At

the molecular scale neuroscience is guided by the theory of molecular biology. Although

molecular neuroscience does not have a mathematical framework, it identifies molecules,

provides rules explaining genetic replication, transcription, synthesis, interactions,
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and transformation of organic molecules. However, at the cellular,

and especially supracellular scales of observation, neuroscience is

far from having a guiding theory.

The purpose of this article is to identify why it is so difficult to

build a theory of brains and point to domains where neuroscience

seems stuck in that process. Indeed, experimental neuroscience

produce a rapidly increasing number of results. Based on the

current structure of (systems) neuroscience, I will argue, it is

impossible to put all results together to a theory of a CNS. The

reasons are not primarily lack of experimental data, nor lack of

methods. So, those who expect a review of how far neuroscience

has reached and expect to find a list of what we do not yet know,

please stop reading here. Rather the reasons for lack of progress are

obstacles inherent in current neuroscientific practice which hinder

us from knowing more about brains.

In this paper I use a theory of science approach to locate

weaknesses in neuroscientific practices.

Neuroscience works, as other scientific disciplines, with a

scientific scheme (Figure 1). Normally theory would be at the

top in Figure 1. However, in the absence of a guiding theory,

neuroscientists form hypotheses guided by concepts. If a concept

used in neuroscience does not match brain activities, neuroscience

will not progress in that direction. This is the danger of not having

a theory in which relations among concepts are defined without

inconsistencies. Figure 1 may serve as a roadmap for this paper,

dealing with obstacles in the neuroscientific process.

Within the realms in Figure 1, one can identify obstacles of

progress. The obstacles of progress indirectly identify frontiers

in (systems) neuroscience. In many cases, it is possible to give

suggestions that could circumvent an obstacle, push it, or eliminate

it. In this effort, I build on results provided by many wise

colleagues during workshops aimed to understand how brains and

central nervous systems work (see Acknowledgments). This article,

however, is my personal extract.

2. Conceptual obstacles

2.1. Lack of neuroscientific concepts

Anyone studying neuroscience and reading textbooks and

neuroscientific literature gets introduced to the concepts that

neuroscientists use to explain how central nervous systems are

anatomically constructed and how neurons work. Some concepts

are rooted in reproducible experimental results from neuroscience

itself: synapse, transmitter release, membrane currents, action

potentials, ion-channels, excitation, inhibition, etc. Some concepts

are more loosely used: top-down, bottom-up, dorsal and ventral

streams, parallel processing, or recurrent processing with reference

to anatomical schemes of connectivity.

Many concepts, however, are borrowed from other scientific

disciplines (Figure 2). The concepts shown in Figure 2 are used

to explain how the systems in their mother disciplines work

technically and (often) mathematically. These borrowed concepts

are used as analogies in neuroscience. But the borrowed concepts

are not tailored to explain (more complex) biological systems

such as brains. Logically, analogies cannot and do not explain

how neurons collaborate to achieve the whole repertoire of

CNS activities. Psychological concepts have been a rich source

FIGURE 1

Scientific scheme for neuroscience. Roadmap for this paper. Instead

of having theory on top, neuroscience have a set of concepts

guiding hypothesis formation. Most of the obstacles for progress are

conceptual. Conceptual glitches propagate to hypotheses, creations

of experimental conditions, data analysis, and interpretations of

results. First, concepts, which cannot e�ciently relate to brain

activities are identified. Then obstacles for models of brain functions

based on brain structure and assumptions of connectivity are

exposed. It is shown that cognitive tasks are not localized to specific

sets of cortical areas. Unchartered issues and obstacles in

understanding dendritic processing in single neurons and

populations of neurons are discussed. Di�culties of distinguishing

task related bran activities from spontaneous and intrinsic activities

are discussed and so is the relation between autonomous and

stimulus driven brain activities. The assumption that time is the

independent variable for brain activities is analyzed and

experimental results incompatible with this hypothesis are

presented. Dynamic systems theory and models are blind to spatial

interactions, limiting this approach. These obstacles are followed by

suggestions to overcome them. Technically, experimental

neuroscience is mostly challenged by revealing fast processes at the

single neuron scale and limited by di�culties of including primates.

Experimental practice neglects di�culties of finding true reference

conditions, neglects the problematic assumptions that experimental

animals always are naïve, and trials are statistically independent.

Similarly, data are analyzed by bandwidth filters, temporal and

spatial averaging removing important aspects of brain mechanisms.

Finally, avoiding these many obstacles could make it easier to

reliably interpret experimental results.

for importing brain functions into neuroscience. Psychological

concepts are made to explain and link human behavior to particular

social or environmental conditions, but not fitted to explain the

mechanisms by which neurons produce this behavior.

Recently, dynamics and tools from dynamical systems theory

are used to characterize the collective activities of neurons

(see later). The analogies shown in Figure 2 are also used as

assumptions, as part of scientific hypotheses, and to interpret

experimental results. If we remove all analogies and metaphors as

attempts to explain brain mechanisms in neuroscience, will we lose

understanding of brains? Logically, the answer is no. But one may

claim that brains have certain properties which could be labeled by

psychological concepts. For example, brains can show attention. In

this case, which is not the rule, it is possible to hypothesize and

experimentally identify physiological mechanisms creating a pre-

stimulus activity making it possible to detect, say near threshold

stimuli (see later). When this is experimentally supported, it

would be scientifically efficient to refer to this brain mechanism,
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FIGURE 2

Examples of concepts in neuroscience borrowed from other disciplines. These concepts are analogies explaining how other systems work. In

neuroscience, these concepts are attempts to explain how brains work by explaining how other non-brain systems work. Analogies cannot explain

brain mechanisms because they lack ontological connection to measurable brain variables. In other words, it is obscure how the concepts relate to

brain variables. To remedy this, neuroscientists sometimes make new definitions of the concept. For example, gain gets re-defined as the relative

increase in spike rate for a neuron. In other instances, raw data get transformed to comply with borrowed concepts. For example, oscillations are

rare in in vivo measurements. The irregular field potentials and EEG recordings then gets filtered to produce band limited oscillations (see further

under Experimental obstacles and data analysis). In short, the use of borrowed concepts implies unnecessary troubles and uncertainties in the whole

neuroscientific process (Figure 1).

FIGURE 3

Interdigitating dendrites. (Left) Two hundred thirteen reconstructed apical dendrites from layer 2 (61 gray dendrites) and layers 3, 4, and 5 (152

dendrites) from mouse anterior cingulate cortex (from Karimi et al., 2020, with permission). In the volume, ∼2,000 dendrites from adjacent neurons

and multiple axonal branches from adjacent local and distal neurons will complete the picture. (Right) Electron microscopic image, 10 × 12µm, from

adult rat CA1 stratum radiatum, with dendrites identified by stars and d (number). MA, myelinated axon (from Harris et al., 2022, with permission).
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rather than referring to a psychological concept with unclear

ontological connection to brains. This replacement gives a precise

definition that can be experimentally tested. Neuroscience should

explore all possible conditions with no conceptual restrictions (see

later). When we abandon the analogies, neuroscientists would

be forced to analytically form concepts and hypotheses of brain

mechanisms based on experimental results. Lack of concepts

explaining collective interactions of neurons at all spatial scales of

observation is a real obstacle for neuroscience.

Conceptual frontier 1: Develop concepts strongly rooted in

experimental results explaining how neurons (and glia) interact

at all scales.

2.2. Brain structure and models

Connectomics produce reconstructions showing the

challenging microstructure of cortical networks (Figure 3). The

challenge is to extract the functionally most relevant connectivity

to build models of CNS activities. An alternative is to simulate the

whole connectome. Currently insect (Drosophila) and mammalian

connectomes available are partial connectomes showing synaptic

connections of only a part of the CNS (Scheffer et al., 2020). So, in

practice, simulations still evolve in a local network (for example

Markram et al., 2016; Schmidt et al., 2018). Apart from the trouble

of building the model, the model must also be validated against

experimental results, which would be quite an undertaking.

So far CNS models have no lasting eigen activity. There are

some relatively detailed models of cerebral cortex (Izhikevich

and Edelmann, 2008; Kumar et al., 2008; Eliasmith et al., 2012;

Markram et al., 2016; Schmidt et al., 2018). These models are

started by injecting noise, stimuli, or Poisson spike trains. However,

when the afferent stimulation ceases, the spiking activity dies

out. Mammalian brains, and most likely also insect and zebrafish

CNS, have eigen activity as ever-changing ongoing spiking and

membrane currents no matter whether they are stimulated or not,

awake or at sleep (Rudolph et al., 2007; Yap et al., 2017; Stringer

et al., 2019; Davis et al., 2020; Marques et al., 2020; McCormick

et al., 2020; Siegle et al., 2021; Willumsen et al., 2022).

Conceptual frontier 2: Build a brain model with modifiable, but

everlasting ongoing changes of membrane potentials and spiking

like that in mammalian brains.

2.3. Functions and CNS activities

Except in mathematics, the word function assumes activity to

fulfill a purpose or obtain a goal. Following the line of thinking

in the lack of concepts section, one ought to be careful reading

purposes or psychology into CNS activities (Buzsaki, 2020). A

more neutral description is CNS activities. CNS activities can

be measured directly as changes of trans-membrane currents

(which includes action potentials), transmitter release and binding,

receptor induced biochemical changes, synthesis of brain specific

proteins and other compounds, activity of transmembrane pumps

and transporters. CNS activities can be measured indirectly as

field potentials, changes in magnetic fields (see technical obstacles).

What people and animals experience, think, memorize, and how

they behave, as a general hypothesis, are consequences of CNS

activities at many scales. Arriving at a full description transcending

all scales of observation it the task of neuroscience. This task meets

further obstacles.

2.3.1. Are CNS activities carried out by separate
loops, circuits, modules, or one large network?

The ideas that chains of neurons (sometimes organized in

cortical-subcortical loops), micro-circuits, and modular organized

cortical columns are responsible for brain activities have been

criticized. The reasons were unrealistic simplifications of the

actual synaptic connectivity neglecting actual dendritic and axonal

anatomy (Figures 3, 4). These ideas also neglect divergence of

connections to other structures than the members of the loops,

micro-circuits, or columns (Alito and Usrey, 2005; Rockland, 2010,

2021; Foster et al., 2021; Shepherd and Yamawaki, 2021).

Studies of cortical neurons operating in vivo show widely

spreading depolarizations, excitations, and spiking. These results

leave no support for activity restricted to a circumscribable

location, to a specialized microcircuit or to columns (see following

sections). Rather the spreading mechanisms may relate to the

actual neuron anatomy with interdigitating multiple dendritic

and axonal branches (Figures 3, 4). In a CNS perspective, large

populations of neurons spike in many areas of cortex, sectors of

basal ganglia, thalamus, other parts of the diencephalon, brain

stem nuclei, cerebellum, and spinal cord, even during simpler

tasks (Steinmetz et al., 2019; Wagner et al., 2019; Li and Mrsic-

Flogel, 2020; Peters et al., 2021; Grün et al., 2022). Moreover,

diencephalic and mesencephalic nuclei contribute significantly to

choices and specific behaviors, showing that brain activities are

results of interacting brain stem, cerebellar, basal ganglia, thalamic,

and cortical networks (Figure 5).

Conceptual frontier 3: Rather the crucial issue is whether the

whole CNS is active, and if not, which (biophysical) mechanisms

determine how far depolarizations and spiking spread in CNS?

2.4. Single neuron activities

2.4.1. Action potentials are for interaction: the
bulk of processing in neurons take place in the
dendrites

As axons only conduct action potentials, the post-synaptic

current transformations, processing, and plasticity in a neuron

takes place in its dendrites (and in soma constituting the smaller

part). Processing of synaptic excitatory post-synaptic potentials

(EPSPs) in dendrites is complex (Figure 6). Roughly, excitatory

transmitters elicit a localized EPSP in the post-synaptic spine,

spreading only sparsely into the local dendrite. However, synaptic

EPSPs, close in space and time, may open Ca2+ channels and

NMDA channels in the dendrites to produce Ca2+ spikes or Ca2+
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FIGURE 4

Examples of axon anatomy. Ten axons targeting prelimbic area in the mouse. The prelimbic area is small, located at the rostral and mesial surface of

the frontal lobe (approximate location red in insert). (Top) Overview of the mouse brain. (Bottom) Close view. Each axon targeting the area branches

at successive positions to produce an exponentially increasing number of axonal branches. An axon can have 1,000 branches (Wu et al., 2014). A

single action potential (AP) in the initial part of such an axon then at each branch point give rise to two APs, one traveling in each branch. With no

failures (Alcami and El Hady, 2019) this gives around 500 action potentials traveling in the roughly 500 terminal branches. Although several branches

of one axon target the prelimbic area, many of its branches also end in several other cortical areas. From the MouseLight database,

http://mlneuronbrowser.janelia.org. Axons belong to the following single neurons in series AA: 0138, 0241, 0344, 0397, 0402, 0802, 0842, 0883, 0897,

and 1425. Four axons originate from motor cortex layer 2/3, two from motor cortex layer 5, one from adjacent anterior cingulate cortex, one from

visual association area AM, one from ventral anterior nucleus of thalamus, and one from the intralaminar rhomboid nucleus of thalamus. The finest

axonal branches (Figure 3) are not visible with this method.

plateau potentials and NMDA spikes or NMDA plateau potentials.

These spikes and plateau potentials can propagate locally in one

or a few adjacent dendrites without propagating to the soma and

generate action potentials (Larkum et al., 2022; Moore et al., 2022;

Stuyt et al., 2022). Depending on the spatial interactions, the plateau

potentials or larger spikes can also propagate to the soma and elicit

an action potential (Otor et al., 2022).

Another scenario is that synaptic EPSPs close in space and

time to distal dendrites may produce Ca2+ plateau potentials or

NMDA spikes in many or all apical dendrites. Alternatively, this
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FIGURE 5

Brain stem nuclei participate in cognitive tasks. (A) Y-axis: population mean firing rates in task go trials (orange), task missed trials (blue), and passive

sensory stimulation (gray). X-axis time 0 s stimulus onset/ target onset that the mice must bring into the center of the field of view. Note the di�erent

pre-stimulus rates in the midbrain reticular nucleus (MRN) and the zona incerta (ZI) and how these nuclei and the anterior pretectal nucleus (APN)

and peri-aqueductal gray matter (PAG) become engaged in the action selection. (B) Sagittal section of the mouse brain showing these nuclei

(red-brown) in the right brain stem specifically engaged in the right motor response (action selection; adapted from Steinmetz et al., 2019) with

permission. (C) Sagittal section of the human brain showing the right side of the brain stem when normal subjects with their right thumb or right

index finger respond to a faint increase in a visual or somatosensory stimulus, respectively. The color-coded significant increases in regional cerebral

blood flow are located in the right midbrain reticular nucleus (and in the visual cortex; adapted from Kinomura et al., 1996) with permission.

FIGURE 6

Dendritic processing. Post-synaptic processing can be an EPSP localized to a single synapse and a small part adjacent dendrite. Na+, NMDA, and

Ca2+ spikes and NMDA, and Ca2+ plateau potentials with limited progress depolarize one or a few dendrites. Multiple spikes and plateau potentials

with larger spatial progress depolarize all apical (shown) or all basal dendrites (not shown) or globally excite all dendrites and the soma (Modified

from Stuyt et al., 2022) with permission.

can happen in basal dendrites. Neither of these processes may lead

to any action potentials, but nevertheless induce or restore plasticity

in the active dendrites (d’Aquin et al., 2022). Similarly, apical or

basal dendrites, at least in pyramidal excitatory neurons, may stay

globally depolarized for up to a few seconds without this leading

to a spike (Larkum et al., 2022; Stuyt et al., 2022). In addition to
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the Ca2+ and NMDA spikes, dendrites can also produce smaller

Na+ spikes (spikelets) locally in the dendrites without this leading

to action potentials (Goetz et al., 2021).

Propagation of dendritic spikes and plateau potentials to the

soma often induce action potentials (Larkum et al., 2022; Moore

et al., 2022; Stuyt et al., 2022). The combination of apical-

somatic plateau potentials and action potentials may elicit a

back-propagating action potential to many or all apical or basal

dendrites. This is a mechanism that is also likely to induce or

modify the plasticity of the dendrites.

The single (pyramidal) neuron can support several processes in

parallel with or without spiking. Consequently, an action potential

could be the result of many different dendritic processes.

Conceptual frontier 4: Understand the local and global

in vivo processing in dendrites of single neurons and their

consequences for emission or withholding action potentials.

This also addresses the question of which processing leads to

the spike emitted.

With rare exceptions (Mel, 1993; Jones and Kording, 2022)

dendritic processing is an important fact that is neglected in models

of CNS networks (Shepherd and Grillner, 2018).

2.5. Larger scale network activities

2.5.1. Spontaneous and task-related activity
During an experimental task, e.g., 40% of the neurons in the

brain and mesencephalon may increase their spiking, and up to

20% of neurons decrease their spiking, whereas the remaining 40%

of the neurons do not change their ongoing spiking (Steinmetz

et al., 2019; Siegle et al., 2021). However, a large proportion of

neurons (up to 40% of all neurons) may not spike at all (Shoham

et al., 2006; Barth and Poulet, 2012; Wohrer et al., 2013). These

non-spiking neurons could also participate in the task, for example

by depolarizing or hyperpolarizing their dendrites (Roland et al.,

2006, 2017; Mohajerani et al., 2010; Esteves et al., 2021; Liang et al.,

2021). In the future, it might be possible to estimate the proportion

of neurons participating in a task in mammals by changing their

transmembrane currents (see technical obstacles). For spiking, the

above results might be illustrative. Thus, there are task related

activities, but most studies report many spiking neurons seemingly

unrelated to tasks (Urai et al., 2022). In the literature this is often

called spontaneous activity.

The usual distinction is between task related activity and

“spontaneous ongoing activity,’ i.e., CNS activities that may co-

exist, but are unrelated to task and task behavior. This distinction

must be made for any of the activity variables measured (spiking,

synaptic, postsynaptic activity variables as defined in section 3).

In practice the distinction is often set by sorting the neurons in

two groups. One group for which changes in measured variables

correlate with parameters of the task. The other group for which

this is not so. This strategy may overlook neurons which are

necessary for solving the tasks but unrelated to the stimulation and

behavioral parameters (see later). The spontaneous activity may be

seemingly random fluctuations of the measured variables in space

and time. For example, the continuous local spatial and temporal

irregular changes from slight excitation to slight inhibition prior

to the stimulation as in Supplementary Video 1. This CNS activity

is easy to distinguish from task CNS activity. However, during the

experiment there may be neurons supporting intrinsic (cognitive)

CNS activities un-related to the task (Figure 7). Separating task

related activity from such “spontaneous” or more precisely self-

organized intrinsic cognitive activity is difficult and may only be

possible under assumptions. For example, two tasks depending on

activities engaging the same part of the CNS network interfere

and cannot be performed simultaneously (Herath et al., 2001)

(Figure 7).

Conceptual frontier 5: Separate self-organized intrinsic activity

in CNS from task dependent activity.

This may require examination of the whole CNS (Figure 5).

Larger scale CNS activities may also be classified according to their

causes. The questions raised in this section are all related to how

brains and a central nervous systems self-organize their activities.

2.5.2. Are brains driven or autonomous?
Until recently, neuroscience has been mainly oriented to

explain how changes in the surrounds and behavioral conditions

change transmembrane currents (including action potentials) and

synaptic efficacy in brain neurons. Recently, there is accumulating

evidence contesting this view that spiking and post-synaptic

dynamics in brains are predominantly externally driven (Figure 7)

(Millner, 1999; Fried et al., 2011; Buzsaki, 2019; Steinmetz et al.,

2019; Cowley et al., 2020; Marques et al., 2020; Clancy and Mrsic-

Flogel, 2021; Grün et al., 2022). The alternative is self-organized

intrinsic activities. Intrinsic activity is independent of external

stimuli, internal stimuli, demands and tasks, which also distinguish

it from CNS activities related to bodily internal functions such as

thirst, hunger, and sexual desire.

Brains are not in direct contact with the surroundings. Strictly,

all spikes generated in a central nervous system are intrinsically

generated. Brains can self-organize their everchanging intrinsic

activity to generate slow waves, spindles, sharp wave ripples,

faster irregular membrane fluctuations, dreams, and, in awake

conditions, thoughts, plans, strategies, overt behavior, and (some

brains) language (Figure 7). Even in primary visual and auditory

cortical areas, only 5%−15% of the spikes carry information

about the surround (Richmond and Optican, 1990; Heller et al.,

1995; Olshausen and Field, 2006; Keyser et al., 2010; Urai et al.,

2022). Similarly, the correlation of spike trains with external

visual stimuli is low, typically around 0.1 in the primary visual

cortex (Eriksson et al., 2010). These results are well known and

indicate that 85%−95% of the spikes in a brain are autonomous.

A recent large-scale study showed that external stimuli and

various experimental conditions could modify fluctuations in

the (multidimensional) human cortical field potential, but not

perturb the underlying dynamics generating the fluctuations

(Willumsen et al., 2022).

Conceptual frontier 6: describe and classify CNS activities by

how they engage the CNS network by changing CNS activities
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FIGURE 7

Cartoon illustrating di�erent views on brain activities.

SPONTANEOUS activities are independent of external signals and

TASK activities. Spontaneous brain activity can be (blue) fluctuating

irregular “background” activity spatially independent at scales < 1

mm3 when the brain is awake, but idle and not producing any motor

activity. In other parts of the brain, INTRINSIC cognitive activities

(green) not leading to any behavior engaging the network in several

parts from the microscopic to macroscopic scales may co-exist

with the TASK activity (red). AUTONOMOUS. The brain could be

autonomous with self-organized intrinsic activities engaging the

network at all scales that external stimuli and demands cannot

change, but only slightly modify. The autonomous brain

self-organizes motor behavior (symbolically pictured as a muscle).

(Continued)

FIGURE 7 (Continued)

DRIVEN. Task related activity and external sensory stimuli and

internal stimuli from the body drive brains away from spontaneous

activity into sensory and cognitive activities at all scales, which

eventually result in some motor behavior.

(defined in section 3). (Referring to sensory input, behavior, and

psychological concepts may have limited explanatory power).

On the other hand, in awake conditions, focused attention and

exclusion or suppression of own (intrinsic) activities can entrain

field potentials partly or globally over the cerebral cortex. For

example, in humans and other primates exposed to rhythmic

visual or auditory stimuli, each stimulus produces a single time-

locked oscillation. These time-locked oscillations can spread, with

different lags, to cover the whole cortex (Besle et al., 2011;

Gomez-Ramirez et al., 2011; Spaak et al., 2014; Merchant and

Averbeck, 2017; Willumsen et al., 2022). Also, unexpected stimuli

may elicit spreading excitation and spiking globally over cortical

areas (Ferezou et al., 2007; Salkoff et al., 2020). Thus, under such

circumstances, cortical networks are largely externally driven.

Most likely, brains have a certain degree of autonomy. In

addition, brains regulate their sensitivity to external sensory

impact. Autonomy may be distributed over different CNS

structures and be differentially regulated in each structure. Even

respiratory inspiration can be voluntarily modulated. Similarly, in

subjects planning a motor effort, the motor system can increase

the heart rate and blood pressure in advance of the motor action

(Pfurtscheller et al., 2013).

Conceptual frontier 7: Measure regulation of CNS autonomy.

2.5.3. How does intrinsic activity in brains
emerge?

Conceptual frontier 8: Find principles for how intrinsic activity

in brains emerge.

Drosophila and zebrafish larvae possess neurons (P1 neurons

and dorsal raphe neurons, respectively) which by increased spiking

mobilize several structures to produce complex behavior lasting

minutes. The number of neurons triggering these behaviors is less

than 100 (Jung et al., 2020; Marques et al., 2020). Details of how the

trigger neurons recruit a large part of the CNS are still lacking. The

changes in spiking and recruitment ofmany populations of neurons

are examples of an intrinsically organized activity spreading to large

parts of a CNS.

From mammals, there are examples of how the spiking of one

or very few neurons can change the behavior and performance of an

animal (Romo et al., 1998; Houweling and Brecht, 2008). However,

in these examples, the animals were engaged in a task; therefore,

they do not qualify as intrinsic activity (see also the text later).

But the fundamental questions are still pending. For example,

how many neurons are required to generate intrinsic dynamics?

How many neurons are required to generate intrinsic dynamics

leading to overt behavior? Dreaming is yet another example

Frontiers in SystemsNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1147896
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Roland 10.3389/fnsys.2023.1147896

FIGURE 8

Spatial dynamics of spiking. (A) Small groups of individual neurons spike in the same spatial order in single trials from the macaque pre-motor and

motor cortex (in contrast to synchrony and temporal patterns, Grün et al., 2022). (B) Excitatory sweeps elicited by spiking exciting the dendrites

post-synaptically in a spatial order. Left: Excitatory sweep, 122ms after the appearance of an object moving in the field of view, in areas 19/21 and

feedback to areas 17/18. Right: Significant spiking in areas 17/18, mostly in layers 3 and 5, shown by the white spots and excitatory sweep here at

148ms, ahead of the retinotopical mapping of the moving object (arrow to bright red). The spiking estimating where the object will be mapped in the

future (right arrow) and hence where its position in the field of view will be. See the full spatial dynamics in Supplementary Video 2 (isoflurane

anesthetized ferret, Harvey et al., 2009).

of intrinsic brain activity. How dreams start is unknown, i.e.,

how changes in spiking and transmembrane currents organize to

produce dreams.

Conceptual frontier 9: Reveal how changes in crucial variables

(membrane potentials, transmembrane currents, and spiking)

evolve to encompass larger populations of neurons in multiple

structures of the CNS.

2.6. Is time an independent variable for CNS
operations?

An independent variable is a variable that does not depend

on other variables. Time is invented by humans. Time is

composed of equal units that add linearly. Time is an independent

variable in Newtonian physics, but in the theory of relativity

and quantum mechanics, time is not an independent variable

(Rovelli, 2018). Time in neuroscience is usually regarded as

an independent variable for fundamental brain processes. As

external observers, scientists can timestamp every spike. Similarly,

one can create mathematical functions of other measured

fundamental (dependent) variables, potentials, transmembrane

currents, transmitter releases, and plasticity variables using time as

the exclusive independent variable. From a scientific point of view,

the question is whether time is the only independent variable for

operations in neurons and for CNS processes.

Conceptual frontier 10: Examine if time is an independent

variable for any activity of neurons and brains.

2.6.1. Experimental results incompatible with time
as independent variable in brain activities

Spike trains have traditionally been analyzed with time as the

independent variable. This could be a list of the times spikes

are emitted from neurons according to an external (computer)

clock or transforming the spike train to a continuous rate

function of time. However, claiming that all activities in brains

all evolve according to external clock time only (i.e., with time

as the independent variable) is a strong hypothesis that can be

proven wrong. Regarding spike trains as temporal codes carrying

information to be decoded by the brain is assuming that this type

of brain activity depends on time as the independent variable

(Figure 2). Decades have been spent to find temporal patterns

carrying the code (Barlow, 1961; Bialeck et al., 1997; Rao and

Ballard, 1999; Dayan and Abbott, 2001; Bassett et al., 2020).

Also simultaneously recorded neurons have been analyzed for

synchrony (Gray and Singer, 1989; Abeles, 1991; Singer et al.,

2019).

Working in the premotor and motor cortex of the monkey,

Sonja Grün and associates, using rigorous statistics, observed

that the same set of neurons in every single trial fired in the

same spatial order while the monkey reached out and grasped

an object (Grün, 2021; Grün et al., 2022). Subsets of 2–6

neurons elicited from 2 to 6 spikes always in the same spatial

order (Figure 8A). These spatial sequences were specific to the

components of the reaching task, i.e., related to the cue, delay,

preparation, reaching, and grasping (Grün, 2021; Grün et al.,

2022). These results show spatial dynamics at the microscopic

and single neuron scale. These results cannot be explained as

a brain activity using clock time as the independent variable.

In contrast, they demonstrate that the timing and order of
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FIGURE 9

Moving visual object and phase alignment. Object moving downwards from time 0 ms. Phase plot of depolarisation in areas 17, 18, 19, and 21 from

six ferrets aligned by their cytoarchitectural borders. Note the leading depolarization in areas 19 and 21 at 119 ms (left). Feedback 137 ms and phase

alignment canceling the delays between areas 160.8 ms (right) (Harvey et al., 2009).

FIGURE 10

Cortical operations at the mesoscopic scale incompatible with time as an independent variable (apparent motion). Spatial dynamics underlying

apparent motion illusion. (A) At time 0ms, the lower object appears. Spiking (not shown) and (B) excitation increases map the lower object

retinotopically at area 17/18 border at 32ms. At 83ms, the upper object appears, and the lower object disappears. The upper object gets mapped at

115ms retinotopically at a di�erent spatial location along the 17/18 border. At 117ms, the spiking induces a directed excitation along the 19/21

border (like that for moving objects in Figure 8B) and a feedback excitation to the 17/18 border in between the mapping of the now-extinct lower

object and the new upper object. (C) At 118ms, this elicits a directional excitation d[1V(t)]/dt and spiking r(t) at the 17/18 border progressing 120ms

to 160ms in between the former object mapping site and the new (top right). (B) The feedbacks then quench the delays between areas, and the

cortical excitation proceeds in phase from 146ms over the 4 areas. The processing in the cortex smoothed space and time and converted two

external spatial and temporal distinct objects to one moving object (A) (top; modified from Ahmed et al., 2008, licensed under CC BY-NC 2.0).

the spikes depend on the spatial positions of the collaborating

single neurons.

Another example violating time as the independent variable

in brain processing is when the retinotopic mapping of a

moving object co-exists with the mapping of the prediction of

its future external position in the visual areas (Figure 8B and

Supplementary Video 2).

If an external object moves in the field of view, it is mapped,

with different delays, in each retinotopically organized visual area

(Supplementary Video 3). So, initially, multiple versions, separated

in space and time in the brain, exists of one and the same object.

However, higher visual areas convey excitatory feed-back sweeps

to lower visual areas aligning the excitation phase between the

areas. This cancels their initial separation in brain time and produce
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FIGURE 11

Cortical spiking, excitation, and inhibition at the mesoscopic scale incompatible with time as an independent variable. Excitation, inhibition, and

spiking in ferrets exposed to two bars moving to occlude one another in the center of the field of view at 412ms. Dots show significant spiking and

white dots maximal spiking rates, otherwise conventions as in Figure 10. Notice the predictive excitations of the future retinotopic mappings of the

objects in areas 17/18 and 19/21 at 82ms, the maximal spiking at the cortex representing the center of the field of view at 413ms in an inhibitory

regimen of cortical layers 1–3 (data from Harvey and Roland, 2013).

unified motion of the object in retinotopical visual areas. This

is likely to contribute the experience to perceive only one object

moving in the field of view (Figure 9).

Brains do not always process stationary objects that are separate

in time and space as stationary in time and space (Figure 10A).

When first a stationary object appears at one position in the field

of view, this is mapped in its retinotopical position in visual areas

as explained above. If the first object then disappears and a second

stationary object is flashed at another position in the field of view,

the second object is mapped (correctly) in its different retinotopical

position in the first visual area (Figure 10B). However, the mapping

of the second object in higher visual areas elicits spatial-temporal

excitatory dynamics smoothing the mapping of the previous object

with the present object in brain space (Figure 10B). After this fusion

to one object, its dynamics in space and time in the brain is identical

to that of a moving object. This elicits the illusion that the first

objectmoved to the new position (Figure 10). Thus, external objects

stationary and separate in space and time by brain processing

become united to one moving object (apparent motion).

In vision, there is a delay between the appearance of an object

until the spiking increases in the first visual area: the retino-cortical

delay (Supplementary Video 1). Figure 11 shows how excitatory,

inhibitory, and spiking mechanisms in space and time in the brain

can quench the perceptual delay by maximizing spiking in the

cortex when two oppositely moving objects occlude one-another in

the field of view. In the examples shown in Figures 8–11, the ferrets

were anesthetized (isoflurane) showing that these brain dynamics

were automatic.

These examples demonstrate that all brain activities cannot be

explained as evolving with clock time as the independent variable.

The examples also illustrate that spiking at the microscopic scale

and postsynaptic depolarizations, excitations and inhibitions at

the mesoscopic scale evolve with time and space as mutually

dependent. The idea of time as an independent variable for brain

processes has been criticized from different theoretical points of

views (Buzsáki and Tingley, 2018; Gao, 2020; Le Bihan, 2020).

For example, interpreting both the meaning of brain responses

as measured against the clock in the computer and the meaning

of the clock units-might be a fundamental confound in current

experimental approach (Buzsáki and Tingley, 2018). Unnecessary

assumptions conceptually restrict neuroscience from developing

further.

2.6.2. Stationarity
It is often assumed, or claimed, that brain variables end up

in some form of stationarity. If this happens, the variable has

the same probability distribution over time, i.e., mean, variance,

and autocorrelation are invariant over time. If time is not an

independent variable for brain processes, the stationarity concept

loses its importance in neuroscience. Although stationarities are

convenient and simplify mathematics and statistics, are they

necessary for understanding brain activities? One may ask then,

if the concept of stationarity as defined is invalid for brains,

how do brains determine whether external objects are stationary?

For vision, Supplementary Video 4 might give a clue. Some 90ms
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after the appearance of a stationary object, the spiking, despite

continuously changing rates, is confined to the retinotopic map

of the object in the primary and secondary visual areas (see

also Lamme, 1995). This cannot be explained by statistical and

dynamical systems definitions (e.g., fixed point) of stationarity.

This is another kind of stationarity, an example of a brain

spatial stationarity.

2.6.3. Dynamical systems theory explaining brain
activities

A dynamical system is composed of a state space and rules

describing the evolution of the system over time in this state

space. Treating central nervous systems as complex dynamical

systems as complex dynamical systems has had some success

explaining collective operations of neurons. In vivo studies of

different spiking networks in the cerebral cortex but also spinal,

hypothalamic, and thalamo-cortical networks show the collective

spiking dynamics of the network neurons progress as trajectories

along low-dimensional, stablemanifolds in state space (Churchland

et al., 2010; Gallego et al., 2017; Lindén et al., 2022). On the post-

synaptic side, field potential, MEG, and EEG studies show state

space dynamics like that of strange (chaotic) higher dimensional

attractors (Babloyantz and Destexhe, 1986; Stam, 1996; Baria et al.,

2017; Willumsen et al., 2022). This dynamic may be identical for

all local networks in the human cerebral cortex. However, since

the trajectories expand and contract, the dynamic is incompatible

with the mathematical definition of attractors (Strogatz, 2018;

Willumsen et al., 2022).

Importantly, to be a truly higher dimensional (chaotic)

dynamical complex system, the CNSmust show sensitivity to initial

conditions (Strogatz, 2018). This means that one must determine

the initial conditions for a CNS. This requires that for “one point

in time,” say within a fraction of a ms, we must know how many

variables there are at each point of each neuron (say a point is a

membrane surface of 0.1 µm2) and which order they have (e.g.,

higher derivatives of the variables as a result of spatial interaction;

Figure 6). We must know exactly where and in which axon or

axonal branches action potentials are and know the conduction

velocities of each branch (Figure 4). Moreover, as we cannot be

sure whether a neuron only has spontaneous ongoing unorganized

activity or participates in intrinsic or task-related organized activity,

we must know the values of all these variables for all neurons of

the CNS within this ms. To define an initial condition in a CNS

having ever-ongoing changes of its variables at all spatial scales

seems impossible.

Dynamical systems analysis gives the temporal evolution of the

collected neurons or local network and neglects spatial interactions.

However, one can preserve the locations of the neurons in the

data and instead observe the spatial evolution as trajectories in

state space (neglecting the temporal evolution) (Roland et al.,

2017). Both these approaches thus have limitations. As shown here,

dynamical systems theory might not always fit brain activities. The

examples in section 2.6.1 show that one can directly observe and

measure spatial temporal interactions in the cerebral cortex, instead

of analysing temporal and spatial trajectories in abstract state space.

2.7. Spatial dynamics, a general hypothesis

The fundamental mechanism of interaction in CNS of most

species is spatiotemporal: each neuron sends action potentials

through all axon branches to its two–three orders of magnitude

more numerous target neurons (Figure 4). This fundamental

mechanism creates spatial dynamics in the network of neurons.

Postsynaptically, the spatial progress of currents in the dendrites

determine plasticity and spike production (Figure 6, section 4.1).

Spatial dynamics is a general hypothesis that can be tested

experimentally. The hypothesis states that changes in activity

variables (section 3) propagate through the network of neurons

that makes up a central nervous system. These propagations reveal

spatial and temporal interactions underlying CNS activities at

different scales (Roland, 2017; Grün et al., 2022). The forces driving

the spatio-temporal interactions thus are transmembrane currents,

receptor driven, and biochemical. The word dynamics refer to these

biophysical and biochemical forces driving the interactions. Thus,

spatial dynamics is not related to dynamical systems theories and

do not carry any further assumptions about brain activity variables

and their interactions.

2.7.1. Spatial dynamics at di�erent scales of
observation

Spatial dynamics is not a new idea. Tasaki et al. (1968)

used a voltage sensitive dye to follow the course of an action

potential. Spatial dynamics has been slowly progressing since

then but boosted by recent techniques permitting simultaneous

measurements of CNS activity variables in large parts or

a whole CNS (see technical obstacles). Figures 8–11 and

Supplementary Videos 1–4 are concrete examples of spatial

dynamics of spiking and postsynaptic changes in excitation and

inhibition leading to visual object perception and the apparent

motion illusion. Spatial dynamics of spiking and postsynaptic

activities operate in single neurons (Figures 6, 8A) small groups

of neurons (Figures 8B, 11), and larger populations of neurons

(Figures 8B–12). Spatial derivatives are needed to distinguish

different forms of postsynaptic processing at the network scale

(Supplementary Videos 1, 5). Spatial dynamics of the activity

variables progress though the low-dimensional geometry of a

CNS and are therefore wellsuited to reveal mechanisms of neuron

interactions at the population (mesoscopic) scale. Its challenge is

to find principles to form theories of interactions between multiple

neurons.

Conceptual frontier 10: Use spatial dynamics to find principles

of interactions of neurons at all scales of observation.

2.7.2. Cortical spatial dynamics
Spatial dynamics in the cerebral cortex relate directly

to detection, prediction, perception, illusions, retrieval,

and consolidation of memories in rodents, carnivores, and

primates (Grün et al., 2022) (Figures 8–12). Here it is not

the purpose to review spatial dynamics, only to give some

concrete examples.
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Postsynaptic excitations propagating over dendritic fields may

have many shapes and speeds (Supplementary Videos 1–5) (Xu

et al., 2007;Mohajerani et al., 2010; Denker et al., 2018; Dickey et al.,

2021). Broad postsynaptic net-excitations followed by local net-

inhibitions give the impression of a wave propagation though the

cortical network. The different forms of (mesoscopic) postsynaptic

changes have different roles in brain activities. For example,

frequency-modulated sounds elicit a depolarization sweep over

the relevant tonalities in the first and secondary auditory areas

(Horikawa et al., 1998; Farley and Norena, 2013; Horikawa and

Ojima, 2017). Retinal excitatory sweeps induced by a saccade elicit

a cortical sweep in V1 matching the direction of motion over the

retinal photoreceptors (Slovin et al., 2002).

Waves in different directions appear in mesoscopic recordings

of current changes in upper layers of cortex with fast voltage

indicators (Prechtl et al., 1997; Senseman, 1999; Roland et al.,

2006, 2017; Xu et al., 2007; Mohajerani et al., 2010; Denker

et al., 2018; Davis et al., 2020) (Figures 9–11), or in genetically

labeled pyramidal excitatory neurons, or as changes in glutamate

release (Berger et al., 2007; Song et al., 2018; Abadshi et al.,

2020; Zhu et al., 2021). The examples in Figures 8B–11 and

Supplementary Videos 1–5 were recordings from isoflurane

anesthetized ferrets receiving a visual stimulus. Although

the visual stimulus initially drives the cortical neurons after

some 28 ms, the cortex does not produce a spatial pattern

of the stimulus in each visual area. Rather autonomous

cortical spiking and postsynaptic spatial dynamics take over

producing lateral spreading excitation, feedback waves and local

inhibitions. This dynamics after some 90–120 ms converge

to a spatio-temporal “interpretation of the visual surround”

in the visual areas. Similarly, the moving visual stimulus

initially likely drives the retinotopical depolarization, but

autonomus spatial dynamics take over and produce predictive

depolarizations and spiking and further spatial dynamics

(Supplementary Videos 2, 3).

Conceptual frontier 11: form hypotheses of how different

forms of spatial dynamics distinguish different organized CNS

activities.

2.7.3. Learning dependent spatial dynamics in
awake animals

In animals trained to perform a task, intracellular Ca2+ can

stay increased for longer periods, while in other areas intracellular

Ca2+ stays decreased for longer periods. These changes are learning

and task dependent (Gilad and Helmchen, 2020; Salkoff et al.,

2020; Clancy andMrsic-Flogel, 2021; Liang et al., 2021) (Figure 12).

The optical signals reporting these changes stem mainly from

the upper, supragranular, layers of cortex. However, there are

several examples of discrepancies between spiking and mesoscopic

post-synaptic activity, even in supragranular layers. This could be

spiking under inhibitory regimes (Orsolic et al., 2021) (see also

Figure 11), or no spiking under excitatory post-synaptic regimes,

pre-excitation (Roland, 2010) (Figure 12). These discrepancies

are in accordance with the earlier mentioned observations

that dendrites may be well depolarized without giving rise to

FIGURE 12

Trained mice inhibit and excite relevant cortical areas prior to

stimulation and motor response. (A) At the time indicated by the

vertical green line, a weak whisker stimulus is given. Intracellular

Ca2+ and spiking rate, r(t), decreased in pyramidal neurons in motor

and visual areas, but increased in anterior cingulate and pre-motor

cortex. However, the mouse must wait 1,000ms until a beep tells

that it can obtain its reward by licking (redrawn from Esmaeili et al.,

2021, licensed under CC-BY 4.0). (B) Mice continuously watch a

moving grating for a sustained change in speed and respond by

licking their reward. At periods when such a change was unlikely,

this elicited moderate intracellular Ca2+ increases in premotor and

motor areas in contrast to when the change was expected. Note the

intracellular Ca2+ decrease in pyramidal neurons’ primary visual

cortex and increase in visual association areas in advance of the

stimulus change (redrawn from Orsolic et al., 2021, licensed under

CC-BY 4.0).

action potentials or apical dendrites inhibited while neurons are

spiking (section 3.1).

Conceptual frontier 12: Measuring the spatial dynamics in

CNS structures and relate this to measures of excitation and

inhibitory spatial postsynaptic dynamics in the same structures

and vice versa.

Generally, spatial dynamics are causal. In naïve animals weak

or moderate stimuli may not give rise to a local excitation

and spiking in primary sensory areas. If it does, the excitation

and spiking do not progress to other areas and structures.

This contrasts with well-trained animals. In trained animals,

failure of a trial specific spatial dynamics to progress from the
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primary sensory area to other areas and subcortical structures

leads to failure to respond (Gilad and Helmchen, 2020; Salkoff

et al., 2020; Esmaeili et al., 2021; Orsolic et al., 2021). Thus,

spatial dynamics is likely to propagate such that changes in the

activity variables propagate from microscopic scales to engage

larger parts of a CNS. However, this does not exclude more

restricted local forms of spatial dynamics. Details of how spatial

interactions evolve in and between subcortical structures are not

known (Figure 5).

Conceptual frontier 13: reveal the spatial dynamics of

subcortical structures at all spatial scales.

3. Technical obstacles

The lack of techniques to follow the course of action potentials

through a CNS is often claimed the reason for the lack of

progress in systems neuroscience (Bargmann et al., 2014). Given

the premise that many parts of a CNS, the brain stem, thalamus,

basal ganglia, cerebellum, and the brain itself do seem to participate

even in simpler tasks, global access to a CNS seems a must. The

axonal diameters of primate cortico-cortical axons range from 0.2

to 4µm (Liewald et al., 2014). This gives conduction velocities

up to 35mm ms−1 (Waxman and Bennett, 1972). In addition,

the relevant sampling space in humans range from synapses 0.5

µm3 to a human brain hemisphere 700 cm3, i.e., 14 orders of

magnitude. In comparison, Zebrafish larvae with their translucent

CNS and 100,000 neurons with slower axonal conduction of

action potentials seem an ideal species for studying spatial

CNS dynamics.

The physiologically relevant techniques are electro-

physiological, magnetic, and optical. Applications of these

techniques in multiple recordings simultaneously from CNS are

well described in recent reviews (Engel and Steinmetz, 2019; Cardin

et al., 2020; Moreaux et al., 2020; Machado et al., 2022; Urai et al.,

2022). So here the focus is on limitations that cannot be solved by

combinations of electrophysiological and optical techniques.

Modern multi-electrodes can in principle access all parts

of the CNS, yielding spiking from 20,000 to 100,000 neurons

simultaneously in animals, and humans with sampling frequencies

>20 kHz (Jun et al., 2017; Steinmetz et al., 2019; Paulk et al.,

2021). Spike recordings do not reveal the type of neurons involved

(excitatory glutamatergic, inhibitory GABAergic, and glycine-ergic

sub-types). Moreover, extracellular spike recordings are blind to the

dendritic contributions.

Optical recordings can capture dendritic contributions in

relevant space-time scales, with voltage-sensitive dyes or genetically

encoded voltage sensors (GEVI) with sampling rates op to 2 kHz

(Roland et al., 2017; Song et al., 2018; Villette et al., 2019; Moreaux

et al., 2020). Intracellular Ca2+ changes in single dendrites and

single synapses can be detected with recent GCaMP reporters,

which are able to capture changes currently at 20ms scale (50Hz).

This captures slow spatial dynamics, but not the fast (Ferezou

et al., 2007; Muller et al., 2016; Grün et al., 2022) (Figures 8–12,

Supplementary Videos 1–5). The local interdigitation of dendrites

from thousands of neurons (Figure 3) implies that post-synaptic

transformation by individual neurons cannot be resolved with one-

photon, two-photon, or three-photon optical recordings, because

it is difficult to match the active dendritic branches with the right

neuron. Labeling all dendritic and axonal terminal branches with

voltage sensors gives an overcrowded picture in which this problem

takes immense dimensions. In addition, it is a challenge to trace

action potentials in thin axonal branches and their origin from

neurons in other areas (Figures 3, 4).

Technical frontier 1: Reveal the spatial dynamics in axonal

branches and of synaptic and dendritic processing and connect

this to the appropriate neurons.

Genetically encoded voltage sensors specifically expressed in

only one-subclass of neurons make this problem easier to tackle

(Abdelfattah et al., 2019; Piatkevich et al., 2019; Villette et al.,

2019). In these neurons, one can follow the depolarizations,

hyperpolarizations, and progress of action potentials in single

trials in vivo with 1 kHz sampling rates. It is possible to implant

fiber optics and even optical probes providing excitation light

and detection of fluorescence along multiple sites on the same

probe. However, recordings of dendritic excitation and inhibition

dynamics are restricted to the narrow space along the implanted

optic probe (Moreaux et al., 2020).

At high resolution, it is possible to selectively examine

subclasses of excitatory and inhibitory neurons. However currently,

no coherent recordings of a whole insect or mammalian CNS is

possible at any spatial scale (Piatkevich et al., 2019; Villette et al.,

2019; Cardin et al., 2020; Moreaux et al., 2020; Machado et al.,

2022; Urai et al., 2022). Moreover, the genetic incorporation of

reporters of membrane current changes, and contributions from

neuron subclasses is limited to a few species.

Technical frontier 2: Including primates is so far out of reach for

comprehensive spatial dynamic recordings.

It is difficult to envisage a noninvasive technique for primates

with physiologically relevant sampling frequency. Perhaps, novel

MEG-techniques with quantum field sensors and improved depth

resolution may develop into tomographic MEG for primate brains

(Bezsudnova et al., 2022).

4. Experimental obstacles

Ordinarily, experiments are performed on a CNS to test a

hypothesis. The hypothesis is the prediction of the outcome of the

experiment. Sometimes, the hypothesis can be quite general. In

most experiments, the experimenter determines and manipulates

the independent variables. For example, controlling the surround

to minimize confounding factors and specifying the behavioral

conditions (see conceptual frontier 5; Figure 13).

4.1. Baseline and control conditions

Animals must be trained to perform tasks. In the example

in Figure 12A, deflection of the whisker at an early stage of
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FIGURE 13

Experimental practice in neuroscience. Dependent variables, for example Membrane potential, Vm(t), trans-membrane currents dVm(t)/dt, spike rate

r(t), or action potentials, AP, and their spatial dynamics. The experimental trial can start with a cue or a stimulus. During the trial, the experimenter

measures dependent variables, for example spike trains and membrane currents or membrane potential changes. The recorded dependent variables

are then compared to recordings of the same dependent variables during a baseline or control condition.

training will give no change in intracellular Ca2+ in the cortex.

After many training trials, intracellular Ca2+ and spiking will

increase in the primary sensory (barrel) cortex and spread to the

secondary sensory cortex and from there to the premotor and

motor cortex (Esmaeili et al., 2021; Gallero-Salas et al., 2021).

Thus, the prerequisite for the task-induced spatial dynamics is

successful learning.

When mice have learned a task, spiking increases prior

to the experimental trial in CA3 of the hippocampus, dentate

gyrus, basal ganglia, zona incerta, substantia nigra, midbrain

reticular formation and anticipatory Ca2+ increases may

appear in specific cortical areas (Steinmetz et al., 2019; Salkoff

et al., 2020; Orsolic et al., 2021) (Figure 12). Humans are

usually verbally instructed to perform experimental tasks. If

they understand the instruction, the regional cerebral blood

flow increases in cortical areas engaged in the processing

of the sensory stimuli, prior to the experimental trial

(Figure 14).

Awake-trained animals and humans are not naïve. In contrast,

they are specifically engaged in performing the task prior to the

experimental trial. Prior to the experimental trial, spatial dynamics

evolves in the brain stem, hippocampus, basal ganglia, and cortex.

This experimental-related preparatory spatial dynamic probably

fine tune the excitability in structures and cortical areas relevant for

executing the task (Roland, 1981; Steinmetz et al., 2019; Gilad and

Helmchen, 2020; Salkoff et al., 2020; Esmaeili et al., 2021; Orsolic

et al., 2021) (Figures 12, 14). These preparatory spatial dynamics

may explain how micro-stimulation of singe neurons can control

the choice of an animal (Romo et al., 1998; Houweling and Brecht,

2008). Changes in brain variables in most cases are measured

relative to a biased pre-stimulus or pre-trial measurements in

which the CNS structures to investigate are already active or

specifically inhibited.

Experimental frontier 1: Which reference should measurements

from brains have?

Historically, the field of human brain imaging tried to establish

a commonly agreed reference, a defined rest condition. This is a

behavioral reference, during which there are no changes in sensory

input and no voluntary motor activity, and with physiologically

defined reference values of blood pressure, heart rate, galvanic skin

response, and EEG pattern (Roland and Larsen, 1976). But the rest

condition is also a consequence of an instruction. The assumption

that this “rest state” is stationary and valuable as a reference for

trials done immediately before or after the rest measurement is

most likely false. So, if there are no external or internal stationary

references, how should wemeasure changes in spiking and currents
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FIGURE 14

Pre-trial CNS activity. (A) Regional cerebral blood flow increases in

percent in prefrontal, primary, and parietal somatosensory areas

prior to a single trial in which the subject expects a threshold

stimulus on the tip of the right index finger compared to

physiological defined rest condition (see text) (Roland, 1981). (B)

Changes in spiking rates prior to experimental trials. Spiking prior to

trials (indicating task engagement) of neurons in visual,

somatosensory, primary motor, retrosplenial, ACA cortex, and

posterior thalamus (LP, PU) correlates negatively with the

engagement, but the spiking in nucleus accumbens, globus pallidus

ext., CA3 of the hippocampus, dentate gyrus, parafasicular nucleus

of thalamus, midbrain reticular formation, and substantia nigra

correlates positively with task engagement, if “passive” visual

stimulation is taken as baseline condition (from Steinmetz et al.,

2019).

and magnetic signals from brains? Also, how should we interpret

the measured changes?

A practical solution is that one could measure where and when

changes in membrane currents, magnetic fields, and spiking occur

without any internal or prior brain reference. This could also be

done during the training of the animals and while humans receive

the task instructions.

Experimental frontier 2: Distinguish different operations in the

brain, for example by their spatial dynamics at all scales and in

single trials.

Theoretically, at least, one could get a rough classification of

brain activities to start with. Secondly one could relate these data to

other changes in brain variables in space and time.

4.2. Experimental design, single trials

Single-trial design and analysis is mandatory because brains

organize behavior with differences in single trials. The spiking

dynamics reflects a single-trial variability (Riehle et al., 2018;

Steinmetz et al., 2019; Cowley et al., 2020; Salkoff et al., 2020;

Williams and Linderman, 2021). Spatial spiking dynamics is a

single-trial dynamics (Grün et al., 2022).

Averaging across neurons, single trials, single areas, or other

CNS structures hides the underlying spatial dynamics (Riehle

et al., 2018; Davis et al., 2020; Grün et al., 2022). The concepts

behind this praxis, behind the experimental design, and behind

the interpretation of results are influenced by the separation of

time and space. For example, this holds for concepts such as

representation, spike pattern, temporal codes, maps, place cell,

and synchrony.

The assumptions underlying temporal and spatial averaging,

multi-trial statistics, and statistical independence of trials are most

likely wrong. So, neuroscientists are forced to design single-trial

experiments and analyze single trials statistically (Lee et al., 2010;

Rey et al., 2015; Williams and Linderman, 2021).

Experimental frontier 3: Single-trial statistics.

Current single-trial statistics make use of a dynamical systems

approach. The key to observe differences between single trials is to

record simultaneously from many positions/neurons. Often, spike

data, membrane, and field potentials are of lower dimensionalities

than the number of neurons/positions recorded. So, first one needs

to estimate the true dimensionality of the data at hand.

Dimensionality is the number of dimensions one needs

to get an exhaustive description of the dynamics of variables

in state space. There are several methods by which one can

find the dimensionality of time series data. The best method

is the Grassberger and Procaccia (1983) method (Camastra,

2003). The end-product is a trajectory of the single-trial

behavior in a multidimensional state space of the found true

dimensions. Trials with different dynamics evolve in partly

different parts of this multidimensional state space (Churchland

et al., 2010).

The drawback of this method is that the dimensionality of the

state space must be constant for all single trials (Spaak et al., 2017;

Willumsen et al., 2022).

5. Obstacles in interpretation and
explaining CNS operations

In experimental neuroscience, scientists usually measure

changes in some dependent brain variables induced by

experimental manipulations of independent variables (Figure 13).

The measured changes in the observed dependent variables,

spiking, membrane potentials, field potentials, magnetic and

electrical fields, blood flow, and BOLD signals are interpreted
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related to external, optogenetic, or direct brain stimulation,

particular behaviors, rewards, memory retention, overt behavior,

and changes in performance. Careful analyses of the measurements

often show that only minor proportions of the variance or

information in the data can be explained as related to stimuli,

motor behavior, reward behavior, and performance (Urai

et al., 2022). This opens several fundamental questions for the

interpretation of CNS measurements.

Summarizing the conclusions from the analysis of the barriers

hampering progress, the premises for the interpretation of

experimental results in systems neuroscience are:

1. Lack of reference or baseline conditions.

2. The continuously changing spiking and changing

transmembrane currents everywhere in a CNS implies

that one cannot apply a classical cause-effect analysis: if A, t1
then B, t2.

3. Central nervous systems, in contrast to complex dynamical

systems, have no clear initial state definition, neither locally

nor globally. This implies that we cannot explain the future

states of the system from local or global initial states.

4. Neither can we assume any pre-existing dimensional state

space, because dimensionalities change concurrently in many

locations in a CNS. This implies that dynamical systems theory

may be of limited value.

5. Time is probably not an independent variable for CNS

operations. In a CNS, dynamics are space and time

dependent, i.e., spatial dynamics. This implies that pooling

data from different neurons or locations and temporal and

spatial averaging destroy the spatial dynamics. Repeated

observations show that spatial dynamics can vary from

trial to trial. This in turn implies that conclusions must

be drawn from the outcomes of single trials. Moreover,

since external clock time does not uniquely relate to

the activities of neurons, other types of causality, e.g.,

Granger causality, are of no help. Assumptions of statistical

stationarities of spiking or transmembrane currents are most

likely invalid.

6. Referring to external input or motor, behavioral, output has

limited explanatory power, because many CNS processes are

intrinsic and relatively autonomous.

7. Separating task related activities from spontaneous and

intrinsic cognitive activities in a CNS is still difficult.

8. For experiments in humans, introspection is invalid to explain

CNS activities, because brains produce experience and motor

activity as results of processes lasting from some 120 ms to

more than 1,000 ms (Fried, 2022). These spatial dynamics

processes, which initially are logically in-accessible, must

arrive to some stage of organization before the human subject

can report.

9. Current neuroscience is limited to observe spatial dynamics

in discrete parts of CNS only.

Theoretical frontier 1: How can we reliably interpret our results?

Theoretical frontier 2: How can we reliably explain our results?

Theoretical frontier 3: How can we start to make

theories of brains?

A scientific brain theory would be an experimentally based

general explanation on how the elements in brains interact at

all scales of observation under all conditions. A theory must

serve as a conceptual structure in which gaps of knowledge and

inconsistencies can be isolated. It must offer rules and coherent

explanations, to some extent encompassing different scales of

observation. With the recent technical advances, neuroscience

now is free to explore complex brain tasks and conditions in

many species. Hopefully, scientists could use their experimental

results to find principles which could be part of a brain or

CNS theory.

Author’s note

Despite a century of anatomical, physiological, and molecular

biological efforts scientists do not know how neurons by their

collective interactions produce percepts, thoughts, memories,

and behavior. Scientists do not know and have no theories

explaining how brains and central nervous systems work. The

usual explanations are that scientists lack methods, techniques, and

efficient data analysis to obtain this goal. These are no longer the

main reasons. The main obstacles for systems neuroscience seem to

be conceptual. That is lack of concepts rooted in solid experimental

results, unnecessary assumptions, and focus on analogies from

other disciplines (information theory, computer science, physics,

and psychology). Brains cannot be understood treating time and

space as independent variables. Methods are now available for

measuring spatial dynamics at microscopic to mesoscopic scales,

also in single trials. This paper summarizes the conceptual,

theoretical, statistical, and experimental practice obstacles which

need to be eliminated to efficiently use and interpret results with

these new methods.
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SUPPLEMENTARY VIDEO 1

Single trial recording of temporal derivative of the voltage signal (showing

excitation and inhibition) over visual areas 17, 18, 19, and 21 (see Figures 7,

8). From −180 ms to +20 ms the movie shows spontaneous un-organized

spatial fluctuations. From 21 to 200 ms organized spatial excitation and

inhibition dynamics in response to a 3◦ × 3◦ stationary square at 0 ms,

exposed for 133 ms.

SUPPLEMENTARY VIDEO 2

Statistically significant (p < 0.01 after Bonferroni correction) depolarization

in visual areas of a ferret in response to a bar moving downwards starting in

the peripheral field of view. The retina is stationary. Note that the bar then is

mapped as moving excitation over the cortex. However, at 104ms the

neurons in area s 19/21 compute an excitation far ahead of the bar mapping.

After feedback to areas 17/18 this repeats here. The black holes show the

electrode penetration sites along the border between areas 17 and 18

corresponding to the vertical meridian. When the spiking at any layer of the

cortex becomes statistically significant (p < 0.01) the hole turns white. Note

the mapping of the future bar trajectory when the bar representation on the

cortex has reached the left white arrow (155 ms). Note also how the object

mapping, defined by the hot spot in area 17/18 actually follows the cortical

route predicted already at 160 ms. Animal 410 (from Harvey et al., 2009).

SUPPLEMENTARY VIDEO 3

Three-dimensional visualization of derivative of the voltage signal showing

excitation (orange to red) and inhibition (dark green to blue) in areas 17, 18,

19, 21 of a ferret to an object moving down from time 0 ms in the field of

view. For localization of area borders (see Figure 9) (from the top areas 17,

18, 19, and 21). Note the non-linear spatial dynamics, feedback from areas

21 and 19 to 18 and 17 at 115 ms, predictive excitation 135-195 ms and

inhibition chasing the excitations from 500 ms (from Harvey et al., 2009).

SUPPLEMENTARY VIDEO 4

Spiking in layer 4 of areas 17 and 18 of 8 ferrets. Electrode positions are

marked with white circles. Color scale shows the proportion of trials giving

rise to significant increases (compared to pre-trial baseline). Note that

significant spiking gets restricted to the retinotopic mapping after 90 ms

(time on top) (from Roland et al., 2017).

SUPPLEMENTARY VIDEO 5

Spatial derivatives in areas 17, 18, 19, 21, to a 3◦ × 3◦ stationary square at 0

ms, exposed for 250 ms. Compare with Supplementary Video 1.
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