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Dynamic brain states in spatial
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Giorgia Committeri1 and Antonello Baldassarre1*
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Chieti-Pescara, Chieti, Italy, 2Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy, 3IRCCS
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Previous studies indicated that spatial neglect is characterized by widespread

alteration of resting-state functional connectivity and changes in the functional

topology of large-scale brain systems. However, whether such network

modulations exhibit temporal fluctuations related to spatial neglect is still largely

unknown. This study investigated the association between brain states and spatial

neglect after the onset of focal brain lesions. A cohort of right-hemisphere

stroke patients (n = 20) underwent neuropsychological assessment of neglect as

well as structural and resting-state functional MRI sessions within 2 weeks from

stroke onset. Brain states were identified using dynamic functional connectivity as

estimated by the sliding window approach followed by clustering of seven resting

state networks. The networks included visual, dorsal attention, sensorimotor,

cingulo-opercular, language, fronto-parietal, and default mode networks. The

analyses on the whole cohort of patients, i.e., with and without neglect, identified

two distinct brain states characterized by di�erent degrees of brainmodularity and

system segregation. Compared to non-neglect patients, neglect subjects spent

more time in less modular and segregated state characterized by weak intra-

network coupling and sparse inter-network interactions. By contrast, patients

without neglect dwelt mainly in more modular and segregated states, which

displayed robust intra-network connectivity and anti-correlations among task-

positive and task-negative systems. Notably, correlational analyses indicated

that patients exhibiting more severe neglect spent more time and dwelt more

often in the state featuring low brain modularity and system segregation and

vice versa. Furthermore, separate analyses on neglect vs. non-neglect patients

yielded two distinct brain states for each sub-cohort. A state featuring widespread

strong connections within and between networks and low modularity and system

segregation was detected only in the neglect group. Such a connectivity profile

blurred the distinction among functional systems. Finally, a state exhibiting a

clear separation among modules with strong positive intra-network and negative

inter-network connectivity was found only in the non-neglect group. Overall,

our results indicate that stroke yielding spatial attention deficits a�ects the time-

varying properties of functional interactions among large-scale networks. These

findings provide further insights into the pathophysiology of spatial neglect and

its treatment.
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Introduction

Spatial neglect, a neuropsychological syndrome affecting

around ∼20–30% of all stroke patients (Buxbaum et al., 2004;

Ringman et al., 2004), is characterized by an impairment in

attending, processing, and responding to targets which are

presented in the side of the space and body opposed to the brain

lesion, which is more frequently in the right hemisphere (Halligan

et al., 1989; Verdon et al., 2010; Corbetta and Shulman, 2011). This

contralesional spatial bias is also associated with non-spatial deficits

of sustained attention, arousal, and vigilance (Husain and Rorden,

2003).

Albeit investigated for a long-time, the neurofunctional

correlates of spatial neglect are still debated (Husain and Rorden,

2003; Corbetta and Shulman, 2011; Bartolomeo et al., 2012;

Karnath and Rorden, 2012). Lesion-to-symptom mapping studies

have identified several brain structures related to neglect, such

as inferior frontal (Husain and Kennard, 1996; Committeri

et al., 2007; Corbetta et al., 2015), insular (Karnath et al., 2009;

Corbetta et al., 2015), temporo-parietal (Karnath et al., 2001, 2004;

Committeri et al., 2007; Corbetta et al., 2015) and inferior parietal

(Mort et al., 2003) cortex, basal ganglia (Karnath et al., 2005;

Corbetta et al., 2015), thalamus (Corbetta et al., 2015) as well as

underlying white matter (Doricchi and Tomaiuolo, 2003; Karnath

et al., 2009; Thiebaut de Schotten et al., 2014; Corbetta et al., 2015).

In recent years, such a challenge has been attempted within

the framework of the so-called “connectomal diaschisis”, a novel

type of diaschisis, which posits that a focal brain injury leads

to widespread changes of large-scale networks among areas that

are structurally spared and distant from the lesion site (Carrera

and Tononi, 2014) (for reviews on stroke, see Varsou et al., 2014;

Baldassarre et al., 2016; Siegel et al., 2022). Indeed, two pioneer

studies showed that the extent of the rightward bias in neglect

patients is associated with a breakdown of the inter-hemispheric

resting-state functional connectivity (FC) MRI among intact

fronto-parietal areas of the dorsal attention network that is involved

in the control of visuo-spatial attention (He et al., 2007; Carter

et al., 2010). Subsequently, in our previous work (Baldassarre et al.,

2014), we detected two large-scale patterns of abnormal functional

connectivity associated with the severity of spatial neglect in a

large cohort of acute stroke patients: reduction of inter-hemispheric

FC within dorsal attention/sensory motor networks as well as loss

of negative FC (i.e., anti-correlation) between these networks and

the default mode network. More recently, by adopting a graph-

theoretic approach, in two companion studies, we have shown that

spatial neglect is characterized by widespread changes in the brain

topological organization at different scales of network analysis

(de Pasquale et al., 2021a; Spadone et al., 2022). At the micro-

scale level, we identified two sets of neglect-relevant hubs derived

using the betweenness centrality metric [i.e., the number of the

shortest paths passing through a given node (Rubinov and Sporns,

2010; de Pasquale et al., 2021a)]. Specifically, one group of neglect

hubs was detected in higher-order associative systems, such as

the dorsal and ventral attention, frontoparietal, and default mode

networks. These hubs exhibited lower centrality as well as higher

shortest paths length (i.e., less efficient) associated with severe

neglect. Conversely, a reverse pattern was observed in a second

cohort of neglect hubs dislocated in lower-level sensory-processing

systems such as the visual and motor networks. At meso-scale

level, neglect was associated with a loss of system segregation,

i.e., the balance between the functional specialization and dynamic

integration of distinct and segregated (sub)networks (Tononi et al.,

1994; Wig, 2017), involving higher-order associative networks such

as dorsal attention, fronto-parietal and default mode as well as the

sensorimotor network (Spadone et al., 2022).

Overall, these lines of evidence indicate that neglect is

characterized by widespread alteration of resting-state networks as

well topological changes in the brain, suggesting a maladaptive shift

from higher-order to low-level sensory-processing systems.

However, the brain is a dynamic system characterized

by transient states with different degrees of integration and

segregation among multiple large-scale networks (de Pasquale

et al., 2021a,b). Notably, recent functional MRI studies adopting

a dynamic functional connectivity approach have identified time-

varying properties of functional connections among brain networks

(Calhoun et al., 2014). Clinically, several reports indicated that

such brain states are affected after stroke (Bonkhoff et al.,

2020, 2021a,b; Wang et al., 2020; Favaretto et al., 2022).

Hence, the dynamic connectivity method can capture transient

conditions of network reconfigurations as they happen after a

focal brain lesion. Therefore, the goal of the current study was

to investigate whether the above-described network modulations

exhibit temporal variations which can be potentially related to

spatial neglect. To this aim, we estimated functional connectivity

dynamics (Calhoun et al., 2014) on our previously collected dataset

(de Pasquale et al., 2021a; Spadone et al., 2022) to characterize the

temporal fluctuations of brain states associated with spatial neglect

after right hemisphere strokes. Since neglect has been associated

with changes of functional connectivity in multiple large-scale

networks, we expect to identify brain states characterized by

widespread alterations of their functional architecture.

Methods

Stroke patients and assessment of neglect

A cohort of twenty right-hemisphere damaged patients (mean

age 65.1 y, SD = 12.3 y) was enrolled within 2 weeks since first-

time stroke onset. The Inclusion criteria were as follows: (1) Clinical

diagnosis of right hemisphere stroke (ischemic or hemorrhagic)

at hospital discharge; (2) Persistent stroke symptom(s) at hospital

discharge; (3) Awake, alert, and able to complete study tasks;

(4) Age > 18. Exclusion criteria: (1) Severe psychiatric or

neurological disorders/conditions; (2) Claustrophobia; (3) Body

metal not allowing 3T MRI. Table 1 displays the demographic

and clinical information of stroke patients. The Bells Cancellation

Test and Letter Cancellation Test assessed the severity of visual

neglect. Patients were classified as having neglect if their Center

of Cancellation (CoC) (Binder et al., 1992) score was above the

normative cut-off in at least one test, 0.081 and 0.083, respectively

(Rorden and Karnath, 2010) (Table 1 displays demographic and

clinical information of the cohort of patients).
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TABLE 1 Demographic and clinical characteristics of the stroke patients.

ID Age at stroke
(y)

Sex Education (y) Time
post-stroke (y)

Neglect Lesion
type

Lesion site

4 69 F 8 3 + I Cau; Pal; Pu; STG

8 92 F 5 2 + I Cau; Pal; Put; Ins; IntCap;

ExtCap

9 67 M 13 7 + I Cau; Pal; Put;

11 65 F 8 14 + H Pal; Put; Ins; ExtCap; STG

14 60 M 13 2 + I Tha

21 73 F 5 5 + I Put; IntCap

22 53 M 8 10 + H Pal; Put

24 74 F 5 5 + I Put; Ins; Cau; CorRad; IntCap

31 56 M 13 4 + I Tha

32 73 F 5 11 + I IFG; Ins; Put; ExtCap

33 76 F 5 7 + I Put; Ins; STG; IFG; CorRad;

IntCap

3 84 F 8 7 – I BS

6 73 M 13 5 – H PHG; LG

7 41 M 13 14 – I SPL; PreCun; AG; SLF

16 62 M 13 5 – I Tha

20 65 M 13 8 – I LOG; FFG; PHG

23 77 F 5 14 – I MFG; PrCG; SPL

26 73 M 5 12 – I CorRad

30 62 F 8 4 – I SLF

34 51 M 8 9 – I Put; Cau; CorRad; IntCap;

SLF

Y, year; M, male; F, female; +, presence of neglect; –, absence of neglect; I, ischemic; H, hemorrhagic; PHG, Parahippocampal Gyrus; Put, Putamen; Cau, Caudate; Pal, Pallidum; BS, Brain

Stem; STG, Superior Temporal Gyrus; Lingual Gyrus; SPL, Superior Parietal Lobule; PreCun, Precuneus; AG, Angular Gyrus; SLF, Superior Longitudinal Fasciculus; Ins, Insula; Tha, Thalamus;

LOG, Lateral Occipital Gyrus; FFG, Fusiform Gyrus; IntCap, Internal capsule; ExtCap, External Capsule; MFG, Middle Frontal Gyrus; PrCG, Pre-Central Gyrus; CorRad, Corona Radiata; IFG,

Inferior Frontal Gyrus.

Functional MRI acquisition

MRI scanning was performed with a GE Signa HDxt 3T

at the IRCCS NEUROMED (Pozzilli, Italy) within 24 h of the

neuropsychological assessment. Structural scans consisted of: (1)

an axial T1-weighted 3D SPGR (TR = 1,644ms, TE = 2.856ms,

flip angle = 13 deg, voxel size = 1.0 × 1.0 × 1.0mm) and (2)

an axial T2-weighted turbo spin-echo (TR = 2.856ms, TE =

127.712ms, slice thickness 3mm, matrix size: 512 × 512). Resting-

state functional scans were acquired with a gradient echo EPI

sequence with TR = 1,714ms, TE = 30ms, 34 contiguous 3.6mm

slices, during which participants were instructed to keep open eyes

in a low luminance environment. Three resting-state fMRI runs of

7.5min were collected.

Lesion segmentation

The lesions were manually segmented using MRIcron

software (www.mayo.edu) by examining T1-weighted and T2-

weighted images simultaneously displayed in the atlas space.

All segmentations were reviewed by a trained radiologist of

NEUROMED (GG in de Pasquale et al., 2021a).

fMRI data pre-processing

Functional data were pre-processed in CONN toolbox (https://

www.nitrc.org/projects/conn/; Whitfield-Gabrieli and Nieto-

Castanon, 2012) by employing the default pre-processing pipeline

(Nieto-Castanon, 2020) which included the steps of functional

realignment and unwarping, slice-timing correction, potential

outlier scans identification, direct segmentation and normalization

in Montreal Neurological Institute (MNI) space and smoothing

with a 6-mm kernel. Head-motion contaminated frames were

identified through the global BOLD signal and the amount of

patient-motion. Specifically, all the functional volumes in which

the global BOLD signal changes was above 5 SD or the framewise

displacement was above 0.9mm were classified as outliers and then

employed as confounding regressors of non-interest to remove

their influence on the BOLD signal timeseries. Furthermore,

pre-processed functional data underwent the CONN’s default
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denoising pipeline to estimate and regress out physiological and

other noise sources. Specifically, an anatomical component-based

noise correction procedure (aCompCor) (Behzadi et al., 2007) was

employed to identify and remove physiological noise from white

matter and cerebrospinal fluid, subject-motion parameters (Friston

et al., 1995), and outlier scans (Power et al., 2014). Next, based on

previous dynamic functional connectivity MRI studies (Leonardi

and Van De Ville, 2015), a temporal band-pass filter of 0.029–

0.15Hz was applied to the time series. Overall, several denoising

steps, including CompCor correction, outlier censoring, motion

regression, and linear detrending, were computed simultaneously

before the band-pass filtering. Finally, the residual BOLD time-

series for each region of interest were employed for estimating the

dynamic brain states.

Resting-state networks

In the current study, we employed a functional brain

parcellation implemented in CONN toolbox that includes a set of

30 regions of interest (ROIs) defined from CONN’s Independent

Component Analyses of Human Connectome Project dataset (497

subjects) (Whitfield-Gabrieli and Nieto-Castanon, 2012; Nieto-

Castanon, 2020). Specifically, the ROIs belonged to seven resting

state networks comprising visual, dorsal attention, sensorimotor,

cingulo-opercular, language, fronto-parietal, and default mode

networks (Supplementary Table 1).

Brain state analysis in the whole cohort of
patients

Brain states identification
To estimate the dynamic functional connectivity, the time

course of the BOLD signal of the 260 volumes (in all

participants) was segmented into 34-s (20 TRs) sliding windows

(see recommendation by Leonardi and Van De Ville, 2015), moving

the onset every 1.7 s (1 TR), for a total of 241 sliding windows. Next,

for each sliding window, the functional connectivity was obtained

through the Pearson correlation coefficient (r) among fMRI signals

of all the possible pairs of the 30 parcellation nodes. To obtain

normally distributed values, r scores were Fisher-transformed into

z-scores. The output of this analysis is a temporal series of FC

matrices. To identify a set of states representing the most recurrent

connectivity patterns over time, we ran a K-means clustering.

Specifically, the clustering algorithm was applied to the set of

windowed FC matrices of all subjects concatenated along the time

dimension resulting in 241∗20 = 4,820 FC patterns. The clustering

algorithm was implemented using the Manhattan (cityblock) as the

distance among the 4,820 observations.

To estimate the optimal number of clusters, we ran the

clustering algorithm for different values of classes. For each output,

we computed a mixed performance criterion (MPFC, see Spadone

et al., 2012; de Pasquale et al., 2021b) which is the product of

different clustering performance criteria:

MPFC =
CS∗AS∗DI

DB
,

where CS is the average cluster size, AS is the average silhouette,

DI is the Dunn Index, and DB is the Davies Bouldin index. In this

way, several aspects can be combined and considered in the cluster

number estimation. A detailed discussion on these parameters

can be found in Spadone et al. (2012). The optimal number of

clusters corresponds to the peak of the MPFC. The centroid of each

cluster putatively reflects a connectivity “state”. These analyses were

performed using in-house developed software in MATLAB (2022,

Natick, Massachusetts: The MathWorks Inc.).

Brain states characterization
To characterize the identified brain states, we investigated their

internal arrangement into modules or communities (Medaglia,

2017). To this aim, we computed on the centroid matrix of each

state in each individual patient, the brain modularity, and the

system segregation. These two indices are behaviorally relevant for

spatial neglect (Siegel et al., 2018; Spadone et al., 2022). Specifically,

brain modularity represents a measure of the goodness of network

subdivision into well-defined modules or communities (Bullmore

and Sporns, 2009). Such a score was estimated by employing

the Louvain modularity algorithm implemented in the brain

connectivity toolbox (Rubinov and Sporns, 2010). This procedure

yielded for each patient a brain modularity value associated with

each brain state. Moreover, we computed the system segregation, a

measure that captures the balance between functional specialization

and dynamic integration of distinct and segregated (sub)networks

(Tononi et al., 1994; Wig, 2017). In detail, the system segregation

was computed as described in Chan et al. (2014): for each patient

and each of the seven resting state networks, the within-network

FC (WNFC) and the between-network FC (BNFC) were computed

for each of the seven resting state networks. Specifically, for each

centroid matrix of each state, WNFC was derived as the mean

correlation, among all possible pairs of regions within that network,

whereas BNFC as the averaged correlation among regions of a given

network and all other nodes of the rest of the brain connectome.

This computation produced seven values (one for each network)

that were then averaged to obtain the system segregation score. As

for the estimation of the modularity, this analysis returned for each

patient a system segregation value for each brain state.

Temporal dynamics of brain states
Furthermore, we computed two dynamic connectivity

measures: the fraction time (the percentage of the total time a

subject spent in a given connectivity state) and the dwell time (the

time a subject spent in a state without switching to another one)

for each of the states. Furthermore, we investigated the differences

in time-varying properties of the identified brain states among

neglect and non-neglect groups. To this aim, for each brain state,

we carried out a two-sample (i.e., neglect vs. non-neglect) t-test

on fraction times and dwell times. Finally, to examine the link

between neglect severity and the temporal dynamics of brain

states, we computed a set of Spearman rank correlations between

the averaged CoC scores of Bells and Letter tests with the fraction

times and dwell times of each brain state.
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Brain state analysis in the sub-cohorts of
patients with and without neglect

Finally, to study neglect-specific brain states, we separately

extracted them from the sub-cohorts of patients with and without

neglect by employing the above-described pipeline. Specifically,

we computed the K-means clustering on the patient’s dynamic

functional connectivity matrices by grouping them in two distinct

sub-groups (neglect, n = 11/non-neglect, n = 9). Of note,

compared to the main analysis, this procedure yielded two sets of

centroid matrices obtained with the unique contribution of the

two sub-cohorts. Next, we computed the modularity and system

segregation based on these centroidmatrices. Finally, fraction times

and dwell times were also extracted.

Results

Behavior and lesion topography

As reported in our previous studies (de Pasquale et al., 2021a;

Spadone et al., 2022), 11 patients (55%) were classified as neglect

since they scored above the CoC cut-off at least in one cancellation

test (Rorden and Karnath, 2010). Moreover, within the neglect sub-

group, some patients also exhibited deficits in general cognitive

efficiency (60%), executive functions (57%), praxis abilities (37%),

and verbal memory (66%). Finally, as previously described, the

spatial topography of lesion distribution indicated that the highest

incidence of strokes was present in the middle cerebral artery

territory, with the thalamus and putamen as the most frequently

damaged regions.

Static functional connectivity

Before estimating the dynamic functional connectivity, we

computed the brain modularity and system segregation based

on the average of the dynamic functional connectivity matrices.

The analyses revealed that neglect patients exhibited lower static

system segregation (mean = 0.5085, SD = 0.2071) as compared

to non-neglect patients (mean = 0.6726, SD = 0.1020) [t(18) =

−2.1646, p= 0.0441]. Furthermore, no differences in terms of brain

modularity were detected among two sub-groups [neglect, mean=

0.8211, SD = 0.4712; non-neglect, mean = 0.9869, SD = 0.4945;

t(18) =−0.7656, p= 0.4538].

Brain states in the whole cohort of patients

To perform the k-means analysis on the entire sample, i.e.,

patients with and without neglect, we first estimated the number

of optimal classes through MPFC. We observed a clear MPFC

peak corresponding to two clusters. Thus, we run K-means and

we identified two distinct functional connectivity states, i.e., brain

states, reoccurring during the functional MRI scans. Specifically,

brain state 1 (43.8% of occurrence) was characterized by robust

positive connectivity within each network (see structures around

the diagonal of the reported matrix in Figure 1A). We observed a

strong interaction, i.e., positive coupling, among two sets of systems

comprising dorsal attention, sensorimotor, and cingulo-opercular

networks as well as language, fronto-parietal, and default mode

networks, respectively (Figure 1A). Finally, state 1 exhibited strong

anti-coupling, i.e., negative inter-networks connectivity (i.e., anti-

correlations), among two groups of networks: dorsal attention,

sensorimotor, and cingulo-opercular on one side, vs. fronto-

parietal and default mode (Figure 1A). By contrast, state 2 (56.2%

of occurrence) featured weaker intra- and inter-network positive

connections and a neglectable inter-network negative connectivity

(Figure 1B). In state 2, apart from the visual, sensorimotor, and

default mode network, the other networks lose their internal

coupling and show sparse connections with the rest of the brain.

Next, to characterize the organization of brain networks of

the two states, we computed the brain modularity and system

segregation indices (see Section Methods). A two-tails paired t-test

indicated that state 1 exhibited higher modularity (mean = 1.44;

SD = 0.81) as compared to state 2 (mean = 0.65; SD = 0.33)

(t = 4.6; p < 0.0005). Similarly, state 1 exhibited higher system

segregation (mean = 0.6439; SD = 0.163) as compared to state 2

(mean = 0.5; SD = 0.2) (t = 4.53; p = 0.0006). Taken together,

these results indicate that in state 1, as compared to state 2, network

communities are more clearly differentiated (see Figures 1C, D for

the spring-embedded representation of the centroid graph of state

1 and state 2, respectively). We note a strong interaction between

default mode and fronto-parietal networks (see Figure 1C).

Successively, we investigated the differences in time-varying

properties of two brain states among neglect and non-neglect

groups. A set of two-sample t-tests on fraction times of state 1 and

state 2 (high/lowmodularity and system segregation) indicated that

neglect patients, as compared to non-neglect patients, exhibited

lower and higher fraction times in state 1 (t = −2.68, p = 0.036,

FDR-corrected) and in state 2 (t= 2.68, p= 0.036, FDR-corrected),

respectively (Figure 2A). Moreover, two-sample t-tests on dwell

times showed two marginally significant trends: in state 1 neglect

group displayed lower dwell times as compared to non-neglect

(p = 0.08, FDR-corrected); in state 2 it was observed a reverse

pattern (p = 0.09, FDR-corrected) (Figure 2B). Taken together,

these results indicate that neglect patients, compared to non-

neglect ones, are generally less involved in state 1. In fact, they

spend more continuous time and dwelt more in state 2 (vs. state 1).

Association between neglect severity and
temporal dynamics of brain states

To investigate the association between neglect severity and the

temporal dynamics of brain states, we employed the Spearman rank

test to correlate the averaged CoC scores of Bells test and Letter

test with the fraction times and dwell times of each brain state. The

analyses revealed that neglect score was negatively correlated with

fraction times of state 1 (high modularity and system segregation)

(r = −0.56, p = 0.009, FDR-corrected) such that patients with

severe neglect (high score) spent less amount of time in such

state and vice versa (Figure 3A). By contrast, the neglect measure

exhibited positive correlation with the fraction times of state 2

(low modularity and system segregation) (r = 0.56, p = 0.009,
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FIGURE 1

Dynamic connectivity states of all patients. (A, B) Display the centroid of the functional network connectivity states identified in the whole cohort (i.e.,

with and without neglect) of patients. The color bar indicates the Fisher-transformed z-scores of the Pearson correlation coe�cient (r) among fMRI

signals between all the possible pairs of nodes. (C, D) Show the spring-embedded representation of the centroid of the functional network

connectivity states. VN, visual network; DAN, dorsal attention network; SMN, sensory-motor network; CON, cingulo-opercular network; LN,

language network; FPN, fronto-parietal network; DMN, default mode network.

FIGURE 2

Temporal properties of brain states for neglect and non-neglect patients. Bar graphs indicate fraction (A) and dwell (B) times of each state for neglect

(black) and non-neglect (white) patients, respectively. *p < 0.05, FDR-corrected.
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FDR-corrected), indicating that patients with severe neglect (high

score) spent more amount of time in that state and vice versa

(Figure 3B). On the same line, it was detected that neglect score

was negatively correlated with dwell times in state 1 (r = −0.51,

p = 0.022) as well as positively correlated with dwell times in

state 2 (r = −0.52, p = 0.019). These associations indicate that

more impaired patients dwelt less and more often in state 1 and

state 2, respectively (Figures 3C, D). Overall, these findings show

that patients exhibiting stronger rightward bias (i.e., more severe

neglect) spentmore time and dwelt more often in the state featuring

low brain modularity and system segregation and vice versa.

Brain states in the sub-cohorts of patients
with and without neglect

To investigate neglect-specific aspects of the brain states, we

extracted again them from each sub-cohort separately (see Section

Methods). For the neglect cohort, we identified two brain states

characterized by distinct connectivity profiles. Specifically, state 1

(28.5% of occurrence) featured widespread high positive functional

connections both within and between networks (Figure 4A).

Hence, such connectivity pattern blurred the distinction among

functional systems. This state was not detected in the whole

sample analysis. Furthermore, state 2 (71.5% of occurrence)

was characterized by modest intra-network connections as well

as exclusively positive values of inter-network connectivity

(Figure 4B). Of note, the network connectivity configuration of

this state resembled the one of state 2 detected in the whole

cohort of patients (Figure 1B). The analyses in the non-neglect

group also identified two brain states. In detail, state 1 (62.2% of

occurrence) featured robust positive intra-network connectivity as

well as interactions between networks (Figure 4C). Moreover, state

2 (37.8% of occurrence) (Figure 4D) exhibited a connectivity profile

that strongly recapitulates that one of state 1 (i.e., positive intra-

network and negative between-networks connectivity) identified

in the whole sample (Figure 1A). Next, as in the whole sample

analyses, we investigated the network configurations of the four

states by computing and comparing the brain modularity and

system segregation metrics (see Section Methods) with the caveat

that the sample size of the sub-cohorts is relatively small (see

Figure 5 for the spring-embedded representation of the centroid

graph of state 1 and state 2 in the 2 sub-cohorts). A set of paired and

two-sample t-tests on themodularity values indicated that state 1 of

neglect group exhibited lower modularity as compared to state 2 of

neglect group (t = −5.83; p = 0.01) as well as state 1 (t = −2.66;

p = 0.02) and state 2 (t = −10.2; p = 0.000005) of non-neglect

group. Furthermore, it was observed that state 2 of non-neglect

group showed higher modularity as compared to state 1 of non-

neglect group (t = 7.28; p= 0.0003) as well as state 1 (t = 10.2; p=

0.000005) and state 2 (t = 4.66; p = 0.0003) of neglect group. The

same set of analyses on the system segregation indicated that state

2 of the non-neglect group exhibited a higher score than state 1 (t

= 6.05; p= 0.0001) of the neglect group.

To summarize, the analyses on the sub-groups of patients

with and without neglect indicated that: (i) a state featuring the

lowest degree of modularity and system segregation, with blurred

separation among networks, was detected solely in the sub-group

of neglect patients (Figures 4A, 5A). Notably, this configurationwas

not highlighted by the analysis in the whole sample of patients; (ii)

two states with comparable connectivity profiles were observed one

in each sub-cohort (Figures 4B, 5B for neglect; Figures 4C, 5C for

non-neglect); (iii) a highly modular and segregated state showing

a clear distinction among sub-systems as well as robust negative

connectivity between task-positive and task-negative systems was

described only in the non-neglect group (Figures 4D, 5D).

Control analyses

We carried out a set of control analyses to assess whether

the differences in terms of brain states among two sub-groups

of patients were related to variables of interests. Specifically, we

compared the overall NIHSS scores, the lesion size, and the number

of outlier scans between neglect and non-neglect patients, bymeans

of two-tail two-sample t-tests. Regarding the NIHSS, the overall

symptom severity of neglect group (mean= 11.6, SD= 5.33, n= 10

since for one patient the score was not available) was not different

as compared to the one of non-neglect group (mean = 8.5, SD =

5.95, n = 8 since for one patient the score was not available) (t =

1.16, p= 0.26). Furthermore, the lesion size of neglect group (mean

= 9.98 cm3; SD= 9.23 cm3; n= 11) and non-neglect group (mean

= 8.95 cm3; SD = 16.51 cm3; n = 9) did not differ (t = 0.1762, p

= 0.862). Finally, no differences were observed between groups (t

= 1.49, p = 0.159) in terms of outlier scans. Taken together, these

analyses indicate that the overall symptom severity, the amount of

structural damage as well as the head movements do not account

for the association between spatial neglect and patterns of dynamic

functional connectivity.

Discussion

In the current study, we investigated the brain states

associated with the pathology of spatial neglect in a cohort

of acute right-hemisphere damaged patients. To this aim, we

estimated the dynamic functional connectivity MRI which allows

us to assess brain network variations in a time-scale resolution

of seconds (Allen et al., 2014; Calhoun et al., 2014). By

employing the sliding window approach and clustering analysis we

identified two brain states featuring distinct connectivity profiles

characterized by the degree of brain modularity and system

segregation. Specifically, we observed that neglect, compared

to non-neglect patients, spent more time in a low modularity

and segregation state, characterized by weak intra-module

connections and widespread positive interactions among modules.

By contrast, non-neglect patients occupy larger fractions of

time in high modularity and segregation states comprising

high within-network functional connections, sparse between-

networks interactions, and anti-correlation between the so-called

task-positive and task-negative systems. Finally, a state with

robust intra- and inter-network connectivity, low modularity and

system segregation was detected exclusively in the neglect sub-

group.
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FIGURE 3

Association between neglect severity and temporal dynamics of brain states. The scatterplots display the Spearman rank correlation between neglect

score and fraction times of state 1 (A) and state 2 (B) as well as dwell times of state 1 (C) and state 2 (D). Each dot represents a patient (n = 20). To be

noted, high value on x-axis (neglect score) means severe neglect and vice versa.

Brain modularity and system segregation represent key features

of the mesoscale organization of the functional architecture of

the brain, which orchestrate the processing of information among

multiple networks (Bullmore and Sporns, 2009; Medaglia, 2017;

Wig, 2017). The former indexes the extent to which a network

can be subdivided into clearly distinct and non-overlapping

communities or sub-systems. The latter quantifies the balance of

intra-network integration and between-networks segregation. Our

results clearly indicate that neglect patients exhibit a preference

for brain states in which the distinctions among functional sub-

systems are less defined or even blurred. Such brain configurations

might represent a maladaptive response to a brain insult, i.e.,

focal lesion, such as a dedifferentiation-like mechanism (Fornito

et al., 2015) characterized by the loss of the physiological balance

between excitation and inhibition within neural systems. In this

scenario, impaired behavior, e.g., visuo-spatial attention deficit,

would be mediated by activations of task-irrelevant brain areas

and by interactions among multiple functional systems that are

not usually related to such behavior. Therefore, such pattern would

result into the reduction of the network specialization (Li et al.,

2001). This interpretation is consistent with several observations

described in prior neuroimaging studies in neglect patients, both

acutely and longitudinally. First, the rightward bias has been

associated with the hyper- and hypo-activations of the left (contra-

lesional) and right (ipsilesional) dorsal fronto-parietal attention

regions, respectively (He et al., 2007). Such inter-hemispheric

functional imbalance would result from affected excitatory and

inhibitory mechanisms among the two hemispheres (Friedland and

Weinstein, 1977; Kinsbourne, 1977). Notably, this pattern resolves

over time as the recovery takes place. Second, the degree of spatial

and non-spatial deficits in neglect has been linked, both acutely

and longitudinally, to a loss of negative functional connectivity

(i.e., segregation) between the dorsal attention and default mode

networks in the right hemisphere (Baldassarre et al., 2014). Once

again, a restoration of this pattern occurred in parallel with recovery

(Ramsey et al., 2016). Finally, a neglect-relevant reduction of static

system segregation of multiple large-scale networks at the acute

stage (Spadone et al., 2022), as well as a restoration of brain

modularity alongside the spontaneous recovery, has been reported

(Siegel et al., 2018). Converging lines of evidence indicate that the
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FIGURE 4

Dynamic connectivity states of neglect and non-neglect patients. (A, B) Display the centroid of the functional network connectivity states identified

in the sub-cohort of neglect patients, whereas (C, D) indicate those of non-neglect patients. Color bar and abbreviations as in Figure 1.

degree of brain modularity and system segregation is relevant for

the functional brain organization during lifespan in health and

diseases (Chan et al., 2014; Marek et al., 2015; Ewers et al., 2021).

An important question is whether brain states featuring low

modularity and system segregation might represent a key feature of

the brain functional organization in other neurological conditions

after focal lesions. Overall, current results generally agree with

the findings obtained by recent studies that investigated brain

states in stroke cohorts by employing a similar approach to

that adopted in our work. Favaretto et al. (2022) identified five

brain states characterized by different degrees of modularity as

well as anti-correlation between dorsal attention and default

mode networks in a large cohort of stroke patients. Crucially,

the authors observed a preference of patients toward two states

characterized by a high degree of integration among multiple

networks and relatively high positive dorsal attention-default mode

connectivity. This is in line with what we described here as state

2 of the whole cohort. Similarly, Wang et al. (2020) described

four brain states and showed that patients with pontine stroke,

compared to healthy controls, spent larger fraction times in

a state featuring low segregation between networks as well as

less fraction times in a state characterized by high segregation

and anti-correlations among default mode network and task-

positive systems. Notably, these two network configurations are

very similar to the ones of our state 1 and state 2, respectively.

In a longitudinal study, Bonkhoff et al. (2021b) identified three

brain states: state 1 exhibited the highest segregation, with highly

positive intra-domain connectivity, negative connectivity of visual

network with somatomotor and cognitive networks; state 2 showed

weak positive connectivity within network and near zero inter-

networks connections; state 3 featured a network configuration

in between state 1 and state 3. Critically, it was observed that

more severely affected patients spent more time in state 1, i.e.,

a highly segregated state. In another recent fMRI study in the

motor domain by Bonkhoff et al. (2020), the authors investigated

in a cohort of acute stroke patients the association between

upper limb deficit and brain states derived from the dynamic

functional connectivity of three regional domains of the motor

system, namely, cortical, subcortical, and cerebellar. Notably, they

showed that severely affected patients exhibited a preference for

a brain state characterized by high positive connections within

each domain as well as anti-correlations among regions of different
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FIGURE 5

Dynamic connectivity states of neglect and non-neglect patients. (A, B) Show the spring-embedded representation of the centroid of the functional

network connectivity states identified in the sub-cohort of neglect patients. In contrast, (C, D) refer to those of non-neglect patients. Abbreviations

as in Figure 1.

modules, hence featuring high level of segregation. This set of

results is in contrast with those described in our study as neglect

patients spent more time in a state with low modularity and

system segregation and without (or reduced) inter-networks anti-

correlations. However, it has been proposed that both extremes

of either low or high levels of modularity and system segregation,

i.e., inverted U-shaped pattern, lead to maladaptive behavior (Wig,

2017). While increased connectivity among systems can generate

a dedifferentiated state, a network configuration characterized

by robust segregation would result in a loss of interactions

among areas of different systems or even in a disconnected state.

Hence, in such a scenario, other systems might not support

isolated communities under attack. Moreover, while the latter

study (Bonkhoff et al., 2020) focused on the sub-domains of

the motor network, here we employed a whole-brain functional

parcellation comprising seven large-scale networks. The difference

in the granularity level makes the comparisons of the two results

difficult. It also does not exclude the possibility that brain states

derived from sub-components of neglect-relevant systems, e.g.,

parietal and frontal areas of the dorsal attention network, might

feature in highly segregated configuration. Moreover, in their

longitudinal study (Bonkhoff et al., 2021b), the authors estimated

dynamic FC on independent components, which might not be

directly comparable with time series of brain regions identified by

an atlas. Finally, the parcellation used by Bonkhoff et al. emphasized

visual and sensorimotor areas rather than association areas (i.e.,

yielded larger number of components).

Beside the above-described aspects, a key methodological point

refers to the choice of the approach used for the identification of

brain states. Many approaches have been developed to estimate

dynamic functional connectivity, and among them the most

popular one is the sliding window method which is based on

the partitioning of the time-series into overlapped temporal

segments and the calculation of the functional connectivity between

two ROIs for each window (Hutchison et al., 2013a; Calhoun

et al., 2014). The concept of functional connectivity is wide

and includes any kind of statistical relationship between time

series. A largely used approach to measure windowed correlation

in resting-state fMRI research is Pearson correlation coefficient

(Hutchison et al., 2013b; Zalesky et al., 2014; Kaiser et al., 2016;

Spadone et al., 2021). Another approach employed for estimating

dynamic correlation is the sparse inverse covariance matrix

Frontiers in SystemsNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1163147
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Spadone et al. 10.3389/fnsys.2023.1163147

(Allen et al., 2014; Damaraju et al., 2014). Among these methods,

in the current study we estimated Pearson’s correlation. As

compared to other possible metrics, Pearson’s correlation exhibits

several advantages: (i) it requires less computational time; (ii) it is

not dependent on the choice of the regularization parameter used

to introduce spatial sparsity, which is currently discussed in the

literature (see Zhang et al., 2021); (iii) it allows the comparison

with our previous works on static functional connectivity in

stroke patients (Baldassarre et al., 2014; de Pasquale et al., 2021a;

Spadone et al., 2022). However, a common criticism of the Pearson

correlation is its sensitivity to indirect functional relations between

pairs of regions that are mediated by a third region. Notably,

sparse representation approach is employed to overcome this issue,

yielding a measure of direct interactions by removing the influence

of other links among brain regions (Das et al., 2017). Therefore,

it may be useful to combine our approach with other techniques

for examining dynamic FC to gain a more complete view of the

pathophysiology of neglect.

Overall, our results indicate that stroke leading to spatial

neglect affects the temporal properties of functional interactions

among large-scale networks, with a preferential configuration

displaying low brain modularity and system segregation. In

comparison to static functional connectivity studies, our findings

offer two primary theoretical and clinical insights.

First, although in a small cohort of patients, the dynamic

functional connectivity analyses identified a neglect-relevant

brain state featuring widespread robust functional connections

both within and between networks, with low modularity and

system segregation. Notably, such brain configuration has not

been described in previous studies employing static functional

connectivity. Therefore, the dynamic interactions among brain

systems might represent a key feature for higher functions such

as spatial attention. Second, the temporal dynamics of neglect-

relevant functional connectivity might guide protocol of non-

invasive brain stimulation such as closed-loop, brain-state triggered

TMS (Zrenner et al., 2016) for the treatment of spatial neglect.

Limitations

The current study has several limitations. First, the relatively

small sample size (n= 20). Nonetheless, the proportion of patients

classified as neglect is consistent with previous reports and is

representative of a clinical population of patients who had suffered

from a right-hemisphere lesion. However, future studies are needed

to confirm the sub-group analyses given that the computation

of connectivity states was carried out only on 11 and 9 patients

with and without neglect, respectively. Second, in contrast with

other recent studies, we did not include dynamic FC data from

healthy controls in our analyses. However, comparing patients

with vs. without the deficit of interest (i.e., spatial impairment)

is a suitable approach to identify and characterize brain states

selectively associated with neglect beside the mere effect of the

underlying structural lesions. Third, we investigated extrapersonal,

egocentric neglect, assessed by cancellation tests. Future studies

are needed to link brain states to different components of

neglect, like, for instance, personal neglect. Finally, we employed

a fixed-length sliding window approach to identify brain states.

Methods based on modeling brain states, such as the Hidden

Markov models, should be applied to further dissect latent

brain states.
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