& frontiers | Frontiers in Systems Neuroscience

‘ @ Check for updates

OPEN ACCESS

Jessica A. Grahn,
Western University, Canada

Hirokazu Takahashi,
The University of Tokyo, Japan

Bin Yin
byin@fjnu.edu.cn

20 February 2023
16 May 2023
31 May 2023

Huang J-K and Yin B (2023) Phylogenic
evolution of beat perception

and synchronization: a comparative
neuroscience perspective.

Front. Syst. Neurosci. 17:1169918.

doi: 10.3389/fnsys.2023.1169918

© 2023 Huang and Yin. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License

(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Systems Neuroscience

Mini Review
31 May 2023
10.3389/fnsys.2023.1169918

Phylogenic evolution of beat
perception and synchronization:
a comparative neuroscience
perspective

Jin-Kun Huang! and Bin Yin%2*

tLaboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University,
Fuzhou, Fujian, China, 2Department of Applied Psychology, School of Psychology, Fujian Normal
University, Fuzhou, Fujian, China

The study of music has long been of interest to researchers from various
disciplines. Scholars have put forth numerous hypotheses regarding the evolution
of music. With the rise of cross-species research on music cognition, researchers
hope to gain a deeper understanding of the phylogenic evolution, behavioral
manifestation, and physiological limitations of the biological ability behind music,
known as musicality. This paper presents the progress of beat perception
and synchronization (BPS) research in cross-species settings and offers varying
views on the relevant hypothesis of BPS. The BPS ability observed in rats and
other mammals as well as recent neurobiological findings presents a significant
challenge to the vocal learning and rhythm synchronization hypothesis if taken
literally. An integrative neural-circuit model of BPS is proposed to accommodate
the findings. In future research, it is recommended that greater consideration be
given to the social attributes of musicality and to the behavioral and physiological
changes that occur across different species in response to music characteristics.

beat perception and synchronization, musicality, comparative cognition, phylogenic
evolution, vocal learning hypothesis, neural synchrony oscillations

Introduction

Music, as defined by Aristotle, was the singing behavior of birds, specifically bird calls.
By the time of Darwin, people began to draw analogies between "music” in birds and
humans, believing it to be the result of evolution (Darwin, 1871). People once believed that
only birds produced musical behavior, "But for humans, birds are perhaps Nature’s only
musicians™ (Scholes, 1938, p. 107). However, later research found that marine mammals
also produce similar musical behavior, refuting this view (Ralls et al., 1985; Janik and
Slater, 1997; Payne, 2000). Many researchers have proposed different hypotheses about
the puzzle of music in evolution. For example, Darwin speculated that human musical
behavior originated from a biological adaptive trait and that music evolved to attract the
opposite sex, with language originating from previously developed musical ability. Other
researchers have proposed the null hypothesis that music is just a spandrel for human
evolution, a useless byproduct of other evolved abilities with no adaptive function and not
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involving direct selection for musical ability (Pinker, 1997).
However, other researchers believe that music is an important
developmental condition in biological evolution, with a specific
adaptive purpose, and propose other adaptive hypotheses,
including sexual selection (Miller, 2000), advertising male
coalitions (Hagen and Bryant, 2003), its role in mother-infant
relationships (Fitch, 2006; Mehr and Krasnow, 2017), and its
role in enhancing social cohesion in human populations (Wallin
et al., 2001; Merker et al., 2009). Unlike scholars who believe that
music has adaptive traits, some thinkers believe that human music
is a cultural invention built on brain circuits that evolved for
other reasons (Pinker, 1997). The debate over the origin of music
has continued to drive music-related research. Here, we need to
clarify a concept: music cognition is not a single psychological
phenomenon, but involves a series of different, interacting
psychological processes (Fitch, 2015). Based on this concept,
researchers distinguish music as a highly culturally dependent
structure (Nettl, 2015), and musicality as a set of psychological
abilities underlying basic musical behaviors. In the following
discussion, we will mainly describe musicality.

As Tinbergen (1963) described, the problem of the adaptive
significance of behavior is only one type of problem regarding
the evolution of that behavior. Another important issue involves
phylogeny: what is the cross-species and cross-time behavioral
history? With the rise of cross-species research in music cognition,
many exciting turning points have occurred in the evolution of
music research (Fitch, 2015; Honing et al, 2015). This cross-
species research can help us gain deeper insight into the phylogeny
(evolutionary history), behavior, and physiological constraints
behind the biological abilities (called musicality) underlying music
cognition. We know that music cognition involves many different
abilities, including octave equivalence, consonance preference,
saliency of timbre, and rhythm synchronization, all of which may
not have appeared simultaneously during evolution. Just as the
concept of pluralism implicit in Honing et al. (2015) view of the
origin of musicality suggests, the different components of music
cognition are likely to have evolved independently, resulting in the
possibility of multiple musical origins in humans and animals.

Beat perception and
synchronization

Beat perception and synchronization (BPS) is a form of
entrainment that refers to the tight temporal synchronization
between periodic movement and auditory rhythms in the time
domain (Patel, 2021). This ability is a prominent aspect of human
musical behavior and forms the basis of dance (Patel, 2010).
Infants exhibit rhythmic characteristics early in life, suggesting a
relationship with the evolution of musicality (Winkler et al., 2009;
Fujii et al., 2014; Cirelli and Trehub, 2019). Darwin once proposed
the idea that "the perception of musical rhythm and beat, if not
the enjoyment of it, is common to all animals and undoubtedly
depends on their common physiological characteristics of the
nervous system" (Darwin, 1871). This is an intuitively appealing
view, as rhythm is typically considered the most fundamental aspect
of music and is increasingly recognized as a basic organizational
principle of brain function (Buzsdki, 2006). Consistent with
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Darwin’s idea, Patel (2014) suggests that the neural prerequisites
for beat matching may be ancient and widely present in evolution.
One of these neural prerequisites is neural oscillation, which is
widespread in the brains of animals (Large, 2008; Large and Snyder,
2009; Fitch, 2012). When groups of neurons in the brain fire
synchronously, neural oscillation occurs, which is an inherent
principle of brain function. Large and Snyder (2009) also proposed
a theory of music beat perception based on a universal neural
mechanism, called the neural resonance theory, which posits that
pulse and rhythm correspond to neural rhythms that synchronize
with the sound rhythm, affecting timing expectations, attention,
and motor coordination. According to this theory, beat perception
occurs when non-linear oscillations in the neural system entrain to
external rhythmic stimuli.

The viewpoint that BPS exists in most species is in stark contrast
to the belief held by some researchers that BPS ability is limited to
a small subset of species. One of the current mainstream theories
is the "vocal learning and rhythmic synchronization hypothesis,"
which suggests that BPS relies on a specialized auditory-motor
forebrain circuit that initially evolved to serve complex vocal
learning in animals (Patel, 2006). In complex vocal learning,
animals require auditory input to develop their normal species-
specific vocalizations, and this input can form an auditory template
to guide the development of the animal’s own vocalizations (Tyack,
2020). However, such complex vocal learning is not found in all
species, and currently known vocal learners are mainly cetaceans,
pinnipeds, primates—including humans, and some birds, mainly
songbirds, parrots, and hummingbirds.

The vocal music learning hypothesis differs from the neural
resonance theory in its ability to make clear and falsifiable
predictions. This hypothesis posits that neural changes in auditory-
motor circuitry, driven by the evolution of vocal learning, laid
the foundation for the capacity to synchronize movement to the
beat of music (Patel, 2006). Vocal learning is limited to a small
number of animal groups. In the early days of empirical research on
this hypothesis, many results were found to be consistent with the
hypothesis. For example, Zarco et al. (2009) found that macaques
did not synchronize their tapping with the metronome during
training compared to human subjects. Although the macaques were
able to perform the task of tapping in time with the stimulus signal
after a long period of training, they often did not synchronize their
tapping but responded with a delay of several 100 ms. Moreover,
compared to macaques, human subjects performed the task more
easily and could accurately predict the beat time and synchronize
their tapping. Findings on parrots (vocal learners) also support the
vocal learning hypothesis. In a study of rhythm synchronization in
tiger kea parrots, Ai Hasegawa et al. (2011) found that the animal
subjects could match their tapping behavior to stimuli of different
rhythms, and similar results were also found in Patel et al. (2009a,b)
study of sulfur-crested cockatoos (Cacatua galerita eleonora).

Different research findings have been reported in studies
of primates. Studies on chimpanzees and bonobos have shown
that they exhibit moderate vocal flexibility but are unable to
perform complex vocal learning (Fitch, 2010). In contrast, research
by Hattori et al. (2013) has demonstrated that chimpanzees
(Pan troglodytes) can synchronize their tapping actions with a
metronome under certain conditions. However, this rhythmic
synchronization is not possible for synchronization with other
ranges of rhythms, which is a crucial feature of beat perception
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and synchronization. Research on marine animals also challenges
the hypothesis. Cook et al. (2013) found that after training, sea
lions (Zalophus californianus) can resonate and synchronize their
movements with various types of stimuli, including music and
rhythms. Sea lions are not vocal learners, but they are related to
seals and walruses, which are vocal learners. Therefore, researchers
suggest that further investigation is needed to determine whether
sea lions possess some degree of vocal learning ability, and whether
their trained rhythmic synchronization ability is a result of their
vocal learning capacity. This issue has yet to be studied further.

The above studies, although they have raised some degree
of skepticism about the vocal learning hypothesis, still require
more experimental data support. In studies on primates, although
they can synchronize rhythms within a specific range, there is no
empirical research on their speed flexibility. In the study of sea
lions, due to their phylogenetic relationship, it is still uncertain
whether their rhythm synchronization ability may be caused by
their unproven vocal learning ability. Yet the most important
question is that most of the above studies have a premise that
the subjects need to undergo a lot of training. Undeniably, if
animals can acquire the ability of BPS after training, it can solve
some evolutionary puzzles, such as if animals can learn BPS,
then music does not need to consider BPS in natural selection.
But does this species have the ability of BPS innate? During
the training process, the researcher’s goal is to teach the animal
the rules of the experiment, but there is also an opportunity
to allow the animal to learn other abilities that do not exist in
genetic evolution, which is difficult to distinguish. In a recent
study, it was found that rats can synchronize their movements
to the beat of music just like humans, without any motive to
move (Ito et al, 2022). Rodents are not mammals that belong
to vocal learning, and there is no species closely related to them
that can perform vocal learning. This finding poses a significant
challenge to the vocal learning hypothesis. As described by the vocal
learning hypothesis, only species that can perform vocal learning
can produce rhythm synchronization. However, rodents that lack
vocal learning abilities can also spontaneously produce rhythm
synchronization movements. Does this imply that rodents might
be an undiscovered type of vocal learning species, or does it suggest
that the vocal learning hypothesis — which posits that auditory
input can regulate general motor behavior (not just vocal motor
behavior) — is overly simplistic when taken literally?

The most important factor for the generation of beat perception
and synchronization is the need for a species to have the ability
to time and predict events. Studies on humans have shown that
the cortex-cerebellum can measure intervals within the range of
100-2000 ms accurately, while supra-second range time is believed
to be based on interactions between cortical areas, basal ganglia,
and thalamus (Petter et al, 2016). Brain regions involved in
time perception and timing performance have also been identified
through human neuroimaging studies (Lewis and Miall, 2003;
Meck et al., 2008; Coull et al., 2011; Merchant et al., 2013a; Allman
et al., 2014). In duration discrimination or reproduction tasks,
significant activation has been commonly reported in the cortical-
basal ganglia-thalamus loop (including the DLPFC, supplementary
motor area (SMA), preSMA, striatum, and thalamus), the ventral
striatum, and the cerebellum (Lewis and Miall, 2003; Rubia and
Smith, 2004; Meck et al., 2008). Lesion and inactivation studies
have found that damage to the caudate/putamen (CPu) and the
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loss of dopamine (DA) in the substantia nigra pars compacta
(SNc) typically result in significant deficits in temporal control in
humans and rodents (Meck, 2006b; Jones and Jahanshahi, 2011;
Schwartze et al, 2011; Schwartze and Kotz, 2013; Cope et al,
2014; Yin et al., 2022). Clinical populations exhibit deficits in the
cortical-basal ganglia-thalamus loop and DA regulation of timing;
evidence of timing abnormalities has been observed in attention
deficit hyperactivity disorder (ADHD), Huntington’s disease (HD),
Parkinson’s disease (PD), schizophrenia, autism, and obsessive-
compulsive disorder (OCD) (Beste et al., 2007; Carroll et al., 2008;
Jahanshahi et al., 2010; Gu et al., 2011; Cope et al., 2014). Damage to
the frontal cortex (FC) can also affect interval timing, for example,
by reducing the influence of dopamine agonists on clock speed
(Meck, 2006a). Specifically, patients with lesions to the right FC
and ventral prefrontal cortex exhibit impaired time processing
(Harrington et al., 1998), suggesting a critical role for the right
hemisphere in timing. Repetitive transcranial magnetic stimulation
(TMS) of the right dorsolateral prefrontal cortex (DLPFC) also
produces time impairments lasting several seconds (Koch et al,
2003; Jones et al., 2004; Wiener, 2014), further supporting the
involvement of the right hemisphere in supra-second timing. In
rodents, damage or inactivation of the medial prefrontal cortex
(mPFC) typically results in many premature responses, terminating
ongoing responses before the end of the delay period in lever-
pressing experiments (Narayanan et al., 2006). The explanation
for this phenomenon is that the medial prefrontal cortex (PFC)
encodes information related to the passage of time and sends this
information to the motor cortex, where inappropriate actions are
inhibited (Narayanan and Laubach, 2006; Merchant et al., 2013b).
The auditory system also plays a crucial role in BPS, with
rhythm perception being associated with functional coupling
between auditory and motor regions. Grahn and Rowe (2009)
investigated rhythm perception in musicians and non-musicians
using functional magnetic resonance imaging (fMRI), discovering
that beat presence correlated with increased connectivity between
the putamen, supplementary motor area (SMA), premotor
cortex (PMC), and auditory cortex. Patel and Iversen (2014)
proposed the Action Simulation for Auditory Prediction (ASAP)
hypothesis, suggesting that beat perception necessitates temporally
precise bidirectional communication between auditory regions
and motor planning regions. This hypothesis posits the existence
of a "posterior auditory pathway" that connects the posterior
superior temporal gyrus (pSTG) with the dorsal premotor cortex
(dPMC) through the parietal lobe, facilitating time-accurate signal
transmission between auditory and motor planning regions.
During rhythm perception, functional connections between motor
and auditory regions enable motor planning signals to influence
auditory processing and perception. However, the ASAP hypothesis
also implies that this "posterior auditory pathway" might differ
between humans and other primates, potentially due to the
evolutionary impact of vocal learning in the human lineage.
A neural anatomy study reported sparse projections of the STG
and pSTG in macaques (Lewis and Van Essen, 2000), suggesting
that projection intensity in this region could represent a significant
neural anatomical distinction between humans and macaques.
Merchant and Honing (2014) posited that differences in neural
pathways between the temporal cortex and premotor cortex across
species might explain the inferior synchronization with periodic
stimuli observed in monkeys compared to humans. Further
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FIGURE 1

An integrative brain-circuit model of beat perception and synchronization. This figure illustrates the activation of corresponding brain regions and
their interactions during different stages of beat perception and synchronization. The primary auditory cortex (Al) is the primary sensory area for
auditory perception, while the superior temporal gyrus (STG) and the supplementary motor area (SMA) play important roles in auditory-motor
integration. In the beat detection stage, parietal cortex and cingulate gyrus are activated, focusing individual attention on auditory stimuli. The
putamen and caudate receive auditory signals from MGB and pons, respectively, for beat detection. In the beat continuation stage, auditory signals
provided by other brain regions are passed to the basolateral auditory pathway (STG, parietal cortex, and SMA, premotor cortex) through the
thalamus for beat continuation. The hippocampus retrieves previous memories to provide relevant experience for beat continuation. The anterior
insula integrates relevant information. In the beat adjustment stage, when the beat changes, the ventral putamen receives relevant beat information
from the thalamus and recalculates it, passing reorganized information to the basolateral auditory pathway. The prefrontal cortex performs cognitive
evaluation, and the anterior insula integrates relevant information again. The hippocampus stores these experiences in memory. Muscles receive
motion signals from the brain, perform related movements, and provide feedback on the results to the brain. Inputs to the striatum and cerebellum

mainly come from the cortex through the thalamus, which serves as a hub for relaying information between different brain regions.

research is needed to determine whether these neural differences
are indeed responsible for variations in beat perception among
humans and other primates. Moreover, long-term studies have
indicated that individuals generally exhibit superior performance
in beat perception with auditory stimuli compared to visual
stimuli (Iversen and Balasubramaniam, 2016). Sensory-motor
synchronization (SMS) to temporally discrete auditory and visual
stimuli has consistently demonstrated an auditory advantage,
attributable to differential connectivity among auditory, visual,
and motor systems (Patel et al., 20055 McAuley and Henry,
2010). Nonetheless, some research has shown that periodically
moving "bouncing” visual stimuli can drive discrete (tapping)
synchronization with accuracy similar to or equaling auditory
beeps (Hove et al., 2013; Iversen et al.,, 2015). A study involving
congenitally deaf individuals revealed that the long-term observed
auditory advantage in rhythm synchronization heavily relies on
stimulation and experience (Iversen et al., 2015). In some cases,
silent moving visual stimuli can drive synchronization as accurately
as sound, and a purely visual stimulus can elicit discrete rhythmic
synchronization nearly as accurately as an auditory metronome
in the general population. However, a macaque study found that
while these primates can synchronize visually, they display reduced
sensitivity in the auditory domain (Merchant and Honing, 2014).
Consequently, when examining non-human species’ ability to
perceive and synchronize to rhythms, it is essential to consider
various stimuli types that may impact this capacity, as well as the
coupling between different sensory and motor regions in the brain
that could contribute to BPS.

As previously discussed, neuroscience studies on rodents, in
addition to primate research, reveal their capacity for interval
timing, with human brain imaging experiments confirming the
cortical-basal ganglia-thalamic circuit’s primary role in this ability.
This evidence calls for further scrutiny of the vocal learning
hypothesis’s validity, suggesting that the hypothesis may need to
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be revised, while acknowledging the importance of the interaction
between auditory and motor systems in BPS. Concurrently, the
methodological limitations of visual inspection, upon which the
hypothesis and many BPS studies are based, should be recognized,
as previously illustrated. Furthermore, the influence of other
relevant brain regions on interval timing warrants increased
attention to these areas during cross-species investigations of
rhythm perception synchronization. This approach can help
determine whether BPS ability is a common trait among species,
stems from ancient common ancestors, or presents evolutionary
differences unique to a select few species.

Here, as illustrated in Figure 1, we present a potential
integrative model of beat perception and
synchronization informed by previous neural and physiological
studies (Budinger and Scheich, 2009; Rauschecker, 2011; Patel
and Iversen, 2014; Hackett, 2015; Kumar et al., 2016; Rajendran
et al., 2017; Zuk et al., 2018; Cameron and Grahn, 2021; Cannon
and Patel, 2021; Kasdan et al., 2022). This model comprises five
stages: sensory input, beat detection, beat continuation, beat

neural-circuit

adjustment, and motor synchronization. We propose that after
processing auditory sensory stimulation through the primary
auditory system, the beat detection stage commences, involving
neural interactions among subcortical and cortical brain regions
to detect the beat. Upon beat detection, information is relayed via
the thalamus to the basolateral auditory pathway (encompassing
the superior temporal gyrus, parietal cortex, and supplementary
motor area) for beat continuation, with simultaneous involvement
of brain regions such as the premotor cortex, hippocampus, and
anterior insula. As external auditory stimuli change, areas like
the ventral putamen and prefrontal cortex become activated,
adjusting their corresponding regions. Subsequently, structures
responsible for motor control, such as the cerebellum, regulate
limb movements for synchrony. While substantial evidence
and hypotheses have been explored in humans regarding BPS,

frontiersin.org


https://doi.org/10.3389/fnsys.2023.1169918
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/

Huang and Yin

comparative studies can be conducted in other species to determine
if similar BPS characteristics exist across species. We hope
our proposed model offers valuable guidance for cross-species
research, enabling exploration of BPS presence and potential
differences among various species. Investigating these questions
will further our understanding of the physiological mechanisms of
BPS and the neural and physiological connections across species.
Simultaneously, this model may serve as a valuable inspiration for
rhythm perception research, promoting advancements in this field.

Conclusion

Currently, some researchers believe that musicality is not a
single trait that evolved to solve a specific problem (such as
infant emotional regulation or sexual attraction), but rather a
set of abilities that can be used in different ways to support
multi-functionality, all of which involve social belonging (Savage
et al, 2021). In other words, the purpose of music is to
facilitate social bonding and establish and reinforce personal
affiliations. The Musicality and Social Bonding (MSB) hypothesis
posits that the core biological component of human musicality
evolved as a mechanism to support social bonding, and social
bonding is the ultimate functional explanation for the evolution
of musicality (Savage et al., 2021). Most music has two unique
rhythmic components: isochronous (evenly timed) beats and
rhythmic structure (Arom, 1991; London, 2012; Savage et al., 2015).
These core design features of musicality do not appear to be
designed for solo performance, but rather support synchronized
and coordinated musical sounds and group dance movements,
which are universal features of the human musical system (Savage
et al,, 2015). The MSB hypothesis also proposes a putative neural
biology approximation mechanism that supports the social impact
of music. Relevant brain areas, such as the basal ganglia (BG), ST
(superior temporal lobe structures), Motor (frontal lobe structures),
and vmPFC (ventromedial prefrontal cortex), are all strikingly
consistent with the brain regions found in studies of beat perception
and synchronization. On the other hand, some researchers argue
that it is necessary to compare temporal perception in social
and non-social environments and to explore social perception
when manipulating time-related factors such as rhythm and speed
(Schirmer et al., 2016). Such research will not only deepen our
understanding of the social meaning of time, but also provide
insights into the more general relevance of beat-perception-based
musicality in human sociality.

Therefore, in future cross-species studies of musicality, the
social bonding attributes of musicality can be considered, and
more exploration can be conducted to discover whether gregarious
vertebrates have similar abilities related to musicality, as revealed by
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