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Training neural networks to perform di�erent tasks is relevant across various

disciplines. In particular, Recurrent Neural Networks (RNNs) are of great

interest in Computational Neuroscience. Open-source frameworks dedicated

to Machine Learning, such as Tensorflow and Keras have produced significant

changes in the development of technologies that we currently use. This work

contributes by comprehensively investigating and describing the application of

RNNs for temporal processing through a study of a 3-bit Flip Flop memory

implementation. We delve into the entire modeling process, encompassing

equations, task parametrization, and software development. The obtained

networks are meticulously analyzed to elucidate dynamics, aided by an array of

visualization and analysis tools. Moreover, the provided code is versatile enough

to facilitate the modeling of diverse tasks and systems. Furthermore, we present

how memory states can be e�ciently stored in the vertices of a cube in the

dimensionally reduced space, supplementing previous results with a distinct

approach.
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1 Introduction

Machine learning methods, especially Deep Learning, have achieved remarkable

success across diverse tasks in various domains. These include speech processing

(Ogunfunmi et al., 2019), bioinformatics (Min et al., 2016), where algorithms predict

protein structures, discover drugs and analyze gene expression data, and image recognition

(Litjens et al., 2017) where deep learning classifies images and detects objects.

The emergence of open-source frameworks dedicated to Machine Learning, such as

Pytorch, Tensorflow and Keras (Abadi et al., 2015; Chollet et al., 2015; Paszke et al., 2019)

has produced huge changes in the development of technologies we use every day for

different tasks in research. Due to their novelty and complexity, it can be challenging to

properly learn how to utilize these frameworks in different relevant scientific domains,

such as the development of models in Computational Neuroscience, which will be the aim

of the present work.

To bridge the gap between theoretical knowledge and practical application, clear

tutorials or primers are crucial. These resources should equip researchers not only with

the ability to implement the algorithms but also with the skills to solve diverse problems

pertinent to their field.
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Recurrent Neural Networks (or RNNs) were originally

invented by Paul Werbos, who also invented backpropagation,

a fundamental tool for training these models (Werbos, 1990).

This also includes the concept of latent variables. The problem

of training neural networks to perform different tasks is relevant

across various disciplines that go beyond Machine Learning.

In particular, RNNs are of great interest in different scientific

communities. These models also have great relevance concerning

control systems and other areas such as electronics (Alianna

J. Maren and , Auth.; Deng, 2013; Dinh et al., 2014; Mohajerin and

Waslander, 2017). One relevant problem to address with them is

how to build models for the study of dynamical systems and how to

extract meaningful information from them.

In general, Neural Networks are algorithms that allow

us to model different systems. According to the Universal

Approximation Theorem, a neural network with one hidden

layer containing a sufficient but finite number of neurons can

approximate any continuous function to a reasonable accuracy

under certain conditions for activation functions (Hornik, 1991).

This theorem has been extended to RNNs. It is well known that

dynamical systems can be approximated by continuous-time RNNs

(Funahashi and Nakamura, 1993).

In particular, RNNs are widely used in the field of

Computational Neurosciences to describe the behavior of

cortical areas, which presents great recurrence in their connections

(Murphy and Miller, 2009). They are related to the processing

of temporal information and the production of time-dependent

outputs.

The basic premise of RNNs is that the feedforward connection

weights in a Multilayer Perceptron (MLP) neural network

(McCulloch and Pitts, 1943) can be modified using prior activation

history as well as the immediately presented stimulus. This

mechanism can be considered to encapsulate, in a very simple

model, the much broader and more interesting task of guiding

neural behavior. Factors that influence neural interactions and even

growth can be included within this simple model. In this context,

the broader scope of systems neuroscience relates to a detailed and

careful analysis of RNNs.

The realm of temporal influence within systems neuroscience

has a long and substantive history. The work by Levi-Montalcini

and Booker (1960); Levi-Montalcini (1987), was among the

earliest to show how specific signaling proteins (nerve growth

factors, or NGFs) could influence temporal evolution within an

organism. More recently, Baldassarro et al. (2023) showed, in

an in vitro study, that NGFs could influence the proliferation

of fetal brain multipotent stem cells, pushing them into a

specific oligodendrocyte cell lineage and also influencing the

differentiation of oligodendrocyte precursor cells. These works

are simply examples of how the complex process of influencing

neural cell growth and differentiation can be influenced over

time, by introducing specific signaling mechanisms. For this,

the notion of RNNs encapsulates a much larger suite of neural

processes.

In this way, RNNs allow the incorporation of realistic

characteristics at the biological level, such as Dale’s law (Dale,

1935; Rajan and Abbott, 2006; Song et al., 2016; Jarne and Caruso,

2023), sparsity or different characteristics of interest in anima

l models.

In the field of Machine learning, more sophisticated

architectures such as LSTM (Long Short Term Memory units) or

GRU (Gated recurrent units) are widely spread and have been used

to process temporal sequences since they do not have the same

limitations as RNNs to process long time dependencies (Bengio

et al., 1994; Pascanu et al., 2013; Chung et al., 2014; SHI et al.,

2015; Gudowska-Nowak et al., 2020). Other powerful models are

based on spiking neural networks (SNNs). Several recent studies

have made significant contributions to the field of brain-inspired

intelligence. These studies demonstrate the potential of this field

to achieve high-level intelligence, high accuracy, high robustness,

and low power consumption (Yang et al., 2022a,b, 2023; Yang and

Chen, 2023a,b).

The primary reason for using simple RNN models lies in

their ability to comprehend neural computation through collective

dynamics, a phenomenon intricately linked to motor control,

brain temporal tasks, decision-making (Mante et al., 2013), neural

oscillations and working memory (Vyas et al., 2020; Jarne and

Caruso, 2023; Pals et al., 2024).

Analyzing the dynamics inherent in these models allows us to

formulate various hypotheses regarding the functioning of different

brain areas and to offer an interpretation for the experimental

results observed (Barak, 2017; Kao and Hennequin, 2019). An

illustrative instance involves the recent utilization of RNNs to

transfer learned dynamics and constraints to a spiking recurrent

neural network in a one-to-one fashion (Kim et al., 2019).

A well-established fact is that the dynamics of a network are

heavily influenced by the eigenvalue spectrum of the weight matrix

describing synaptic connections (Zhou et al., 2009). Thus, the

significance of investigating this distribution lies in elucidating

various aspects of the dynamic behavior of the system, which is

why, in Section 5.2, such analysis will be presented and described.

There are general tutorials available on artificial neural

networks, such as Yang and Wang (2020). However, in this

work, we will focus extensively on RNNs and their application

in Computational Neuroscience because they play a relevant

role in understanding complex neural processes and dynamics.

Throughout this tutorial, we will delve into the architecture,

training methodologies, and practical aspects of the RNN

implementation. We explore also their significance and potential

contributions to the field.

A simple RNN was chosen and trained to perform a time-series

processing task inspired by Computational Neuroscience studies

(Sussillo, 2014). The implementation of the network, the training,

and the tools are carefully described here, as well as different forms

to obtain the information that allows a suitable description of the

system under study.

Training an RNN to perform temporal tasks has many

difficulties and can be done through various paradigms. Here it

is proposed to approach the problem through supervised learning.

The entire procedure is described in detail.

Among the different tasks, the Flip Flop was chosen as a case

example. On one hand, a Flip Flop is the simplest sequential system

that one can build Floyd (2003). To be precise, a 3-bit memory was

studied, which is a task composed of a set of Flip Flops as the one

shown in Figure 1. This is also a working memory task considered

previously in other works in Computational Neuroscience (Sussillo

and Barak, 2013; Barak, 2017; Jarne, 2022). The parameterization
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of the chosen task, one fundamental key in any work related to

trained RNNs, is as described in Sussillo and Barak (2013). It is

also revisited here. Gradient descendant minimization was used

to take advantage of different optimized implementations of the

available algorithms. The code implementation is presented using

Tensorflow and Keras. The reason for this choice is that such

scientific libraries are open-source, their use is rapidly growing,

and they are becoming increasingly popular. One can find excellent

documentation for software development about them Gulli and Pal

(2017); Ramsundar and Zadeh (2018); Singh and Manure (2019).

Also, we have new tools such as Google Colaboratory that allow

implementing and testing models directly online.

The focus of this paper is on elucidating how a trained RNN

operates, with code provided for detailed study. The “Flip Flop

problem” is chosen to illustrate the study. Every step is thoroughly

explained, from parameterizing the task to describing the dynamics

of trained networks.This example is used to show how the problem

of training networks can be studied using these computing tools

applied in any temporal task in general, but also to discuss the

limitations that networks have and the alternatives to solve them.

The rest of the paper is organized as follows. In Section 2, the

description of the dynamics, discretization and code examples are

presented. In Section 3, the task parametrization is shown. Section

4 describes the training protocol. In Section 5, the results, different

analyses of the network, tools and software are discussed in detail.

Finally, Section 6 includes the final remarks.

2 Model

The dynamics of the units in the RNN model is inspired by

Equation 1, based on a model for a large network of neurons with a

graded response (Hopfield, 1984).

dhi(t)

dt
= −

hi(t)

τ
+ σ





N
∑

j=1

Wrec
ij hj(t)+

M
∑

k=1

Win
ik xk(t)



 (1)

The dynamics of the RNN model of N units is described

in terms of the activity column vector function hhh=(h1, · · · , hN)
t,

where t represent the matrix transposition. The i−activity

component hi, where i = 1, · · · ,N satisfies the differential

equation as a function of time t. τ represent a characteristic time

of the system and σ is a non-linear activation function. The

elements Wrec
ij are the synaptic connection strengths of to the

recurrent weight matrix WWWrec∈RN×N and xk are the component

of the column vector function of input signal xxx=(x1, · · · , xM)t.

The elements Win
ik

conform the input weight matrixWWWin∈RN×M

which connects the input signal xxx to each of N units with activity

vector hhh.

The network is fully connected, and matrices have weights

given by a certain parametrization of interest. For the example, we

considered a normal distribution with zero mean and variance 1
N .

The network has three layers: the input, the recurrent hidden

layer, and the output layer. The readout, in terms of the matrix

elementsWout
i , fromWout is described by Equation 2.

z(t) =

N
∑

i=1

Wout
i hi(t). (2)

In terms of the output weight matrix, which in this work is a row

vector, it could be written as:

WWWout=(Wout
1 , · · · ,Wout

N ). (3)

We considered σ () = tanh() and τ = 1, without loss of

generality. The model is discretized using Euler’s method following

Ingrosso and Abbott (2019); Bondanelli and Ostojic (2020); Bi and

Zhou (2020); Jarne (2022); Jarne and Laje (2023).

In vector form, the Equations 1 and 2 can be written as:

dH(t)

dt
= −

H(t)

τ
+ σ (WRecH(t)+WinX(t)) (4)

and respectively:

Z(t) = WoutH(t) (5)

The system represented by Equation 1 is approximated using

Euler’s method as previously indicated, with a step time δt. A value

of τ = 1 was considered. Then, the dynamics of the discrete-time

RNN is given by Equation 6

H(t + δt) = H(t)+ (−H(t)+ σ (WRecH(t)+WinX(t))), (6)

The value considered for the time step is δt = 1 to obtain

the time evolution. Usually, the amplitude of the activity H(t) is

adimensional or expressed in arbitrary units. It will depend on

context. Then, from Equation 6, the activity of the recurrent units

at the next time step is given by Equation 7.

H(t + 1) = σ (WRecH(t)+WinX(t))) (7)

A simple schema of the model is presented in Figure 2. The

network have three inputs and three outputs corresponding to the

inputs and memory states of the 3-bit Flip Flop task.

As described in Section 1, the model is implemented in

Python using Keras and Tensorflow (Abadi et al., 2015; Chollet

et al., 2015). This allows us to use all current algorithms and

optimization methods developed and maintained by a massive

research community. Tensorflow has a recurrent layer directly

implemented to represent Equation 7, where it is possible to choose

the initialization of the parameters, number of units and activation

function. This is shown in the following code box.

tf.keras.layers.SimpleRNN(units, activation="tanh",
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",**kwargs)

Code for a Recurrent layer defined in Tensor Flow.
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FIGURE 1

A Flip Flop. Binary task designed to store one bit of information. It has two inputs, Set (S) and Reset (R), which in here will be represented by the

temporal signal states of B0 +1 and -1 in amplitude, and one output Q. The output represents the current state of the Flip Flop and can be either 1 or

-1.

The time scale of the Equation 7 is arbitrary. If we are

interested, for example, in scales related to cognitive processes, we

can consider 1 ms of temporal resolution.

The RNN can be initialized with different weight distributions.

Several options can be selected using TensorFlow. This choice

will depend, on the one hand, on the existence of some physical

motivation or hypothesis of the models. On the other hand, from

the ML perspective, it will depend on the performance associated

with the considered initialization.

To build an RNN with the topology shown in Figure 2, it is

possible to define a sequential model with layers such as:

model = Sequential()
model.add(SimpleRNN(units=N, input_shape=(None,3),activation="tanh"))
model.add(Dense(units=3,input_dim=N))

Code for the sequential model defined for the network in Figure 2.

Where input_shape=(None,3) means the shape

of the input vector, activation=’tanh’ corresponds

to the definition of activation function, and Dense is a

fully connected output layer. In this way, we completed

the first step which is of the model definition in terms

of the code. Orher acivation funcions are avaliable at

https://www.tensorflow.org/api_docs/python/tf/keras/

activations.

Other network architectures, such as Gated Recurrent Units

(Chung et al. (2014)) or Long Short Term Memories (SHI et al.,

2015), could be selected if there was any motivation from the

perspective of the mechanisms to take into account. Both are

already implemented in TensorFlow. Such code options are shown

in the boxes below.

model = Sequential()
model.add(layers.GRU(units=N, return_sequences=True))
...

Code using other architecture (GRU) for the sequential model defined for Figure 2.

model = Sequential()
model.add(layers.LSTM(units=N, input_shape=(None,3)))
...

Code using other architecture (LSTM) for the sequential model defined for Figure 2.

The choice of the appropriate architecture will depend on

the system to be modeled. Particular features, such as bias

terms, can be also considered. In some cases, it is possible, to

build architectures with additional features that are not pre-

defined. This can be done by using the class structures in the

framework.

For example, it is possible to define your own RNN cell layer

(the inner part of the for loop) with custom behavior and use

it with the generic keras.layers.RNN layer (the for loop

itself). For more details see: https://www.tensorflow.org/guide/

keras/working_with_rnns.

3 Task selection and parametrization

The parameterization of the task will have strong consequences

on the possible dynamics obtained from the system through

network training (Jarne and Laje, 2023). Possible examples are

considering training with noise vs. without noise. Another is to

consider amplitude variations or pulses of variable width in the

training set.

Previous works have considered some relevant tasks in

Computational Neuroscience related to decision-making or

working memory. For example in Jarne (2021, 2022); Jarne and

Laje (2023). All these processes use time-varying signals, which

are very different from the binary boolean operations considered

with forward networks. There are other examples of widespread

Frontiers in SystemsNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnsys.2024.1269190
https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/guide/keras/working_with_rnns
https://www.tensorflow.org/guide/keras/working_with_rnns
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Jarne 10.3389/fnsys.2024.1269190

FIGURE 2

Schema for the RNN described by Equations 1 and 2. The network has three inputs and outputs to build the di�erent memory states for the 3-bit Flip

Flop task.

tasks also considered in Computational Neuroscience, such as

“Perceptual Decision Making” (Britten et al., 1992) or “Context-

dependent Decision Making” (Mante et al., 2013). Each task has

different possible parameterizations. In particular, the task defined

in Mante et al. (2013) has recently been used to study the cortex

response (Zhang et al., 2021).

It is also possible to consider working memory tasks such as

“Delay match to sample with two items” (Freedman and Assad,

2006) or “Parametric working memory” (Roitman and Shadlen,

2002). For present work, motivated by Sussillo and Barak (2013),

a working memory task, a 3-bit Flip Flop was chosen.

A Flip Flop is a binary task designed to store one bit of

information. It has two inputs, Set (S) and Reset (R), which in our

case will be represented by the temporal signal states +1 and -1 in

amplitude, and one output Q. The output represents the current

state of the Flip Flop and can be either 1 or -1. The operation is

based on the following rule: If the input is 1, the Flip Flop output is

set to the "1" state. If input is -1, the Flip Flop output is reset to the

“-1” state. If both inputs are 0, the Flip Flop remains in its current

state.

Once the task is chosen, the requirements must be translated

into an algorithm that allows us to generate the training set. To

parameterize the task, the following criteria were applied here:

• The possible states of the Flip Flop are represented in such a

way that a positive pulse represents a set and a negative pulse

represents a reset.

• The state of the output will change corresponding to the input

command.

• A certain delay in the response was considered after the falling

edge of the input signal.

The training data set consists of time series with pulses of fixed

duration that represent set and reset signals. Those signals can be

activated randomly and are separated by a random time interval.

In all time series, a certain noise level has been added to the input.

Each input elicitate a target output according to the Flip Flop rule:

if we have a set signal or positive pulse, the output is in a high state.

If we have a reset signal or negative pulse, output is in a low state.

Otherwise, the output remains in the previous state.

The number of inputs in the network corresponds to the

number of memory states that can be stored. A Flip Flop is a one-bit

memory, meaning that two states only can be stored. In this way, we

have registers formed by three Flip Flops (a 3-bit memory), which

means that we have 8 different memory states.

To complete the full training data set, it is necessary to generate

tensors of size sample_size with the input time series of length

time_series_lengh for each of the three inputs and outputs.

To do that efficiently, we used Numpy arrays (Harris et al., 2020). In

the present work, we provide the code to generate a Flip Flop data

set. Three random components of the set x_train-y_train are

shown in Figure 3. Input has amplitude noise of 10%. The target

output, y_train, was simulated with a time delay answer of 20

ms. Each row (and color) corresponds to one of the inputs, and

each column to a different sample. Each training sample consists of

a Numpy array (Harris et al., 2020). This is shown in the following

code box.

x_train[sample_size,time_series_lengh,3]
y_train[sample_size,time_series_lengh,3]

Training data set pairs defined as Numpy arrays.

4 Training protocol and parameter
selection

Training methods for neural networks can be unsupervised or

supervised. We focused on applying a supervised method.

Different approaches are available, but those in which a

particular type of gradient descent method is applied stand out in

Frontiers in SystemsNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnsys.2024.1269190
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Jarne 10.3389/fnsys.2024.1269190

FIGURE 3

Three random samples of the training data set for each input channel. Each row (and color) corresponds to one of the inputs. Each column

corresponds to a di�erent sample. The gray line in each case represents the target output.

the literature. An example is the paradigm of Reservoir Computing,

specifically the use of liquid (or echo-state networks) (Maass et al.,

2002), where the modifications of the network weights are made

only in the weights of the output layer,Wout .

Other outstanding approaches were developed by Sussillo and

Abbot. They have developed a method called FORCE that allows

the reproduction of complex output patterns, including human

motion-captured data (Sussillo and Abbott (2009)). Modifications

to the algorithm have also been applied successfully in various

applications (DePasquale et al., 2018; Ingrosso and Abbott, 2019;

Engelken et al., 2022).

The other method used for estimation of the gradient in RNNs

is called Backpropagation Through Time (BPTT), and then an

optimization method for minimizing the gradient. Given the recent

advances in the implementation of this method with the open-

source libraries previously mentioned, this is the method used here.

Other back propagation-based methods have been published more

recently. For example, in Khan et al. (2018), authors proposed to

use fractional calculus to improve the conventional BPTT.

In this work, supervised learning was used, with standard

backpropagation through time. An Adaptive Stochastic Gradient

Descent training method provided by the Keras framework

(Kingma and Ba, 2014) was applied.

First, recurrent weights were initialized using a random normal

distribution with the orthogonal condition on the matrix. During

training, noisy square pulse signals were used as the inputs, as the

examples shown in Figure 3, and described in Section 3. In this way,

sets of time series with 350 time points were generated containing

random positive and negative pulses, with their corresponding

output according to the operating rule described for the Flip Flop.

The appropriate loss function to train the model is the mean

square error between the target function and the output of the
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network. It is defined as:

E(w) =
1

2

M
∑

t=1

L
∑

j=1

|Zj(t)− Z
target
j (t)|2, (8)

where Z
target
j (t) is the desired target function and Zj(t) is the

actual output.

The training set consisted of more than 15000 different

random samples. The previously mentioned training procedures

correspond, in terms of the code structure, to the methods

for compiling and fitting models. The loss function and the

optimizer algorithm are chosen in the compiling step. Different

information about the training data set, epochs, and other training

characteristics can be specified with the fitting method. An example

of implementation is shown in the following code box.

model.compile(loss = ‘‘mse’’, optimizer=ADAM)
model.fit(x_train[50:sample_size,:,:], y_train[50:sample_size,:,:],

epochs=epochs, batch_size=128, shuffle=True)

Code for the compiling and training steps.

The main parameters of a neural network are the weights of

the connections. These parameters are learned during the training

stage. On the other hand, hyperparameters are parameters of your

neural network that can not be learned via gradient descent or some

other training method. These include the learning rate, number of

layers, or the number of neurons in a given layer.

Tuning the hyperparameters means the process of choosing

the best values of them. Typically, this is done by evaluating the

performance of the network on a validation set. Then, we have to

change the hyperparameters and re-evaluate the model, choosing

the values that give the best performance on the validation set.

Another approach for choosing them is to have an informed

decision or hypothesis related to the physics or nature of the system

under study.

How do we choose these values? Often, there is good standard

initialization related to each particular task of interest. An example

of the criteria is provided for the Flip Flop task in Table 1.

TABLE 1 Model’s parameters and criteria for the network’s

implementation and training.

Parameter/criteria Value

Units 400

Time step 1

Input Weight 3× 400

Recurrent Weights 400× 400

Output Weight 400× 3

Training algorithm BPTT ADAM

Initialization Random Orthogonal

Regularization None

Another aspect to consider is the regularization of the model.

Regularization refers to training our model well enough that it can

generalize over data it hasn’t seen before.

To summarize, in the training stage, the main aspects we

have to consider are the size of the network, data set, noise, and

regularization terms that are appropriate for the considered task.

A good practice is to build a set of RNNs (at least a dozen) with

different hyperparameters that are correctly trained to perform the

same task and that can serve as a test set and allow us to compare

the variations in the possible solutions.

5 Analyzing the results

The results obtained after training the RNN can be analyzed

in several ways. On the one hand, we can consider the quality

of the solutions obtained (and the robustness) by analyzing the

predicted output concerning the target and stability against noise

conditions. On the other hand, we can study the solutions in terms

of the dynamics and collective behavior. In Section 5.1, we will first

briefly discuss how to evaluate robustness in terms of the output

obtained and how robust it can be against variations in the input

stimuli. Then, in Section 5.2, we will discuss in-depth details of the

dynamics and collective behavior.

5.1 Evaluating RNN performance and
robustness

We can measure the rate of success for a set of networks

in terms of Euclidean distance between target and output (Jarne

and Laje, 2023). The distance between the network’s predicted

output and the target output could be estimated using the Numpy

function linalg.norm(), which in this case is the Frobenius

norm (or Euclidean norm) between the output vector of the trained

network and the target output. We could use other metrics, such as

Mean squared error (MSE), which measures the average squared

difference between predicted and actual values.

from numpy import linalg as LA
euclidean_norm = LA.norm(Difference)

How to use linear algebra library from Numpy to calculate the norm of the

vector "Difference" using the Euclidean norm.

We can also include noise and variations in amplitude to

the data and find constraints on how the network is still able to

accurately predict the target.

In addition to the metrics mentioned above, we can also

evaluate the robustness using other available Accuracy metrics.
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FIGURE 4

Left: Example of visualization for the connectivity matrix for a trained RNN. Right: Eigenvalue distribution of Wrec in the complex plane.

In general, what type of data sets we use to train the network is

directly related to how robust we want to design our systems and

what properties we are seeking to represent and should be taken

into account when comparing the abstractmodels studied here with

those obtained from experimental data.

Characterizing the limitations of the network concerning

variations in input signals is a good practice that will allow us to

better understand the results obtained.

Another analysis related to robustness that can be performed

is to determine the minimum size of the network that allows the

parameterized task to be performed (in our example Flip Flop),

given a certain desired accuracy.

5.2 Analyzing the collective behavior of
trained RNNs: visualization and
dimensionality reduction techniques

After training, we obtained a set of RNNs that can perform the

tasks of interest. We describe in this section the different aspects to

analyze regarding the network’s collective behavior. We selected a

method for the model’s visualization and a group of tools to extract

the relevant information.

For example, it is possible to visualize the connectivity matrix

(recurrent weight matrix), as it is shown on the left side of

Figure 4. The columns represent the output connection of the i-

neuron, and the rows are the input connection. They are also called

post-synaptic and pre-synaptic. The color bar on the right side

represents the intensity of the connections. We have to consider

an appropriate scale for the visualization. Even so, it may not

be entirely clear how to observe the relevant information, apart

from the fact that, after training, most of the weights remain

close to zero. As a first approach for visualization, a plot of the

connectivity matrix could be useful, even if the case presented

here does not reveal relevant information. It’s important not to

undervalue it. If the connectivity has some structure farther from

a random distribution, it will be observed in the connectivity plot.

For example, having null autoconnection terms will be reflected

in the color of the diagonal terms of the matrix plot. Another

example could be sparsity, which would be reflected in patches

over the matrix. Or perhaps, in the case of having excitatory and

inhibitory units, it would be easy to visualize the different columns

corresponding to the same sign of out connection. In case of

imposing such constraints on the connections, as Dales’ Law (Dale,

1935), or any particular constraint, they will be visible in this stage,

and this representation will be more useful.

If we don‘t obtain relevant information with this first

visualization, we know that useful information could be still

encoded in the connectivity matrix, but it may not be immediately

distinguishable with a connectivity plot. There are different

transformations or analyses that we can perform on the recurrent

weight matrix with this aim. Different Linear Algebra operations

are available in the Numpy Library (Harris et al., 2020) that are

optimized to be used with the array structures. For example, if

we perform a decomposition of Wrec in their eigenvectors and

eigenvalues, we can obtain the eigenvalue distribution as it is shown

in the right side of Figure 4. This analysis can be done using the

code in the following code box.

from numpy import linalg as LA
eigenvalues, eigenvectors= LA.eig(Matrix)

How to use linear algebra library from Numpy for eigenvalue

decomposition.

During training, the matrix associated with the network tends

to be non-normal, which results in their eigenvalues lying closer

to the unit circle. This behavior is explained in more detail in

papers that study the dynamics of RNNs, where it is shown that

Frontiers in SystemsNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnsys.2024.1269190
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Jarne 10.3389/fnsys.2024.1269190

FIGURE 5

Four di�erent examples of eigenvalue distributions of Wrec for trained RNNs which have been initialized before with an orthogonal distribution.

the presence of recurrent connections and the attractors in the

network’s dynamics can cause this accumulation of eigenvalues

close to the unit circle (Asllani et al., 2018; Bondanelli and Ostojic,

2020; Jarne, 2022).

Additionally, in these studies, it is typically shown that this

accumulation of eigenvalues on the unit circle leads to slowing

down the dynamics of the network. They can be linked to the

emergence of long-term memories related to the linearization

of the system. Therefore, this behavior can be understood as a

necessary condition for the network to effectively store and retrieve

information over longer time scales.

In the case presented here, we can visualize that, except for

a small group of eigenvalues that migrated out of the unit circle,

the rest remain on it, which is related to the initial orthogonal

condition. The same was replicated throughout all simulations. A

set of four examples is shown in Figure 5, and the code provided

allows us to reproduce more. Eigenvalues outside the unitary

circle seem to be related to the behavior (or modes) observed for

the different stimuli at the input as described in (Jarne, 2022).

This is relevant in terms of the dynamics. Additional information

related to the connectivity matrix could also be obtained (Jarne,

2022).

Other possible studies that we can perform are related to the

response in terms of the activity of the network units when applying

the different stimuli.

Since we have a large number of units, and for each, an activity

vector, dimensionally reductionmethods are appropriate to analyze

such behavior. They have been used widely in different works

related to large-scale neural recordings (Cunningham and Yu,

2014; Williams et al., 2018).

Scikit-learn (Pedregosa et al., 2011) is a Python open-

source library based on Numpy that allows us to perform

dimensionality reduction, feature extraction, and normalization,

among others. It has efficient methods for predictive data

analysis. A possible decomposition could be, for example, Principal

Component Analysis (PCA) or also Single Value Decomposition

(SVD). The following code box shows how to call the library’s

functions.
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FIGURE 6

(A) Data set for testing. Each panel corresponds to one input and the predicted output of the Flip Flop, which is shown in red. (B) Schema of the

network. (C) Single Value Decomposition applied to the activity vector H(t) of panel b) in the three components of greatest variance. Each color point

corresponds to a di�erent memory state.

from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD

How to import scikit learn libraries to perform single value decomposition

and principal component analysis.

These tools can be used to extract relevant features of the

system. For this work, the behavior, in terms of the activity of the

units, was analyzed.

It is well known that the different memory states in

a 3-bit memory are distributed in the vertex of a cube-

like form in the space state (Sussillo and Barak, 2013). This

was shown when authors explored the hypothesis that fixed

points, both stable and unstable, and the linearized dynamics

around them, can reveal aspects of how RNNs implement their

computations.

A data set was built for testing and reproducing the behavior.

It generates eight different memory states, as shown on the

left side of Figure 6, where each panel shows the input and

output of the network. Time series of 600 ms were considered

to generate all the different memory states of the 3-bit memory

by choosing the correct commutation for the inputs in fixed

time intervals. Output responses are shown in red in the

figure.

The testing set is injected into the network (right upper

panel of the figure), and then the activity of the units is

analyzed by applying SVD on the activity vector H(t). The

behavior of the system was represented in the three axes of

the greatest variance. The bottom right part of Figure 6 shows

the activity in the reduced state space (3-dimensional). Each

vertex corresponds to each memory state marked in different

colors.

It is well known that different variations of the realizations, in

terms of weight distribution and dynamical behavior, are possible

when training networks for the same task (Jarne, 2021, 2022; Jarne

and Laje, 2023). This was exemplified in Figure 5 and is also shown

in Figure 7, where the four different realizations of the trained

networks of Figure 5 were elicited with the same testing data set

and a decomposition SVD analysis, was performed.

The vertices in this space of the main components are

distributed in different positions. A cube-like structure always

appears, similarly to what was observed in Sussillo and Barak

(2013), and is rotated in different spatial directions for different
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FIGURE 7

Activity of the four di�erent realizations of RNNs trained for the same 3-bit Flip Flop task in the dimensionally reduced space. Configurations are

similar to one presented in Figure 5.

realizations. It is possible to study and classify the behavior of

the obtained systems by comparing the network obtained. This

cube-like structure is characteristic of this task parametrization,

and it appears even when we used a different training method and

network parameters compared with previous studies (Sussillo and

Barak, 2013).

Additional analysis could be considered depending on the

aspects of interest to be studied. Here, a minimal analysis

was proposed. We described in detail the steps, visualization

tool, criteria, and implementation. The code for training and

analysis is provided also in an open repository: https://github.com/

katejarne/3-bit-FF-tutorial/tree/main/paper. It can be also used as

an open framework to parametrize different tasks or additional

studies. In this way, we can generate and compare the different

realizations for the Flip Flop task or define different tasks for

study.

6 Conclusions

In this work, all steps to build and analyze an RNN have

been presented for a sample task. We started from the model

description in terms of the equations, discretization, and code

implementation. We discussed different options that are available

for code implementation depending on the considered model and

scientific questions. Then, we described the task parametrization

and network training protocol. We also presented a set of tools

to analyze the results using open-source scientific libraries making

use of the different visualization tools that allow extracting relevant

features.

We used the Flip Flop task as an example, but other relevant

tasks could be considered, as mentioned in Section 3. For example,

“Perceptual Decision Making” (Britten et al., 1992), “Context-

dependent Decision Making” (Mante et al., 2013; Zhang et al.,
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2021), working memory tasks such as “Delay match to sample with

two items” (Freedman and Assad, 2006) or “Parametric working

memory” (Roitman and Shadlen, 2002). In this work, motivated

by Sussillo and Barak (2013), a working memory task such as a

3-bit Flip Flop, was chosen to show the entire process: from the

differential equations of the RNN model, discretization, through

the parameterization of the task and the methods of analysis for the

activity of the network against the different stimuli on the network.

The use of open-source scientific frameworks designed and

maintained for large communities, such as the tools used here,

allows enhancing research. This is why we are currently using tools

that are more transparent in terms of code and documentation

because they are open to being modified and improved by

thousands of users.

Regarding the limitations, the proposed method was evaluated

on a single cognitive task, namely Flip Flop. It is not clear whether

the proposed pipeline would generalize to other more complex

types of cognitive tasks. We did not include other explicit biological

constraints in this example. We could extend it to include sparsity

or Dale’s law, for example. Further work could address such

research directions to complement generalization and biological

details.
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