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The hypothalamus in the mammalian brain is responsible for regulating 
functions associated with survival and reproduction representing a complex set 
of highly interconnected, yet anatomically and functionally distinct, sub-regions. 
It remains unclear what factors drive the spatial organization of sub-regions 
within the hypothalamus. One potential factor may be structural connectivity of 
the network that promotes efficient function with well-connected sub-regions 
placed closer together geometrically, i.e., the strongest axonal signal transferred 
through the shortest geometrical distance. To empirically test for such efficiency, 
we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, 
which provides a structural connectivity map of mouse brain regions derived 
from a series of viral tracing experiments. Using both cost function minimization 
and comparison with a weighted, sphere-packing ensemble, we demonstrate 
that the sum of the distances between hypothalamic sub-regions are not close 
to the minimum possible distance, consistent with prior whole brain studies. 
However, if such distances are weighted by the inverse of the magnitude of 
the connectivity, their sum is among the lowest possible values. Specifically, 
the hypothalamus appears within the top 94th percentile of neural efficiencies 
of randomly packed configurations and within one standard deviation of the 
median efficiency when packings are optimized for maximal neural efficiency. 
Our results, therefore, indicate that a combination of geometrical and topological 
constraints help govern the structure of the hypothalamus.
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Introduction

The mammalian brain is a complex network composed of functionally and anatomically 
distinct regions. As our ability to identify regions in the brain with distinct cell types and 
molecular markers increases, our understanding of how different brain regions are organized 
spatially becomes vital if we hope to understand the impact of these regions in physiology and 
pathology as structure can be  strongly coupled to functionality (Maynard et  al., 2021). 
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Furthermore, the brain’s functionality appears to depend largely on 
the neuronal distribution between brain regions, commonly referred 
to as the connectome. The connectome can be represented as a graph, 
where nodes represent brain regions and edges represent axonal 
projections between regions. Such a graph for the whole brain displays 
some universal characteristics such as modularity (Meunier et al., 
2010) and small-worldness (Watts and Strogatz, 1998; Bassett and 
Bullmore, 2006) which may have emerged to improve the 
communication quality of the neural network (Bullmore and Sporns, 
2012; Mišić et al., 2015). Such graphs exist independent of spatial 
orientation and physical packing (i.e., spatial embedding) of the 
individual nodes within the brain. However, spatial embedding is an 
important aspect underlying the neuronal connectome.

As brain regions are laid out in a manner constrained by their 
physical volume in three-dimensional space, spatial embedding may 
be driven by the advantages of an efficiently organized network – 
measures that involve a combination of geometry and network 
topology. To be  precise, one possible driving factor may be  the 
minimization of the “wiring cost” defined as the total length of axonal 
projections between brain regions measuring the minimality in 
material usage of the neuronal network (Kaiser and Hilgetag, 2006; 
Bassett et al., 2010). Rubinov et al. explored the brain’s organization in 
terms of wiring cost and found that, if wiring cost is defined as either 
axonal distance between regions or the product of axonal distance and 
axonal bandwidth, the mouse connectome cannot be  explained 
entirely by the global minimization of wiring cost (Rubinov et al., 
2015). Given this finding, they argued that there is a trade-off between 
wiring cost and high-participation hubs to enhance connectome-
mediated communication between functionally distinct regions. The 
efficiency of such high-participation hubs (or connector hubs) are 
potentially measured directly by the small-world efficiency index 
(Latora and Marchiori, 2001). Looking at 55 areas of the cat cortex, it 
was found to be 69% small-world efficient as compared with 57% 
small world efficiency in a random graph. However, more recent 
analysis suggests only weak small-world properties with some 
networks in the brain (Swanson et al., 2019), indicating the need for a 
more refined quantitative strategy to measure efficiency. As the brain’s 
spatial structure and wiring together drive its organization, an 
efficiency measure that simultaneously takes these factors into account 
is of interest. On the one hand, the wiring cost does not take the 
magnitude of the axonal projections (edges) by the connectome. On 
the other hand, the small-worldness does not take the spatial distances 
into account. Therefore, we  propose a complementary measure 
defined as “neural efficiency” which is maximized when the axonal 
projections of the highest magnitude are sent through the shortest 
possible neuronal paths.

Here, we  focus on the organizational efficiencies of the 
hypothalamus. The hypothalamus plays a key role in activities that are 
essential for the survival of the body (Swanson, 1986; Swanson, 1987; 
Swanson, 2000; Simerly, 2015). It maintains the body’s homeostasis by 
controlling factors such as temperature, hunger and satiety, and 
cardiovascular regulation. In addition to its vitality, the hypothalamus’ 
functionality is diverse (Swanson, 2000; Simerly, 2015), which can 
be  due to its topological and wiring complexities. This brain’s 
sub-region holds the densest wiring of the whole central nervous 
system (Hahn and Swanson, 2010; Hahn and Swanson, 2012; Hahn 
and Swanson, 2015). Despite the important functionality of the 
hypothalamus, there has not been much focus on the organization of 

the hypothalamic neuronal network (Bedont et al., 2015; Hahn et al., 
2019). Recent network analysis for the human hypothalamus 
demonstrates that that there are two interconnected sub-networks 
each with their own sub-structures with possible implications for 
future hypothesis-driven work (Hahn et al., 2019). Here, we take a step 
back from such detailed, hypothalamic network analysis to look for 
more minimal principles of structural organization. Specifically, 
we draw data from a database of viral tracing experiments to construct 
a model representation of the wild-type mouse hypothalamus that 
reflects its (i) neural connectivity (network configuration), (ii) 
magnitude of the axonal projections (edges), and (iii) spatial position 
of hypothalamic subregions (nodes). We demonstrate that neither the 
unweighted small-world efficiency nor the wiring cost of the network 
is in its highest optimal state in the mouse hypothalamus. However, 
our new definition of neural efficiency, which accounts for all three 
aforementioned characteristics together, shows that the hypothalamic 
network is indeed organized efficiently. This new understanding 
demonstrates the anatomical properties which underlie the 
hypothalamic network and suggests new characteristics to study in the 
context of both neurological diseases and artificial networks.

Methods

The Allen Mouse Brain Connectivity Atlas provides a structural 
connectivity map of the mouse brain regions derived from a series of 
499 viral tracing experiments comprising 157 brain regions in the 
wild-type mouse (Oh et al., 2014). We employed this connectivity data 
coupled with positional data also taken from the Atlas for 26 
individual brain sub-regions of the hypothalamus in the wild-
type model.

For each brain region listed in the Allen Brain Connectivity Atlas, 
the Atlas gives the region’s volume, injection position, and axonal 
projection volumes to target structures measured using viral tracing 
experiments. We utilized these data to generate a simple model of the 
complex mouse brain. We limited our analysis to brain regions that 
were the targets of injections, which would therefore have mapped 
axons arising from them. We assumed that, while axons do arise from 
these excluded regions, they are likely insufficiently characterized by 
the Atlas for our analysis. For each brain region, the Atlas carries 
duplicate viral injection experiments. We arbitrarily chose to sample 
the experimental projections with the greatest intensity for each brain 
region since our preliminary analysis showed the injection experiment 
chosen did not significantly impact results. Further, the authors of the 
Atlas found that the projection intensities of sets of duplicate injections 
differed only within one standard deviation (Oh et  al., 2014). 
Additionally, while brain region locations are well-mapped in the 
mouse brain, injection positions differ slightly between experiments. 
To define the experimental 3D position of a given brain region, 
we  took the geometric average of all injection positions from 
experiments for the region after preliminary analysis using different, 
specific experiment injection coordinates yielded similar data.

The Allen Brain Connectivity Atlas utilizes quality control steps 
to ensure inclusion of only axonal projection fluorescence in its 
anterograde projectome data. The dendrites of AAV-infected neurons 
may contribute to overall projection intensity if not accounted for. To 
combat this, the Atlas created a polygonal exclusion zone surrounding 
the injection site to remove dendritic signal intensity for more accurate 
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informatics processing. The inclusion areas were translated to the 
Allen Mouse Common Coordinate Framework and the areal 
proportion of each infected structure was obtained (Allen Institute for 
Brain Science, 2017).

To simplify the brain’s geometry, and thereby reduce the 
computational complexity, we  assumed that each region is 
approximately spherical and is represented in our model as a sphere 
of the region’s same volume. In Appendix B, we show whether brain 
regions are truly spherical bears no impact on the results or validity of 
our model. Additionally, we only addressed one hemisphere, assuming 
laterality plays a minimal role in efficiency. With these assumptions in 
place, we modeled the brain’s layout as a set of spheres in locations 
approximately true to those derived from their viral injection sites. 
The cost of this simplification is that 34 out of 325 possible region 
pairs have undesired, but relatively negligible, overlaps. The average of 
the overlaps is only 0.2 (mm) and the maximum overlap is 0.8 (mm). 
In addition to the spatial information, we  retrieved the axonal 
projection volumes and the connectivity map, i.e., the weighted 
adjacency matrix, of the mouse hypothalamus from the Allen 
Brain Atlas.

We hypothesize that the hypothalamus is developed such that the 
highest magnitude of axonal signaling is transmitted between its 
sub-regions over the shortest distance possible. In other words, the 
minimization of spatial distances between the sub-regions of 
hypothalamus competes with the maximization of the magnitude of 
the axonal signals transmitted between the sub-regions such that 
neither of the two factors is highly optimal alone. Therefore, 
we postulate that the following measure of efficiency is maximized in 
the hypothalamus:

 
S

I
dij

ij

ij
=∑

 
(1)

Where i and j enumerate all the possible pairs of the sub-regions, 
dij is the Euclidean distance between the two regions i and j and Iij is 
the axonal projection volume between regions i and j. This value 
obtained from the Allen Brain Atlas is in units of (mm3). Given the 
asymmetric nature of the Iij matrix, the wiring in the hypothalamus 
is represented by a directed graph. Inserting the data from the Atlas 
into Eq. (1) returns an efficiency value of 24.2 (mm2). Note that for the 
densely connected hypothalamus, Euclidean distance is a reasonable 
metric since the neuronal pathways are not curved.

To determine whether the mouse hypothalamus is laid out 
efficiently according to our definition, we  used computational 
methods to derive a model hypothalamus to maximize efficiency to 
compare to the Atlas-derived hypothalamus. We  kept the wiring 
configuration, i.e., the weighted adjacency matrix Iij , constant, 
generated an array of 26 random positions each of the spherical 
regions, and minimized the inverse of Eq. (1) (thereby maximizing the 
efficiency, S), using the Minimize method of the Optimize class in the 
SciPy library for the Python programming language. The optimizer 
starts with the random packing and explores the 26 3×  dimensional 
phase-space to find a set of (x, y, z) positions for each of the 26 regions 
that maximizes Eq. (1). Since the brain regions occupy a certain 
volume in the physical space, the minimization is under the constraint 
that only a negligible overlap, equivalent or less than the overlaps of 
the spheres in Figure 1, is allowed. Among the possible minimization 

methods that are implemented in SciPy (Virtanen et al., 2020), we use 
SLSQP (Kraft, 1988), which can accommodate the constraints. The (x, 
y, z) variables are bound to move between 0 and 15 (mm). We report 
that the outcome is independent of the perturbations in the upper 
limit, and independent of upper limits greater than 15 (mm). This 
process is repeated 104 times to obtain an ensemble of 
hypothalamus packings.

To complement the optimization study, we also conducted an 
independent random-packing investigation. This study explores the 
phase-space of possible positions for the hypothalamus sub-regions 
and quantifies how the efficiency of the true configuration of 
hypothalamus compares to efficiencies on a relevant region of this 
phase space. To facilitate the building of a suitable ensemble of 
possible configurations, we first reduced the phase space dimensions 
to 23 3×  by considering only the sub-network in the bulk of the 
hypothalamus, removing from the network the three distinct outer 
regions as seen in Figure 1B.1 The volumes of the remaining regions, 
modeled as spheres, are the same as the true ones in the hypothalamus. 
Moreover, as in the optimization study, in all the random packings, 
the adjacency matrix Iij  is constant (although, with the three nodes 
and their connections removed, the relevant elements of Iij  now 
belong to a 23 23×  submatrix).

Suitable random packings of these regions are generated using the 
Numpy library’s random number generator and the following 
algorithm which is summarized in Figure 2:

 i A random configuration is first proposed by generating 23 
coordinates within a 3D box with dimensions that would barely 
fit the bulk of the hypothalamus.

 ii The configuration is compared to the bulk real hypothalamus 
by evaluating numerical measures of overlaps and gaps. The 
difference between the center-to-center distance and the sum 
of radii of two edges is called an overlap if it has a negative 
value, and a gap if it has a positive value. The following six 
quantities are evaluated on the proposed random packing: (a) 
total length of overlaps across all edges, (b) average length of 
overlap on the overlapping edges, (c) the maximum 
overlap length, (d) the total length of gaps across all edges (e) 
average length of gaps on non-overlapping edges, (f) the 
maximum gap length on such edges.

 iii If all the above quantities are within 5 percent of their 
numerical values in the real bulk of the hypothalamus, this 
configuration is retained; otherwise, another random packing 
is proposed. The dependence of our results on the 5 percent 
threshold were checked (see Appendix C).

This procedure was used to generate an ensemble of 48,300 
random configurations, effectively sampling the region of the phase 
space of configurations where the packing of subregions is comparable 
to the tight but somewhat elongated packing of the real hypothalamus 
bulk, as seen in Figure 1B.

Finally, we also investigate the network of Euclidian distances 
among the sub-regions of hypothalamus to find out whether the 

1 The efficiency of the subnetwork contained in this bulk of the hypothalamus 

is 23.5 or about 3% less than the efficiency of the entire hypothalamus network.
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regions are organized such that the sum of distances is minimal. 
We define the wiring cost as:

 
W d

ij
ij=∑

 
(2)

Which assumes equal cross-sectional area for all the axonal 
connections. It should be  noted that even though 

I
d
ij

ij
 has the 

dimensions of the cross-sectional area, its asymmetric nature indicates 
that it does not represent the material’s cross-sectional area. To 
understand whether Eq. (2) is minimized in mouse hypothalamus, 
we follow the same procedure as in the study of Eq. (1): we use the 
same 104 random packings of the 26 spheres as the starting points and 
use the same minimizer function of the SciPy with the same method, 
SLSQP, and apply the same overlap constraints.

Results

We observe that the hypothalamus as reported in the Allen Atlas 
does not minimize the wiring cost as defined in Eq. (2). The conclusion 

is reached after investigating the minimal value of the wiring cost by 
minimizing Eq. (2) with 10,000 different initial conditions. Figure 3 
shows the resulting histogram of 104 packings that minimize the 
wiring cost, and the vertical red line shows the wiring cost of the true 
hypothalamus. The difference between the true wiring cost and the 
theoretical minimal wiring cost shows that the hypothalamus is likely 
not organized to minimize distances between its sub-regions. 
Furthermore, a sub-analysis of the network properties of the 
hypothalamus in Appendix C confirms that network communication 
efficiency is not optimized in the hypothalamus, but the network does 
display small-world characteristics.

On the contrary, we observe that the spatial and axonal structure 
of the mouse hypothalamus is extremely efficient but not unique in 
terms of the definition in Eq. (1). To reach this conclusion, we used 
the optimizer class in SciPy library to maximize Eq. (1). Since the 
optimizer requires a starting point in the phase-space, we repeated the 
maximization process 104 times, each with a random spatial 
distribution of 26 spheres as the starting points. Figure 4 shows a 
histogram of the optimal solutions with the red line representing the 
efficiency of the true hypothalamus organization. As can be seen from 
the figure, all 104 trials lead to maximum efficiency values comparable 

FIGURE 1

(A) The spatial structure of the 26 sub-regions of hypothalamus derived from the Allen Brain Atlas. The outlier regions, PVH, ADP, and SBPV, are 
removed. (B) The spherical model of the sub-regions of the hypothalamus. For a list of sub-region abbreviations, see Appendix A. (C) Graphical 
representation of the hypothalamic network. Each node represents a brain region and each arrow an axonal projection. The width of the arrows 
represents the axonal volume. (D) 3D projection of the spatial structure of the hypothalamus. See Appendix A for a list of abbreviations.
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to that of the true model. The figure also indicates that the efficiency 
measure of Eq. (1) has multiple local maxima in the 26 3×  dimensional 
phase-space.

Additionally, we observe that the efficiency of the hypothalamus 
is larger than what would be expected from random packings of the 
regions. This observation is the result of investigating the efficiency 
of 48,300 randomly repacked configurations of regions in the bulk 
of the hypothalamus, with the conditions that (i) they have the same 
physical volume as the true model (ii) the neuronal connectivity 
and the magnitude of the projection signals, i.e., the weighted 
adjacency matrix Iij , is the same as in the true model. Furthermore, 
we  only consider the spherical packings where overlap and gap 
measures between the edges are comparable to the same quantities 

in the true model. Figure 2B shows the histogram of the efficiencies 
of such random packings. The vertical line representing the 
efficiency of the true bulk of the hypothalamus, is at a 94th 
percentile on the sample of efficiencies, and about 1.6 standard 
deviations above the mean on the sample; suggesting that increased 
efficiency may be a driving factor behind the choice of configuration 
in the real hypothalamus.

Discussion

Dating back to Ramón y Cajal, those studying the nervous system 
have argued that organizational principles include conserving 
material, time, and space (Ramon y Cajal, 1995; Laughlin and 
Sejnowski, 2003; Kaiser and Hilgetag, 2006; Budd and Kisvárday, 
2012). Some works have investigated conserving connection costs, 
deriving principles such as wiring cost or activity-based map 
formation (Rubinov et al., 2015; Imam and Finlay, 2020). Others have 
emphasized topological properties of organization, such as topological 
efficiency and robustness (Achard and Bullmore, 2007; Lynall et al., 
2010). Overall, however, it appears that the brain’s connectome is 
optimized neither to minimize connection cost nor maximize 
topological properties; instead, it is configured as a result of 
organizational tradeoffs between physical network costs and adaptive 
topological advantages (Bullmore and Sporns, 2012).

In particular, spatial embedding may represent an important 
physiological feature driving organizational principles of the brain’s 
connectome. By constructing a simplified, volume-based model of the 
hypothalamus, our organizational principle integrated both spatial 
packing between regions and weighted structural connectivity to 
derive a new metric by which to measure hypothalamic efficiency. This 
approach differs from previous works which focus on connection cost 
solely and further integrates the constraints given projection intensity 
as a possible measure of axonal metabolism to build a more complete 

FIGURE 2

A visual summary of the random packing algorithm used to generate theoretical hypothalamic configurations to compare to the true configuration of 
the hypothalamus.

FIGURE 3

The wiring cost, defined in Eq. (2), is minimized for 104 different 
starting points in the 26 3×  dimensional phase-space. The 
histogram shows the optimal wiring costs. The vertical red line 
represents the wiring cost of true hypothalamus.
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model which can be seen as an extension of Bullmore and Sporns’ 
conclusions on the economy of brain network organization (Bullmore 
and Sporns, 2012).

We found that there is a significant relationship between the 
hypothalamic regions’ spatial orientation, axonal projection strength, 
and functionally efficient organization. In a model defined by 
simplified spherical hypothalamic structures, the hypothalamus’ 
organization is driven by its structural efficiency. The hypothalamus 
in its true configuration yielded the highest structural efficiency from 
our model. We observe that the hypothalamus is assembled in part 
due to a function of the axonal projection strength and distance 
between pairs of brain regions. Additionally, we  observe that the 
wiring cost is not minimized as seen in Figure 3. However, if the 
distances are weighted by the magnitude of the signals that pass 
through them, the sum is among the lowest minimum values. 
Nevertheless, the hypothalamus is not in an entirely unique state that 
optimizes the efficiency as we have defined it as; Figure 3 shows that 
multiple theoretical hypothalamus configurations lead to similar or 
greater efficiencies than the true configuration of the hypothalamus 
and its sub-regions. We surmise that the reason is the existence of 
other competing factors than the two that we have considered. These 

factors might be  known drivers of network organization such as 
network modularity (Zamani Esfahlani et al., 2021), or hub structure 
(van den Heuvel and Sporns, 2013), or it could be some collection of 
unknown factors to be discovered. Together, these findings may help 
drive hypothalamic development (Swanson, 1986), physiology, 
and pathology.

In the adult rodent brain, brain regions with similar gene 
expression profiles have similar connectivity profiles, and brain 
regions which are connected have similar expression patterns 
(French and Pavlidis, 2011). The spatial range of connections is 
likely limited suggesting that topology is biased toward 
neighborhoods of similarly connected regions. Thus, clustering 
and modularity of the brain in a spatial sense also harmonizes 
with a minimized wiring cost (Bullmore and Sporns, 2012). This 
would also explain why wiring cost is not globally minimized 
since these anatomical neighborhoods exist which must 
communicate with other modules elsewhere in the brain. Long-
distance connections between hubs are costly in terms of wiring 
cost, but such “streets between neighborhoods” likely reduce 
overall energy consumption. If one applies this thinking to the 
organization of the entire brain, it is understandable why distinct 

FIGURE 4

(A) A histogram of maximized efficiencies as defined in Eq. (1) for 10,000 random initial guesses. The vertical red line represents the efficiency of the 
mouse hypothalamus using the measurements derived from the Allen Brain Atlas. This figure indicates that the hypothalamus is organized such that 
Eq. (1) is among the highest values that are possible although it is not the unique efficient packing. The configurations on the left and right show 
example configurations from different low- and high-efficiency bins. Two different hypothalamus sub-regions are highlighted in green and red to 
show their changes in position. (B) The histogram of efficiencies of 48,300 randomly packed hypothalamus sub-regions superimposed upon 
histogram from panel (A). These configurations are randomly generated and not optimized for efficiency. Comparing the two histograms shows that 
the true network is among the most efficient of optimized networks, which together are more efficient than an ensemble of randomly configured 
theoretical hypothalamic networks.
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anatomical regions, such as the hypothalamus, occur with a 
composition of neurons with similar connectivity and thus similar 
function. If one extends this thinking to the hypothalamus and its 
substructures, as in this investigation, then it stands to reason that 
the hypothalamus is organized similarly. Within the hypothalamus, 
itself a compartmentalized portion of the brain, sub-regions of 
neuronal populations with similar functions and similar 
connectivity are organized in topological neighborhoods with 
minimized wiring cost to adjacent neighborhoods. Thus, if the 
hypothalamus’ sub-regions are constrained by geometric volume 
to reduce energy costs, and then places sub-regions which 
communicate frequently close together, our study shows that this 
results in an efficient hypothalamus similar to the true rat 
hypothalamus (Figure 4).

While this application of large mouse connectivity datasets 
strives to explore novel concepts founded on prior work while 
remaining computationally viable in its objective, we acknowledge 
several limitations of our study. Much of our data relies on the 
Allen Brain Connectivity Atlas which in its formation 
implemented several quality control measures to ensure sound, 
yet high throughput, connectivity data. Still, the Atlas cannot 
guarantee that signal projections are segmented accurately with 
its algorithmic approach, and, among other inaccuracies, some 
passing fibers may be mistaken for terminal zones, biasing our 
data (Kuan et  al., 2015). Additionally, the Atlas’ resolution is 
limited by its number of injection experiments. We chose only to 
include regions which were injection targets in our analysis 
because other regions are likely not mapped with significant 
resolution to be useful in our analysis; unfortunately, this meant 
sacrificing interesting regions, such as the median eminence, in 
our model. Our model also greatly simplifies the topological 
structure of the mouse brain by approximating regions as a 
spherical construction of their volume rather than their true 
geometry in order for our analysis to remain computationally 
feasible. This may over- or underestimate distance between 
projection sites, affecting our computation of efficiency. 
Penultimately, our analysis of the Connectivity Atlas is limited by 
the techniques used to gather the connectome data; specifically, 
although significant steps were taken by the Atlas authors to limit 
viral vector mapping to axons only, we cannot rule out that some 
data presented is based on dendritic projection data. Lastly, our 
study limits its analysis to the hypothalamus, and conclusions 
herein may not extend to the rest of the brain. Nevertheless, 
together these data support the hypothesis that spatial and 
topological efficiency contribute to the overall structure and 
organization of the hypothalamus.

Connectivity in the mouse brain has already been applied to 
animal models of human behavior through functional MRI and, 
in some cases, has detected alterations consistent with those 
detected in humans (Xu et al., 2022). Comparisons of the human 
and mouse connectome suggest similarities in inhibitory-to-
excitatory balance and total synaptic input despite millions of 
years of evolutionary divergence, differing mostly in network size 
and interneuronal network complexity (Loomba et al., 2022). In 
direct studies of human disease, the connectome’s importance is 
highlighted by prior work which not only implicated specific cell 
types in autism spectrum disorder and schizophrenia, but also 

revealed differences in neuronal and synaptic structure spatially 
localized to specific cortical layers (Lynall et al., 2010; Sweet et al., 
2010; Major Depressive Disorder Working Group of the 
Psychiatric Genomics Consortium et al., 2018; Velmeshev et al., 
2019; Maynard et al., 2021). While translational research continues 
in this field, unwrapping network properties and enhancing our 
understanding of the mouse connectome lays a promising 
groundwork for understanding human neurological function and 
disease in the future.

Ultimately, neurological or psychiatric disease may 
be accounted for by inefficient brain organization that impacts the 
costliest components of processing or behavior, in terms of axonal 
projection strength or distance. Our findings have identified the 
efficiency of the hypothalamus to be an important organizer of its 
spatial and topological structure, and our results provide the 
framework for future studies to interrogate this network in the 
context of neurological and psychiatric disorders.
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