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Dysfunction in fear and stress responses is intrinsically linked to various

neurological diseases, including anxiety disorders, depression, and

Post-Traumatic Stress Disorder. Previous studies using in vivo models with

Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL)

protocols have provided valuable insights into these mechanisms and aided

the development of new therapeutic approaches. However, assessing these

dysfunctions in animal subjects using IED and SEFL protocols can cause

significant pain and su�ering. To advance the understanding of fear and stress,

this study presents a biologically and behaviorally plausible computational

architecture that integrates several subregions of key brain structures, such as

the amygdala, hippocampus, and medial prefrontal cortex. Additionally, the

model incorporates stress hormone curves and employs spiking neural networks

with conductance-based integrate-and-fire neurons. The proposed approach

was validated using the well-established Contextual Fear Conditioning paradigm

and subsequently tested with IED and SEFL protocols. The results confirmed

that higher intensity aversive stimuli result in more robust and persistent fear

memories, making extinction more challenging. They also underscore the

importance of the timing of extinction and the significant influence of stress.

To our knowledge, this is the first instance of computational modeling being

applied to IED and SEFL protocols. This study validates our computational

model’s complexity and biological realism in analyzing responses to fear

and stress through fear conditioning, IED, and SEFL protocols. Rather than

providing new biological insights, the primary contribution of this work lies in its

methodological innovation, demonstrating that complex, biologically plausible

neural architectures can e�ectively replicate established findings in fear and

stress research. By simulating protocols typically conducted in vivo-often

involving significant pain and su�ering-in an insilico environment, our model

o�ers a promising tool for studying fear-related mechanisms. These findings

support the potential of computational models to reduce the reliance on animal

testing while setting the stage for new therapeutic approaches.
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1 Introduction

Fear and stress drive adaptive behavior in response to
environmental challenges. The activation of fear and stress
responses triggers a cascade of autonomic and endocrine changes,
significantly impacting learning and memory processes, as shown
in seminal neurology and psychology research (Squire, 1987, 2009;
McGaugh, 2013). The effects of these changes depend on their
timing relative to the learning process (Drexler et al., 2019).

Pavlovian fear conditioning has become an essential tool
for investigating cognitive paradigms in both human and
animal research. This methodology has significantly enhanced
our understanding of the physiological basis of fear and has
applications in preclinical models of neuropathologies and clinical
research (Chang et al., 2009). Through pre-training, post-
training, and pre-test manipulations, Pavlovian fear conditioning
provides insights into the complexities of memory acquisition,
consolidation, and retrieval (LeDoux, 2000; Maren, 2011).

Fear conditioning involves associating a neutral stimulus or
context with an unconditioned stimulus (US), resulting in the
neutral stimulus acquiring aversive properties and becoming
a conditioned stimulus (CS). This process elicits conditioned
responses (CR), a well-documented phenomenon (Ehrlich et al.,
2009). Additionally, extinction is introduced as a context-
dependent learning form, describing the reduction of conditioned
responses when the CS is presented without the US, leading to the
suppression, but not erasure, of the memory (Turnock and Becker,
2008; Chang and Liang, 2017).

The efficacy of Pavlovian fear conditioning depends on the
strength of the conditioned-unconditioned stimulus pairing and
can be reversed during extinction processes. These limitations pose
challenges in elucidating the mechanisms underlying stress and
anxiety, affecting the development of effective behavioral therapies
for related disorders (Maren et al., 2013; LeDoux, 2014; Maren and
Holmes, 2016; Bennett et al., 2019). Consequently, stress models
such as Immediate Extinction Deficit (IED) and Stress-Enhanced
Fear Learning (SEFL) have been developed to understand stress’s
influence on fear memory.

The Stress-Enhanced Fear Learning (SEFL) model aims to
enhance our understanding of disorders like Post-Traumatic
Stress Disorder (PTSD). It focuses on how traumatic experiences
affect learning responses, such as freezing in rats exposed to
shocks in various contexts (Rau et al., 2005). This model
emphasizes sensitization and generalization in fear learning
following trauma (Long and Fanselow, 2012).

In contrast, the Immediate Extinction Deficit (IED) model
investigates how stress affects the ability to “unlearn” fear. It
shows that animals exposed to extinction training shortly after
conditioning exhibit different recovery patterns depending on
the training’s timing (Kim et al., 2010; Maren, 2014). This
model underlines the impact of timing on extinction learning
effectiveness.

The need to develop more effective treatments for neurological
diseases related to fear and stress drives the search for a
deeper understanding of these mechanisms. Conventional in vivo
experiments provide valuable information but face significant
limitations, including ethical concerns and the risk of causing
trauma or exacerbating preexisting conditions. This highlights the

need for new approaches and technologies. In this context, stress
models and computational tools are valuable resources, allowing
detailed analysis of the neural mechanisms associated with fear
and stress. Computational modeling, in particular, enables the
simulation and understanding of the complex dynamics between
fear, stress, and related disorders (Yamamori and Robinson, 2023).

Despite biological and cognitive differences between rodents
and humans, using a rodent neural architecture is justified by
the extensive research in the literature, facilitating comparisons
with preexisting models and providing a robust foundation for
validation and further insights (Morén, 2001; Moustafa et al., 2009;
John et al., 2013; Pendyam et al., 2013; Feng et al., 2016; Li, 2017;
Mattera et al., 2020; Khalid et al., 2020; Turnock and Becker, 2008;
Chang and Liang, 2017; McGaugh, 2015; Okon-Singer et al., 2015;
Li, 2017; Kahana, 2020).

Thus, this study aims to develop a biologically and behaviorally
plausible computational framework based on a rodent brain to
analyze responses to fear and stress through fear conditioning,
IED, and SEFL approaches. The primary goal is to construct
a computational model representing the neural properties of
critical brain structures involved in fear processing, including
subregions of the amygdala, hippocampus, prefrontal cortex,
nucleus reuniens, and dynamic stress hormone responses. By
incorporating greater structural complexity and specific synaptic
parameters, this approach seeks to validate the model’s robustness
through its ability to replicate established findings in the literature.
We conducted experiments to assess themodel’s capability to reflect
physiological and behavioral characteristics, ultimately establishing
a credible foundation for future in silico studies that can potentially
reduce animal testing needs.

2 Methods

2.1 Model overview

The proposed architecture integrates several subregions of
crucial brain structures, such as the amygdala, hippocampus,
medial prefrontal cortex, and nucleus reuniens. The model was
developed based on rats’ neurobiological parameters, ensuring that
all data regarding neural architecture, synaptic weights, signal
propagation, and other variables are consistent with studies in
this species. This choice aligned the model with widely used fear
conditioning protocols, such as Contextual Fear Conditioning,
SEFL, and IED, which traditionally employ rats.

Furthermore, it proposes an innovative computational model
incorporating stress hormone curves and utilizing firing neural
networks with conductance-based integrating and firing neurons.
We employed the well-established paradigm of Contextual Fear
Conditioning for model initial validation. Subsequently, we used
the IED and SEFL protocols to evaluate the model’s applicability in
studying disorders related to fear and stress.

A graphical representation of the model’s architecture is
presented in Figure 1. The detailed parameters of the model,
including the configuration of the integrate-and-fire (IF) neurons,
the synaptic weights, and the input connections for each
implemented neuronal cluster, are documented below.
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The amygdala plays a fundamental role in forming and
extinction fear memory, acting as a key processing center for
CS − US stimuli and integrating sensory information to influence
executive, motor, and memory functions (Akirav and Maroun,
2007; Carrere and Alexandre, 2015). Its sensory input region, the
lateral amygdala (LA), receives projections from various cortices,
including auditory, visual, gustatory, olfactory, and somatosensory,
and is crucial for responding to both conditioned (CS) and
unconditioned stimuli (US) (Connor and Gould, 2016).

In the LA, excitatory neurons (LA) coexist with inhibitory
neurons containing somatostatin (LASOM), parvalbumin (LAPV ),
and cholecystokinin (LACCK). The LA neurons, receiving both CS

and US inputs, play a pivotal role in encoding fear memories,
while LAPV and LACCK modulate these responses through their
inhibitory projections (Duvarci and Pare, 2014; Kim et al., 2013;
Bennett et al., 2019).

The medial central amygdala (CeM) orchestrates the
behavioral, autonomic, and endocrine responses associated
with fear, receiving inputs from the LA through various pathways.
These include the basal amygdala (BA) pathway, critical for
transmitting LA activity to CeM (Pape and Pare, 2010; Asede et al.,
2015; Pare and Duvarci, 2012), and the intercalated inhibitory
cells, which modulate fear responses during both acquisition and
extinction phases (Duvarci and Pare, 2014; Oliva et al., 2018). The
lateral nucleus of the amygdala (LA) neurons excite neurons within
the basolateral nucleus (BA), which are divided into two distinct
sub-populations: one associated with fear acquisition (BAF) and
the other with extinction (BAE) (Herry et al., 2008). Also within the
basolateral region are inhibitory neurons containing parvalbumin
(BAPV ) and cholecystokinin (BACCK). Additionally, the lateral
subdivision of the central amygdala (CeL) regulates the output
of CeM cells, influenced by both US and LA projections (Ciocchi
et al., 2010; Mattera et al., 2020; Haubensak et al., 2010; Duvarci
and Pare, 2014).

Another critical region of the fear circuit is the medial
prefrontal cortex (mPFC). Studies indicate that fear
memory extinction requires plasticity in the mPFC and the
amygdala (Akirav and Maroun, 2007). The mPFC can modulate
the expression of previously learned fear bidirectionally, i.e., it
performs coordinated action by integrating several mnemonic
inputs and up-down regulation of specific brain circuits (Gilmartin
et al., 2014).

The medial prefrontal cortex (mPFC) also contributes
significantly to the fear circuit, modulating the expression of
learned fear through its connections with the amygdala (Gilmartin
et al., 2014; Akirav and Maroun, 2007). The infralimbic (IL)
and prelimbic (PL) cortices are integral components of the
mPFC, crucial for both the formation and extinction of fear
memories. While the PL primarily contributes to fear acquisition,
the IL is primarily involved in fear extinction (Marek et al.,
2018b). Additionally, they exert top-down regulation on the fear
response (Sierra-Mercado et al., 2011; Bennett and Lagopoulos,
2018; Marcus et al., 2020). .

Furthermore, the hippocampus and the entorhinal cortex (EC)
are integral for contextual fear memory processing, communicating
through both the trisynaptic (TSP) and monosynaptic (MSP)
pathways. These regions send emotion-related information to
the amygdala and mPFC, influencing the encoding and recall of

FIGURE 1

Architecture of the proposed model. Red rectangles and lines

represent inhibitory connections, green rectangles and lines

represent excitatory connections, blue lines represent stress

responses, and dotted lines represent plastic connections. In

addition to the elucidated information within the text, pertinent

details regarding the number of neurons, connections, and

referenced works for each region utilized in the proposed model are

provided throughout the text.

emotional memories (Schapiro et al., 2017; O’Reilly and Norman,
2002; Ketz et al., 2013; Tse et al., 2007; Maren et al., 2013; OReilly
et al., 2014).

The nucleus reuniens (RE) connects cortical structures and the
hippocampus, significantly influencing contextual fear learning and
memories (Bokor et al., 2002; Vertes, 2006). Inactivation of the RE
affects acquiring and retrieving these memories, while projections
from the medial prefrontal cortex (mPFC) to the RE are essential
for inhibiting fear after extinction (Ramanathan et al., 2018).

2.2 Spiking neural networks

The cells of the proposed model use mainly Integrated and
Fire (IF) type neurons based on conductance to express the
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firing dynamics coming from each network layer (Destexhe,
1997). The IF artificial neuron is a model capable of expressing
the dynamics of the Spiking Neural Network (SNN), which
describes mathematically the properties of biological neurons that
generate electrical potential through the cell membrane caused
by the change in the conductance of the receptor channel in the
presynaptic region (Destexhe, 1997; Gerstner et al., 2014; Raudies
and Hasselmo, 2014; Rezaei et al., 2020).

The IF model analyzes neuron action potential propagation
through a time-dependent current. When the potential reaches a
certain established threshold, it triggers spikes, instantly raising
the potential before it returns to its resting value (Abbott, 1999).
According to the model, the membrane potential is given by:

C
dVi

dt
= −gleak[Vi(t)− E]+ Isyn(t)+ η (1)

The input current Isyn drives the membrane, modeled using
capacitance C with potential Vi, through the leakage conductance
channel gleak, where E represents the synaptic conductance reversal
equilibrium potential. The index i represents the ith modeled
region. The term η represents small fluctuations in the membrane
potential and is a random variable η ǫ N(µ, σ ), extracted from the
Gaussian distribution N with mean value µ and standard deviation
σ .

The synaptic current is modeled as the ohmic conductance gsyn
multiplied by the driving force, which is the difference between the
membrane potentialVi and the reversal equilibrium potential of the
synaptic conductance Esyn (Destexhe, 1997).

Isyn(t) = +gsyn(t)[Esyn − Vi(t)] (2)

Including the excitatory electrical conductivities, gE, and
inhibitory electrical conductivities, gI , and considering the
membrane potential about the τ refractory period, the membrane
potential is given by:

τ
dVi

dt
= [E−VI(t)]+

gE

gleak
[EE−VI(t)]+

gI

gleak
[EI−VI(t)]+η (3)

when τ = C
gleak

. Furthermore, it has different values for each
type of neuron. EE represents the excitatory reversal equilibrium
potential, and EI is the inhibitory potential.

When the membrane potential reaches the membrane potential
threshold, the neuron fires rise to the peak potential, Vth, and then
returns to the resting potential.

Vi → Vreset if (Vi(t) > Vth) (4)

To update the synaptic weights of IF, we used Spike Time
Dependent Plasticity (STDP), an adapted form of Hebbian
learning, and frequently implemented in SNN. In the biological
context, synaptic plasticity is divided into Long Term Potentiation
(LTP) and Long Term Depression (LTD), where LTP represents the
changes when a synaptic increase occurs and LTD, a decrease in
synaptic gain. STDP suggests that synaptic efficacy increases when
presynaptic peaks occur milliseconds before postsynaptic peaks.

Likewise, the efficacy decreases when postsynaptic peaks occur
before presynaptic peaks (Gupta and Long, 2009).

The model uses a learning mechanism based on physiological
data to analyze forwarding and backward temporal order
repetition. The weight adaptation is given by:

τω

dω

dt
=







(ωmax − ω)A+ · exp
(

−1t
τ+

)

if 1t ≤ 0

(ωmin − ω)A− · exp
(

+1t
τ−

)

if 1t > 0
(5)

1t = (tpre − tpos) and the relative time between the presynaptic
and postsynaptic peak, wherein positive 1t represents LTP and
negative, LTD. ωmin and ωmax refer to lower and upper bounds
of the dynamic range of weights and the time constants τω ,
τ+ and τ− are weight adaptation and LTP and LTD learning
curve, respectively. Finally, A+ and A− represent amplitude for
depression and synaptic potentiation. In a computational model,
A+ is three times greater than A−.

The existing physiological evidence justifies STDP, showing
that LTD is necessary for context-based learning (Raudies and
Hasselmo, 2014). This method effectively defines time intervals and
peak frequencies within the current Theta phase oscillation ranges,
observed in coding and evocation processes in the hippocampus
and the amygdala.

2.3 Sparsity

In our model, sparsity refers to the number of neurons
remaining active within a given layer, controlled by the k-Winner
Take All (k-WTA) function. This function limits the number of
active neurons by applying a global inhibitory value across the
entire layer, allowing only the top k neurons with the highest
excitation levels to remain active while suppressing the others. As
activity flows through the layers, excitatory and inhibitory weights
(ωexc and ωinib) interact to regulate this process, with the k-WTA
function enhancing inhibition by activating the most substantial
peaks and preventing other neurons from firing (Smith, 2020).

This sparsity mechanism is represented by generating a pulse of
current I based on the k-WTA function:

Ij = argmaxj

nk
∑

i=1

(Vi − E)ωexc −

nk
∑

i=1,i6=j

(Vi − E)ωinib (6)

This approach results in a distributed activation in layers such
as those in the hippocampus, where a subset of neurons remains
active rather than just a single dominant neuron. The degree
of sparsity in these layers can vary based on the model’s stress
level, with higher stress potentially leading to a more significant
proportion of active neurons. Conversely, only the most active
neuron is triggered in layers focusing on a single dominant signal.
This approach mirrors natural neural systems, where only a select
group of neurons respond robustly to specific inputs, ensuring that
only the most relevant signals propagate through the network while
balancing excitatory and inhibitory activity.
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FIGURE 2

Neuroendocrine responses to stress. Noradrenaline (NE) levels

increase until approximately twenty minutes and decrease until sixty

minutes. Corticosteroid levels also increase exponentially and return

to baseline after one to 2 h. The x-axis specifies the time in minutes.

2.4 Neuromodulation

In response to a stressful event, the body activates the
sympathetic nervous system and the hypothalamic-pituitary-
adrenal (HPA) axis, triggering a cascade of biochemical reactions
to handle the situation (Drexler et al., 2019; Grzelka et al.,
2017). This response prepares the body for immediate action and
medium-term adjustment, which is necessary to cope with stress’s
physiological and psychological impact.

During the stress response, neurotransmitters and hormones
play essential roles in modulating neural activity. They enhance
the organism’s readiness and reactivity and regulate processes
related to memory and learning, which are critical in forming
fear responses (Krugers et al., 2012; Wolf, 2017). The interaction
between these neurotransmitters and hormones allows the brain to
process the stressful event and adjust neural activity according to
the intensity and duration of the stimulus.

The main agents involved in the stress response include
norepinephrine and corticosteroids. Norepinephrine primarily
acts as a neurotransmitter in the brain, quickly affecting neural
circuits to intensify alertness and immediate readiness. In contrast,
corticosteroids function as longer-acting hormones that gradually
modulate neural activity (Joëls et al., 2006; Taborsky et al., 2020).
This temporal difference allows norepinephrine and corticosteroids
to work together to adapt the organism to stress: norepinephrine
impacts the initial response of arousal and vigilance, while
corticosteroids contribute to stress regulation and long-term
memory consolidation.

To model neuromodulation in this study, we used
simplified response equations and curves for norepinephrine
and corticosteroids following a stressful event, based on the
foundational work of Krugers et al. (2012) and Wolf (2017).
Figure 2 illustrates these levels, with adjustments made to capture
each hormone’s distinct temporal patterns and intensity levels:
norepinephrine rises quickly to support immediate alertness, while
corticosteroids increase gradually to sustain a prolonged regulatory
effect. Although simplified, these curves capture the primary
trends in hormonal response timing and progression, providing
a practical yet realistic approach to modeling neuromodulatory
effects.

The action potential of layers with neurotransmitter
interference is multiplied by a value representing the tonic
level β .

βNE = 0.3853·sen

(

2 · π(t)

60

)

+0.7706·abs

(

sen

(

2 · π(t)

60

))

(7)

βCORT = 0.3853 · sen

(

2 · π(t)

120

)

+ 0.7706 · abs

(

sen

(

2 · π(t)

120

))

(8)
To illustrate the impact of NE-influenced neuromodulation on

the PL and IL regions, all inputs are scaled by the factor β . Thus,
the input Ij is determined as follows:

Iinf =

n−inf
∑

inf=1

(Vi − E)ωinf (9)

Ij = arg maxj

{

(1+ β) · Iinf +

nk
∑

i=1

(Vi − E)ωexc

−

nk
∑

i=1,i6=j

(Vi − E)ωinib







(10)

where Iinf is the hormonal influence.
To represent the influence of corticosteroids in the CA1 region

and the consequent increase in the firing of neurons, the percentage
of the sparseness of the CA1 region may vary from 10%, standard
value, to 50%, saturation value at 40min after the stressful situation.

2.5 Experimental design

Each experiment is divided into several groups, each
performing a specific set of tasks. The timing of behavioral
episodes is divided into several phases. In each phase, different
initial stimuli trigger unique behaviors or reactions. Furthermore,
several cycles of repetition of these behaviors or reactions may
occur within each phase. The Table 1 details the correlation
between the expressions, the number of cycles and their input
stimuli.

Before initiating any experiment, we establish the
computational model’s initial configuration through a simulation
in the “Home” environment. This process is essential to ensure the
neural network’s dynamic equilibrium and to prevent any bias in
the experimental responses. During this initial phase, we calibrate
the synaptic weights, which are adopted as baseline parameters
for all subsequent experiments. The simulation in the “Home”
environment continues until the output of the central nucleus
of the amygdala (CeM) stabilizes below 10% for ten consecutive
cycles. This procedure ensures that the network has achieved a
state of consistency and robustness, allowing experiments to be
conducted with the assurance that the baseline freezing behavior
has been adequately controlled and stabilized.

We initialize neurons with a resting potential of−70× 10−3V ,
and adjust the membrane potential at each cycle as previously
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TABLE 1 Relationship between expressions and input stimuli.

Expression
Input Stimuli

Context Sound Shock

Home Home No No

A A No No

B B No No

C C No No

AX– A Yes No

BX– B Yes No

CX– C Yes No

AX+ A Yes Yes

BX+ B Yes Yes

CX+ C Yes Yes

The contexts are A, B, C, andHome. X represents the presence of the sound stimulus, and the

symbols+ and− represent the presence or absence of US (shock), respectively. For example,

AX+ represents context A, with sound and shock.

described. After completing the final phase of each experiment,
we analyze neuronal activity in the CeM to interpret the network’s
prediction.

We initiate stress cycles after fifteen cycles of fear acquisition.
We selected this threshold of 15 cycles based on baseline factors
to activate the norepinephrine and corticosteroid response curves,
establishing a reasonable timeframe for stress hormones to begin
interacting with the fear acquisition process. Given the various
approaches for modeling fear acquisition and transitioning to
stress, we chose the 15-cycle mark to introduce stress cycles in a way
that reflects a plausible temporal dynamic between fear and stress
mechanisms. We adjust stress levels according to Equations 7, 8.

The developed computational model incorporates shock
intensity as a configurable variable, enabling the simulation of
different levels of unconditioned stimulus (US) intensity by
practices observed in behavioral studies. This parameterization
allows for replicating variations in behavioral responses found in
in vivo experiments.

Additionally, the model maintains a fixed time interval between
shocks to ensure consistency in timing during each acquisition
phase. The unconditioned stimulus (US) is applied in 2, 000 of the
total 8, 000 iterations per phase, ensuring a uniform application of
the stimuli. This stringent control of the interval between shocks
reflects standard practices in in vivo experiments. Standardizing
time between stimuli is essential to minimize variations that may
interfere with behavioral responses.

To represent the propagation of the shock effect, the initial
current in the sensory layers was set to 1.00nA, ensuring the proper
transmission of the stimulus. Additionally, the synaptic current is
reduced at a rate of 0.01nA per subsequent layer, simulating the
decay of shock intensity as the stimulus progresses through the
neural circuit, similar to what occurs in biological systems.

Parameters for configuring the IF neuron include the
membrane capacitance (C) set to 5.5pF, and the membrane
conductance (Gl) set to 10nS, ensuring that the time constant (τ )
is maintained at 0.5ms. The peak potential (Vpico) is set to 0mV .

The time interval and step for simulation of the computational
model were defined to keep the network frequency close to 8 Hz,
representing Theta oscillation. Thus, the time varies close to 125
ms. Each analysis is performed with an interval between 0 and
4, 000 ms and τ = 0.5 ms, resulting in 8, 000 cycles.

Synaptic weights must be modified until the network is
appropriately converging to perform all training and testing. They
are randomly initialized within the range of values determined by
normal distribution, with standard deviation (σ ) being 0.3 and
mean (µ). Table 2 presents neurons number, connection, mean of
the normal distribution, and the design references in each region
used on the proposed model.

The STDP synaptic modification rule is used in weights
between the layers and the relative time between these layers’
presynaptic and postsynaptic peaks. The values needed to
parameterize the STDP equation are as follows: the time constant
for weight adaptation is 10 τ , the time constant for long-term
potentiation (LTP) is 10 τ+, and the time constant for long-term
depression (LTD) is 0 τ−. The amplitude for LTP is 1.2 A+, and the
amplitude for LTD is -0.4 A−.

The k-WTA function is used to determine hippocampal sparsity
in the proposed model. The subregion DG receives 30% of the EC,
CA3 receives 5% of the DG, and, finally, CA1 receives between 50%
and 100%, in cases of stress elevation. CA3’s recurring network is
fully wired to help link parts of representation and retrieve patterns
from memory. CA1 receives fully connected projection from CA3,
and ECV has 50% sparsity.

Table 3 presents all input connections for each group of
neurons used in the proposed model. Efforts were made to keep
all values low while considering the proportional differences in
neuron counts reported in the literature for various brain regions
in rats (Boss et al., 1987; Gabbott et al., 1997; O’Reilly and Rudy,
2001; Maier andWest, 2003; Chareyron et al., 2011). This approach
maintains a realistic ratio of neurons across layers, ensuring both
computational efficiency and biological plausibility.

3 Results

In this section, we expose the results achieved through
the application of the proposed methodology, focusing on the
evaluation of the neural network through models of contextual
fear conditioning (CFC), immediate extinction deficit (IED), and
stress-enhanced fear learning (SEFL).

3.1 Experimental consistency and data
representation

To ensure the reliability of our experimental outcomes, we
rigorously conducted mean and convergence analyses to determine
the optimal number of repetitions for each condition, confirming
that the observed patterns remained consistent and stable across
trials. These analyses also helped establish the minimum number
of repetitions required to produce consistent results (Note: Graphs
illustrating these analyses are not included in this document). Using
the well-known Contextual Fear Conditioning (CFC) paradigm, we
observed that the graphical representations of the mean, boxplot,
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TABLE 2 Neurons number, connection, mean of the normal distribution, and the design references in each region used on the proposed model.

Region Neuron
number

Connection µ Design references

ECII 50
Context − ECII 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

RE− ECII 3.0 Hoover and Vertes, 2007; Varela et al., 2014; Ramanathan et al., 2018; Dolleman-van der Weel et al., 2019;
Bouton et al., 2021

DG 500 ECII − DG 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

CA3 160
ECII − CA3 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

DG− CA3 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

CA1 40

CA3− CA1 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

BAF − CA1 1.0 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

RE− CA1 3.0 Hoover and Vertes, 2007; Varela et al., 2014; Ramanathan et al., 2018; Dolleman-van der Weel et al., 2019;
Bouton et al., 2021

ECV 20
CA1 − ECV 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

ECII − ECV 1.2 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017

IL 20

BAE − IL 3.3 Courtin et al., 2014; Mattera et al., 2020; Cummings and Clem, 2020

CA1 − IL 1.2 Tierney et al., 2004; Wang et al., 2018; Marek et al., 2018a

PL− IL 1.2 Marek et al., 2018b; Mattera et al., 2020

US− IL 1.2 Mattera et al., 2020

PL 20

BAF − PL 2.2 Gabbott et al., 2006; Bennett et al., 2017; Oliva et al., 2018

RE− PL 2.0 Hoover and Vertes, 2007; Varela et al., 2014; Ramanathan et al., 2018; Dolleman-van der Weel et al., 2019;
Bouton et al., 2021

CA1 − PL 0.6 Tierney et al., 2004; Sotres-Bayon et al., 2012; Wang et al., 2018

RE 20

IL− RE 3.0 Hoover and Vertes, 2007; Varela et al., 2014; Ramanathan et al., 2018; Dolleman-van der Weel et al., 2019;
Bouton et al., 2021

PL− RE 3.0 Hoover and Vertes, 2007; Varela et al., 2014; Ramanathan et al., 2018; Dolleman-van der Weel et al., 2019;
Bouton et al., 2021

CA1− RE 3.0 Hoover and Vertes, 2007; Varela et al., 2014; Ramanathan et al., 2018; Dolleman-van der Weel et al., 2019;
Bouton et al., 2021

LA 50

US− LA 1.52 Romanski et al., 1993; Blair et al., 2001; Mattera et al., 2020

CS− LA 0.35 Romanski et al., 1993; Blair et al., 2001; Mattera et al., 2020

LAPV − LA 0.35 Wolff et al., 2014; Krabbe et al., 2018; Mattera et al., 2020

LAPV 10
CS− LAPV 0.5 Wolff et al., 2014; Krabbe et al., 2018; Mattera et al., 2020

LACCK − LAPV 1.8 Wolff et al., 2014; Krabbe et al., 2018; Rhomberg et al., 2018; Mattera et al., 2020

LACCK 10 US− LACCK 1.8 Wolff et al., 2014; Krabbe et al., 2018; Rhomberg et al., 2018; Mattera et al., 2020

BACCK 10
BAF − BACCK 1.9 Stefanacci et al., 1992; Pitkänen et al., 1995; Savander et al., 1997; Mattera et al., 2020

LA− BACCK 1.9 Stefanacci et al., 1992; Pitkänen et al., 1995; Savander et al., 1997; Mattera et al., 2020

BAE 50
BACCK − BAE 0.7 Duvarci and Pare, 2014; Vogel et al., 2016; Mattera et al., 2020

IL− BAE 3.3 Vertes, 2004; Cho et al., 2013; Courtin et al., 2014; Mattera et al., 2020

BAF 80

LA− BAF 5.0 Stefanacci et al., 1992; Pitkänen et al., 1995; Savander et al., 1997; Mattera et al., 2020

ITCV − BAF 8.0 Asede et al., 2015

PL− BAF 3.6 Vertes, 2004; Cho et al., 2013; Courtin et al., 2014; Mattera et al., 2020

BAPV − BAF 2.0 O’Reilly and Rudy, 2001; Ketz et al., 2013; Maren et al., 2013; OReilly et al., 2014; Schapiro et al., 2017;
Mattera et al., 2020

BAPV 10 BAE − BAPV 2.0 Bennett et al., 2017; Mattera et al., 2020

ITCD 20 LA− ITCD 1.0 Oliva et al., 2018

(Continued)
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TABLE 2 (Continued)

Region Neuron
number

Connection µ Design references

ITCV 20

IL− ITCV 1.0 Duvarci and Pare, 2014; Oliva et al., 2018

ITCD − ITCV 1.0 Duvarci and Pare, 2014; Oliva et al., 2018

BAE − ITCV 1.0 Amano et al., 2010; Mattera et al., 2020

CeLON 10 LA− CeLON 0.8 Pape and Pare, 2010; Li et al., 2013; Mattera et al., 2020

CeLOFF 10
CeLON − CeLOFF 0.2 Ciocchi et al., 2010; Duvarci and Pare, 2014; Oliva et al., 2018

ITCD − CeLOFF 1.0 Bennett et al., 2019

CeM 2

BAF − CeM 1.9 Asede et al., 2015

ITCV − CeM 1.0 Duvarci and Pare, 2014; Oliva et al., 2018

CeLOFF − CeM 2.3 Haubensak et al., 2010; Mattera et al., 2020

TABLE 3 Synaptic inputs to each group of neurons.

Region Synaptic input

ECII Context · ωContext−ECII + RE · ωRE−ECII - ECII · ωECII−ECII

DG ECII · ωECII−DG - DG · ωDG−DG

CA3 ECII · ωECII−CA3 + DG · ωDG−CA3 + CA3 · ωCA3−CA3

CA1 CA3 · ωCA3−CA1 + RE · ωRE−CA1 + BAF · ωBAF−CA1 - CA1 · ωCA1−CA1

ECV CA1 · ωCA1−ECV + ECII · ωECII−ECV - ECV · ωECV−ECV

IL PL · ωPL−IL + BAE · ωBAE−IL - US · ωUS−IL

+ CA1 · ωCA1−IL + (1+ βNE) · (LC · ωLC−IL)

PL RE · ωRE−PL - CA1 · ωCA1−PL + CA1 · ωCA1−PL + BAF · ωBAF−PL

+ (1+ βNE) · (LC · ωLC−PL)

RE PL · ωPL−RE + IL · ωIL−RE + CA1 · ωCA1−RE

LA CS · ωCS−LA + CS · ωCS−LA - LAPV · ωLAPV−LA

LAPV CS · ωCS−LAPV - LACCK · ωLACCK−LAPV

LACCK US · ωUS−LACCK

BAE IL · ωIL−BAE - BACCK · ωBACCK−BAE

BACCK LA · ωLA−BACCK + BAF · ωBAF−BACCK

BAF LA · ωLA−BAF + PL · ωPL−BAF + CA1 · ωCA1−BAF

- BAPV · ωBAPV−BAF - ITCV · ωITCV−BAF

BAPV BAE · ωBAE−BAPV + IL · ωIL−BAPV

CeLON LA · ωLA−CeLON

CeLOFF - CeLON · ωCeLON−CeLOFF - ITCD · ωITCD−CeLOFF

ITCD LA · ωLA−ITCD + PL · ωPL−ITCD

ITCV BAE · ωBAE3−ITCV + IL · ωIL−ITCV - ITCD · ωITCD−ITCV

CeM BAF · ωBAF−CeM - ITCV · ωITCV−CeM - CeLOFF · ωCeLOFF−CeM

and confidence intervals of the means per number of repetitions
began to converge from the fifteenth repetition. At this stage, the
confidence intervals stabilized within an upper and lower limit of
5%. Consequently, a minimum of fifteen replicates was deemed
sufficient to produce reliable and representative results for the
experiments conducted in this study.

TABLE 4 Contextual fear conditioning.

Group
Phase CFC 1 Phase CFC 2 Phase CFC 3

Day 1 Day 2 Day 3

1
5 AX+ 15 BX−

3 AX−

2 3 BX−

The symbols+ and− represent the presence or absence of US (shock), respectively.

We visualize the data using boxplots, which effectively
summarize the response distributions within each group. The
boxplot format highlights central tendency and variability, allowing
straightforward comparison across conditions. In these boxplots,
the red “+” symbols indicate outliers-values that fall outside
the expected range for each group. This visualization approach
underscores the overall trends in the data and provides a solid basis
for visually assessing group differences without the immediate need
for statistical significance testing.

3.2 Contextual fear conditioning

This experiment consists of three phases: Phase CFC 1, all
groups were exposed to five cycles in AX+ for fear acquisition.
Phase CFC 2 fifteen cycles of BX− for fear extinction. Phase CFC 3,
Group 1, was reintroduced to AX− to assess fear renewal and
Group 2 to BX− to assess repetition of extinction. This experiment
analyses the process of fear extinction and examines the means of
fear renewal after extinction. Table 4 details each step and Figure 3
outlines the maximum freezing level obtained for each phase.

The figure illustrates the average freezing levels (%) across
different phases of Contextual Fear Conditioning (CFC). In CFC
1, fear acquisition occurs with high freezing levels, indicating
successful learning. In CFC 2, the introduction of a different
context for extinction shows a gradual decrease in freezing,
demonstrating effective fear extinction. CFC 3 presents two groups:
Group 1 presents some fear renewal when the original context is
reintroduced, while Group 2 exhibits further reduced freezing levels
with repeated extinction. This reduction in freezing is attributed to
continued extinction sessions, which result in the CeM receiving
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FIGURE 3

Average level of freezing (%) for Contextual Fear Conditioning: The Figure illustrates the sequential protocol of (CFC 1) fear acquisition, (CFC 2) fear

extinction, (CFC 3) renewal, and repetition of fear extinction. In Phase CFC 1, the acquisition occurs for AX+. In Phase CFC 2, Context “B” for

extinction is introduced, denoted as BX−. In Phase CFC 3, Group 1 presents renewal and Group 2 with repetition of extinction.

TABLE 5 Fear response at di�erent shock magnitudes during the

acquisition phase.

Group
Phase SM 1 Phase SM 2

Day 1 Day 2

1 2 AX+ 15 BX−

2 10 AX+ 15 BX−

3 20 AX+ 15 BX−

3 30 AX+ 15 BX−

This experiment investigates and quantifies the intensity of the fear response at different

magnitudes during the acquisition phase, allowing a more in-depth understanding of how

subjects react variably to fear in the early stages of exposure or learning. The symbols + and

− represent the presence or absence of US (shock), respectively.

more inhibitory than excitatory signals, effectively suppressing the
fear response.

The proposed neural architecture and computational modeling
enable verifying that the extinction phase is essential to attenuate
the association between context and fear, indicating that extinction
reduces the existing fear response andmakes it difficult to reactivate
fear in the same context.

3.3 Fear response at di�erent shock
magnitudes during the acquisition phase

The following study investigates the mechanisms
underlying the fear response at different shock magnitudes
(SM) during the acquisition phase. Specifically, exploring
the role of intensity in the conditioned stimulus-
unconditioned stimulus (CS-US) pairing provides valuable
information about how different threat levels modulate the
fear response.

For the simulation, each group, respectively, receives
1, 10, 20, and 30 shocks at the acquisition phase (Phase
SM 1). The experiment features fifteen extinction cycles
in Phase SM 2. Table 5 and Figure 4 present details of
the experiments.

This experiment demonstrates that when subjecting animals to
shocks of low magnitude, as observed in groups that receive up to
two shocks, the intensity may not be sufficient to establish a lasting
aversive memory linked to the context or conditioned stimulus.
Consequently, these animals demonstrate reduced fear retention.

The results suggest that after administering ten or more shocks,
there is already a significant increase in fear retention, as evidenced
by higher freezing responses. This marks a tipping point where the
intensity and frequency of the unconditioned stimulus (the shocks)
begin to consolidate a stronger aversive memory. Consequently,
animals exhibit higher freezing rates during extinction, indicating
substantial fear retention. Notably, after fifteen cycles, the stress
response involving noradrenaline and corticosteroid levels, as
described in the Neuromodulation section, becomes fully activated.
These hormonal changes reinforce the established fear response,
impacting the behaviors observed in Groups 2, 3, and 4 by
enhancing alertness and stress regulation over time.

3.4 Stress-enhanced fear learning

Based on the SEFLmodel, the following experiment investigates
the induction of fear learning by stress. During Phase SEFL 1,
Group 1, and Group 2 undergo 15 cycles in A, and Group 3
and Group 4 undergo fifteen cycles in A+. In Phase SEFL 2,
Group 1, and Group 3 experience a cycle in B, and Group 2
and Group 4 are exposed to a cycle in B+. In Phase SEFL 3,
all groups go through a cycle in B. The specific details of the
experiment are elucidated in Table 6, while Figure 5 presents the
collected data.

The experiment reveals different results for each group studied,
indicating variations in behavior and response to fear. Group 1
shows no significant changes in its behavior, suggesting a stable
response to the experimental conditions. Group 2, on the other
hand, exhibits higher freezing levels, a reaction that intensifies after
being subjected to a shock in Context B.
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FIGURE 4

Average freezing level (%) for fear responses at di�erent magnitudes during the acquisition phase. The Figure presents a simulation that captures fear

responses at di�erent magnitudes during the acquisition phase. In Phase SM-1, three distinct groups are subjected to di�erent intensities of electric

shock in AX+: (A) Group 1 receives a two shocks, (B) Group 2 receives ten shocks, (C) Group 3 receives twenty shocks, and (D) Group 4, thirty

shocks. The simulation advances to Phase SM-2 with fifteen cycles in BX−.

TABLE 6 Stress-Enduced Fear Learning.

Group
Phase SEFL 1 Phase SEFL 2 Phase SEFL 3

Day 1 Day 2 Day 3

1 15 A 1 B 1 B

2 15 A 1 B+ 1 B

3 15 A+ 1 B 1 B

4 15 A+ 1 B+ 1 B

The symbols+ represent the presence of US (shock), respectively.

Group 3 demonstrates a mild freezing reaction during the
testing phase, which is notable considering that the shocks occurred
in a context different from that used for testing. This analysis
suggests a possible generalization of fear to different contexts.

Group 4 presents a significantly higher level of freezing. This

group experienced a previous trauma in Context A and was
likewise subjected to a shock in Context B the day before the test.

This Group suggests that pre-existing fear, when combined with
additional trauma, may result in a more pronounced fear response.
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(a)

(b)

(c)

(d)

FIGURE 5

Average level of freezing (%) for fear responses obtained for SEFL. (A) Group 1 goes through Phase SEFL 1, fifteen cycles in A, in Phase SEFL 2, one

cycle in B, and in Phase SEFL 3, one cycle in B. (B) Group 2 proceeds with Phase SEFL 1, fifteen cycles in A, Phase SEFL 2, one cycle in B+, and Phase

SEFL 3, one cycle in B. (C) Group 3 experiences Phase SEFL 1, fifteen cycles in A+, Phase SEFL 2, one cycle in B, and Phase SEFL 3, one cycle in B. (D)

Group 4 undergoes Phase SEFL 1, fifteen cycles at A+, Phase SEFL 2, one cycle at B+, and Phase SEFL 3, one cycle at B.

TABLE 7 Shock stress must precede fear conditioning.

Group
Phase
SS 1

Phase
SS 2

Phase SS 3 Phase SS 4

Day 1 Day 2 Day 3 Day 4

1 1 B 15 A 1 B 1 A

2 1 B 15 A+ 1 B 1 A

3 1 B+ 15 A 1 B 1 A

4 1 B+ 15 A+ 1 B 1 A

The symbols+ represent the presence of US (shock), respectively.

3.5 Shock stress must precede fear
conditioning

This experiment analyzed whether previous and prolonged

exposure to stress can increase fear responses. In Phase SS 1,

all groups were inserted into Context B, with Group 3

and Group 4 receiving a shock. In Phase SS 2, Group 2
and Group 4 receive fifteen shocks in Context A, while
Group 1 and Group 3 remain in context A. In Phase SS 3,
all groups were submitted to Context B only once, and
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finally, in Phase SS 4, all groups are inserted into Context
A.

The specific details of the experiment are elucidated in Table 7,
while Figure 6 presents the collected data.

In this study, it was possible to observe that prolonged
exposure to aversive stimuli, such as shocks, can increase an
organism’s tendency to develop more intense fear responses in
future situations. Previous traumatic experiences amplify the
learning process related to fear.

Data analysis revealed that, in animals subjected to a
single shock in Context B, the fear reaction levels, measured
through immobility behavior, were consistent regardless of having
previously been exposed to multiple shocks in Context A. On
the other hand, those who did not experience shocks in Context
A presented minimal fear reactions in Context B. Experimental
subjects who faced 15 shocks in Context A showed a high freezing
reaction in this Context. However, this reaction was not altered by
what occurred in Context B.

These results suggest that although previous traumatic
experiences influence fear sensitivity, the specific fear response
is more closely linked to the specific context where the aversive
stimulus is experienced than to aversive experiences in different
contexts.

3.6 Immediate Extinction Deficit

This experiment is based on the IED model and is used to
analyze whether the timing of extinction influences the magnitude
of fear in the fear retention phase. The experiment is divided into
four groups: (1) immediate extinction, (2) delayed extinction, (3)
immediate non-extinction, and (4) delayed non-extinction. Phase
IED 1, all groups are exposed five times to Context AX+ to acquire
fear. Phase IED 2, Group 1 undergoes five cycles in Context BX−
15 minutes after acquisition, while Group 2 receives the same five
cycles in Context BX− but only 24 hours after acquisition. Group 3
goes through five cycles in Context B 15 minutes after acquisition,
and Group 4 experiences the same five cycles in Context B, but
24 h after acquisition. After 48 hours of acquisition, all groups
are exposed to three cycles in Context CX−. Table 8 presents
the experiments related to the model, and Figure 7 presents the
collected data.

The IED model is critical for studying how the timing of fear
extinction after its acquisition affects the longevity and magnitude
of the fear response during subsequent retention tests. This insight
is crucial for understanding potential therapeutic applications
for conditions such as post-traumatic stress disorder, where fear
memories can be persistently atypical or easily reactivated.

In our experiment, we observed that the average results between
the groups were quite similar. However, we identified that Group 1
and Group 3 had a more significant freezing average than the other
groups when placed in CX−. In this situation, the attempt at early
extinction may interfere with the ability of the extinction memory
to predominate over the fear memory. Furthermore, IED appears
to be caused by a general fear response that does not depend
on the specific environment where the animal learned the fear.
Interestingly, Group 3 showed significantly lower freezing relative
to the other groups.

By analyzing this and other experiments, it can be suggested
that the stress caused by aversive stimuli during the acquisition of
fear is the main cause of variations in how fear extinction occurs.
Consequently, these variations can be attenuated by reducing the
initially induced fear, either by performing fewer fear tests or by
reducing the strength of the aversive stimuli. IED appears to be
caused by a general fear response that does not depend on the
specific environment where the animal learned the fear.

4 Discussion

Exposure therapy is essential in the treatment of psychiatric
disorders. However, it faces the challenge of the fragile inhibitory
memory of fear extinction, susceptible to relapses under stress
or in the face of traumatic triggers. This fragility highlights the
importance of reinforcing these inhibitory memories to reduce
the risk of relapse and improve long-term therapeutic results.
Consequently, it is vital to develop and refine experimental models
that capture the complexity of the clinical scenario, enabling
a deeper understanding of these disorders (Maren et al., 2013;
Dunsmoor and Kroes, 2019; Sperandeo, 2013; Eichenbaum, 2000;
Preston and Eichenbaum, 2013).

Consequently, our work developed a biologically and
behaviorally plausible computational framework based on a rodent
brain to analyze neural mechanisms related to fear and stress. The
proposed architecture includes interactions between the amygdala,
medial prefrontal cortex, nucleus reuniens, and hippocampus,
incorporating data on stress hormones and how they directly affect
these processes.

The model provides a structured framework to simulate and
analyze distinct aspects of fear conditioning, IED, and SEFL.
For fear conditioning, the model captures how the intensity and
timing of aversive stimuli consolidate fear memories, influencing
the retention and extinction of fear responses. Regarding IED,
the model demonstrates how immediate extinction sessions post-
fear acquisition can lead to generalized fear responses due
to insufficient memory consolidation, highlighting the timing-
dependent vulnerability of fear memory. For SEFL, the model
simulates the sensitization process, where prior exposure to stress
enhances fear learning in subsequent encounters, reflecting how
repeated aversive experiences solidify fear memory networks and
increase resistance to extinction. These mechanisms, simulated
within the model, offer insights into the neural and hormonal
pathways influencing each of these fear-related processes.

The selection of rats as the basis for the computational
modeling in this study was grounded in the predominance of
this species in fear conditioning protocols, such as Contextual
Fear Conditioning, Stress-Enhanced Fear Learning (SEFL), and
Immediate Extinction Deficit (IED). Rats possess complex brain
structures and fear responses that closely resemble those observed
in humans, making them ideal for detailed investigations of
mechanisms related to fear and stress. Their use in these protocols
ensures high biological fidelity, reinforcing the validity of the
computational model for exploring experimental hypotheses and
investigating behavioral dynamics with precision. Thus, choosing
rats ensures the robustness and applicability of the model’s results
for studies simulating behavioral processes in fear contexts.
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FIGURE 6

Average level of freezing (%) for fear responses obtained for “Shock stress (SS) must precede fear conditioning.” All groups undergo testing in Context

B in Phase SS 3 and Context A in Phase SS 4. (A) Group 1 goes through Phase SS 1, one cycle in Context B, and Phase SS 2, 15 cycles in Context A. (B)

Group 2 undergoes Phase SS 1, one cycle in Context B, and 15 cycles with shock in Context A. (C) Group 3 proceeds with Phase SS 1, one shock in

Context B, and Phase SS 2, 15 cycles in Context A. (D) Group 4 experiences Phase SS 1, one shock in Context B, and Phase SS 2, 15 shocks in Context

A.

During the development of this study, extensive analyses
and interpretations of computational simulations and biological
modeling in existing literature were conducted. These analyses
covered various aspects of fear reactions, stress, and their
interrelationships, forming the basis of the proposed architecture.
Previous models cited in this study, including those by Moustafa
et al. (2009); John et al. (2013); Pendyam et al. (2013); Turnock
and Becker (2008); Moustafa et al. (2013); Carrere and Alexandre

(2015); Okon-Singer et al. (2015); Feng et al. (2016); Li (2017);
Chang and Liang (2017); Mattera et al. (2020); Khalid et al.
(2020); Kahana (2020), provided a crucial knowledge base for our
experiments and performance of the model.

Our model aligns closely with established findings in the
scientific literature on the neurobiology of fear and its extinction. It
emphasizes the amygdala’s pivotal role, particularly its lateral region
(LA), as a central hub in processing conditioned and unconditioned
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TABLE 8 Immediate Extinction Deficit.

Group
Phase IED 1 Phase IED 2 Phase IED 3

Day 1 Day 1 Day 2 Day 3

1 5 AX+ 5 BX− Home 3 CX−

2 5 AX+ Home 5 BX− 3 CX−

3 5 AX+ 5 B Home 3 CX−

4 5 AX+ Home 5 B 3 CX−

The symbols+ and− represent the presence or absence of US (shock), respectively.

stimuli, in agreement with studies by Akirav and Maroun (2007)
and Carrere and Alexandre (2015). The LA’s extensive projections
from sensory and associational cortices underscore its function
as a primary site for encoding fear associations. Through this,
the model reflects a current understanding that the LA is crucial
for forming initial fear memories and plays a significant role
in modulating the extinction process, as pathways within the
amygdala are modified through repeated exposure to conditioned
stimuli without reinforcement.

Furthermore, our model recognizes the central medial
amygdala (CeM) as essential in orchestrating behavioral,
autonomic, and endocrine responses associated with fear,
which aligns with findings by Pape and Pare (2010) and Asede et al.
(2015). The CeM’s output pathways influence brainstem structures
that regulate physiological responses to fear, connecting emotional
processing with somatic and autonomic functions. This integration
within the model supports the CeM’s role in coordinating complex
behavioral responses, a process that becomes especially relevant
when considering heightened responses under stress.

The medial prefrontal cortex (mPFC) is another crucial
component in our model, aligning with studies by Gilmartin et al.
(2014) and Duvarci and Pare (2014). The mPFC’s modulatory
influence on fear expression is modeled to reflect its dual role
in both inhibiting and facilitating fear responses, depending on
contextual cues and learning stages. The mPFC’s role in top-
down regulation of the amygdala, particularly in extinguishing
learned fear responses, is central to understanding adaptive
responses and preventing generalized fear. This aspect of the model
highlights how changes in mPFC activity can shift fear expression,
a particularly relevant mechanism for therapeutic approaches
targeting maladaptive fear.

Additionally, the model incorporates the hippocampus and
entorhinal cortex, which are crucial for encoding and retrieving
contextual fear memories. This inclusion aligns with research
by Schapiro et al. (2017) and Maren et al. (2013), emphasizing
the hippocampus’s role in distinguishing between safe and
threatening contexts. By accurately encoding environmental cues,
the hippocampus enables differentiating responses based on
context, which is essential for adaptive fear regulation. The
entorhinal cortex facilitates this process by relaying spatial and
contextual information to the hippocampus, further refining the
response based on situational factors.

Our model also integrates the nucleus reuniens, which links
cortical structures with the hippocampus and influences contextual
fear learning and memory consolidation, as described in studies by
Ramanathan et al. (2018). The nucleus reuniens uniquely integrates
prefrontal inputs with hippocampal outputs, enhancing the model’s

capacity to simulate how contextual information modulates fear
responses.

Finally, our model considers the activation of the sympathetic
nervous system and the hypothalamic-pituitary-adrenal (HPA)
axis in response to stressful events, in line with research by
Drexler et al. (2019) and Grzelka et al. (2017). By incorporating
hormonal responses, such as the release of corticosteroids
and catecholamines, the model reflects the impact of stress
on brain function, neuronal activity, and memory processing.
Corticosteroids, in particular, are modeled to modulate synaptic
plasticity, affecting how fear memories are consolidated and later
retrieved. Catecholamines, such as norepinephrine, are included
to capture their role in heightening arousal and alertness during
fearful encounters. Together, these hormonal pathways interact
with neural circuits to produce a multidimensional response to fear
and stress, emphasizing the complexity of the extinction process
and underscoring the intricate balance between physiological,
neural, and hormonal influences in fear regulation.

4.1 Comparison with other models

In recent years, several computational models of different types
have been proposed to study fear conditioning and extinction.
Given the large output, this work focuses explicitly on models that
closely align with the goals outlined by our research and that share
similarities with the architecture we propose.

Firstly, among the computational works found and compatible
with our work, none of them present tests for understanding
stress (Moustafa et al., 2009; John et al., 2013; Turnock and Becker,
2008; Moustafa et al., 2013; Mattera et al., 2020; Khalid et al., 2020).
However, each of them has critical objectives for fear literature.
Like the works presented, our work can simulate conditioning,
extinction, reacquisition, and fear renewal.

A distinction between our study and other works in the
literature lies in the scope of the simulated brain regions and
their objectives. Moustafa et al. (2009)’s study focuses on an
update of a hippocampal model by Gluck and Myers (1993),
adopting Hebbian learning and realistic stimulus representations.
While Moustafa offers valuable insights into hippocampal learning
and memory, our work encompasses a broader range of brain
regions and interactions, providing a more holistic understanding
of neural circuits. John et al. (2013) explores the hippocampus
and prefrontal cortex interaction in regulating motivated behavior,
focusing on contextual modulation and behavioral adaptation.
While this model highlights the importance of memory and
cognition, our study delves into the integration of additional
regions and hormonal influence, which is crucial to understanding
fear and stress.

Turnock and Becker (2008) develop a model that modulates
behavior motivated by the hippocampus, cortex, and nucleus
accumbens. While they address the integration of memory and
conditioned learning, our model contributes a more detailed and
comprehensive view of neurohormonal dynamics. Moustafa et al.
(2013) proposes a collaborative model between the amygdala,
hippocampus, and prefrontal cortex in fear conditioning. Mattera
et al. (2020) offers a computational model encompassing fear
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(a)

(b)

(c)

(d)

FIGURE 7

Average freezing level (%) for IED model. This experiment establishes the core parameters, centering on fear acquisition and extinction. It contrasts

fear responses among (A) immediate, (B) delayed, (C) non-immediate, and (D) non-delayed extinction groups.
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conditioning, extinction, and reacquisition, focusing on the
amygdala, prefrontal cortex, and the endocannabinoid system.
Our work expands this approach by integrating more extensive
brain regions and processes, offering a more comprehensive model
of the neural systems involved. Finally, Khalid et al. (2020)
introduces a cortico-hippocampal quantum computational model
using quantum neural networks. While Khalid explores a new
frontier in learning and memory simulation, our model sets
itself apart by its biologically plausible and detailed approach to
neurohormonal interactions.

Our computational model provides insights into the dynamics
of aversive stimuli and their impact on fear acquisition and
extinction. A critical factor is the intensity of the aversive
stimulus in forming fear memory. We confirmed that higher
intensity stimuli forge more robust and persistent fear memories,
complicating the extinction process and aligning with previous
findings (Rau et al., 2005). Additionally, the timing of post-
acquisition extinction sessions is recognized as essential, as
shown in studies by Kim et al. (2010) and Maren (2014).
Immediate extinction following exposure may lead to greater fear
generalization, suggesting that a consolidation period is necessary
for fear memory to stabilize, enabling successful extinction
effectively. Conversely, the absence of an extinction intervention
reinforces the fear memory, strengthening the conditioned
response.

The effects of stimulus intensity and extinction timing on fear
memory have been extensively documented in the conditioning
literature. High-intensity stimuli create more persistent fear
memories that are harder to extinguish (Davis et al., 2000;
Rescorla and Heth, 1975). Timing studies further demonstrate that
immediate extinction can lead to generalized fear due to insufficient
consolidation of fearmemory (Quirk andMueller, 2008;Maren and
Holmes, 2016). Recent research also emphasizes the importance
of precise timing, showing that interventions like vagus nerve
stimulation must be carefully timed to enhance fear extinction in
animalmodels (Souza et al., 2022). In addition, psychophysiological
studies in humans confirm that intense stimuli produce more
resilient fear memories, while appropriately timed extinction
sessions improve fear reduction outcomes (Miller et al., 2023).
These findings underscore the need to consider stimulus intensity
and extinction timing in experimental designs investigating fear
conditioning and extinction.

These results are significant in the context of cognitive
disorders and illnesses, supporting the notion that stressful
experiences exacerbate susceptibility to such conditions. This
highlights the need for intervention strategies considering the
intensity and timing of aversive stimuli. Through comparative
analysis and results obtained in stress contexts, this study paves the
way for developing new experiments that explore the interactions
between fear and stress in the proposed neural architecture,
enhancing significant advances in the field.

4.2 Limitations

The current model requires further refinement, including
analyses of neuronal distribution across brain layers,

precise determinations of synaptic weights (inhibitory and
excitatory), and assessments of neuromodulatory changes.
These steps are essential for a more detailed understanding
of the neural mechanisms influencing emotional and
cognitive disorders.

Another approach to enhancing the model would be to
develop methods that capture individual variability in fear and
stress responses. While our model primarily focuses on general
mechanisms, it does not address how variations in biological
responses, such as corticosteroid levels, may lead to different
behavioral outcomes. Including such individual variability in
future models could provide a more nuanced representation and
enable predictions that account for individual biological and
environmental differences.

5 Conclusion

The results of this study provide significant insights into the
dynamics of fear acquisition, extinction, and reacquisition, as well
as the differential impacts of stress on these processes. Through
“Contextual Fear Conditioning” experiments, we demonstrate
the intricate mechanisms by which fear memories are formed,
extinguished, and potentially reactivated. Variations in fear
responses due to different experimental conditions, such as the
number of shock exposures and the timing of extinction protocols,
underscore the complexity of emotional memory processes in the
brain.

Our model allows us to carry out tests with the “Immediate
Extinction Deficit” experiment, which confirms that the moment
of fear extinction is crucial to determine the persistence and
intensity of fear memories. This has profound implications for
understanding the treatment of anxiety-related disorders, where
the timing of therapeutic interventions can play a critical role in
their effectiveness.

Furthermore, testing the model in the “Stress-Enhanced
Fear Learning” experiment confirms the significant role of
pre-existing stress in enhancing fear memory formation.
This observation is particularly relevant in the context of
stress disorders, suggesting that prior exposure to stress
may exacerbate fear responses in subsequent fear-inducing
situations.

The study also highlights the need for personalized approaches
in therapeutic interventions for conditions related to fear and
stress. Understanding individual variability in response to fear and
stress, as indicated by our experiments’ varying levels of freezing
behavior, is crucial for developing more targeted and effective
treatments.

These results contribute to a deeper understanding of the
neurobiological underpinnings of fear and stress responses. They
pave the way for future research, particularly in exploring the
potential of personalized therapy in treating anxiety disorders and
PTSD and in understanding the broader implications of stress
on cognitive and emotional health. Integrating these findings into
clinical practice could significantly increase the effectiveness of
treatments for a wide range of psychological conditions related to
fear and stress.
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