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Introduction: In neurodegenerative brain diseases like Progressive Supranuclear Palsy 
(PSP), clinical studies underscore the crucial role of head motion deficits. Similarly, 
advanced stage Idiopathic Parkinson’s disease (IPD) is known to display significantly 
altered posture control and balance patterns involving the head segment.

Methods: This study investigates the relative differences in head control during 
a perturbed upright stance paradigm between patients affected by PSP and 
IPD, compared to healthy control subjects using dynamic system modeling. 
The resulting neural model underlines how PSP primarily affects head control, 
whereas IPD primarily affects the control of the whole body’s center of mass. 
A neck control model, based on the hypothesis of modular posture control, is 
proposed to emulate the PSP data in particular.

Results: A larger passive stiffness was observed for both groups of patients, with 
eyes closed, suggesting that the head moves together with the trunk. With eyes 
open, the active proportional gain KP is relatively larger in all cases, indicating 
that the head is directed closer to the vertical by the visual contribution. Since 
this was held for all investigated groups, findings support the notion of intact 
visual contribution to posture control among PSP and IPD despite the impaired 
supranuclear eye guidance among PSP.

Discussion: The proposed neural model’s characteristics will aid in future patient 
data analysis, disease progression monitoring, and possible modulation of disease-
specific features through therapeutic intervention. For engineering and robotics 
implementations, uses for strengthened resilience of head stabilization are 
discussed.
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1 Introduction

Several neurodegenerative diseases in humans predominantly affect motor control 
capabilities, particularly stability of stance. Eventual loss of self-stabilization with immobility 
contributes decisively to consecutive infectious complications and death in these diseases. This 
study analyzes features of Progressive Supranuclear Palsy (PSP) and advanced stages of 
Idiopathic Parkinson’s Disease (IPD). Both diseases feature velocity-independent muscle 
stiffness (rigidity) during passive motion, and slowness (bradykinesia) during active motion 
with optional resting tremor.
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PSP is a rare, rapidly disabling atypical Parkinsonism disorder 
based on intracellular tau protein accumulation with progressive cell 
loss focused on mesencephalic structures, where neural centers of 
vertical gaze control and pathways of axial motor control reside 
(Iankova et al., 2020; Höglinger et al., 2017). With an onset usually in 
the sixth or seventh decade of life, patients present falling backward 
under unprovoked conditions within the first year of disease 
manifestation, resulting in unprotected injuries from falls, rapid 
immobilization, and eventual death from immobilization-related 
complications, like aspiration pneumonia with a median of 6 years life 
expectancy. By comparison, IPD is a frequent neurological disease 
slowly progressing over more than a decade, defined by the 
degeneration of dopaminergic neurons throughout the brainstem and 
adjoining systems by alpha-synuclein accumulation. In IPD, rigidity, 
and bradykinesia can be managed well by dopaminergic medication 
over most of the first decade of the chronic disease. Later, likely due to 
progressive degeneration of non-dopaminergic systems, falling 
becomes a relevant issue. Falling in IPD is typically forward during the 
initiation or termination of gait by either shifting mass forward, but 
being unable to initiate gait patterns, or by stopping gait without the 
termination of the forward mass shift. These falls respond poorly to 
medication and contribute to eventual immobilization and mortality.

Features of IPD stance instability and its clinical features have been 
studied extensively throughout the literature and can be considered a 
hallmark of clinical neurophysiology; based on these features, neural 
models of its deficits have emerged along with neural network modeling 
as a discipline. PSP stance deficits, however, are poorly understood and 
ill defined, due to the relative rarity of the disease and the previous 
assumption of being simply another type of Parkinsonism with 
exaggerated rigidity predominantly among axial musculature; only in 
recent years has it become apparent through clinical studies that PSP 
axial disability disorder involves an active process of exaggerated upper 
body and head motion to minimal floor instability (Kammermeier et al., 
2018; Kammermeier et al., 2024), but with intact proprioceptive sensory 
input from the neck (Kammermeier et al., 2017). This abnormal head 
control pattern attempts to align the head along the vertical axis of the 
tilting floor segment. By contrast, IPD postural control attempt to align 
the head along the vertical axis of gravity when perturbed.

These different strategies (Kammermeier et al., 2018; Kammermeier 
et al., 2024) of body and head postural control led us to emulate the 
respective strategies in a refined neural control model. Previous PSP and 
IPD patient recording studies, as referenced above, relied on a simplified 
but well - established proportional derivative integral PDI controller for 
a two- to three-segmental inverted pendulum model. The objective of 
this current modeling study was to restructure, refine, and validate a 
neural model of a head-on-body postural control model for externally 
perturbed stance based on the available three-dimensional motion 
capture data of PSP and IPD patients, as well as healthy reference 
subjects. Disease-defining alterations or defects to a baseline “healthy” 
model were to be created, from which certain modifications, alterations 
or defects would elicit deficits specific to either PSP or IPD. Then, the 
resulting neural model was to be applied to the respective data from PSP 
and IPD patients for validation.

The differential motion of the head segment relative to the trunk 
with the center of body mass bears particular importance. The head 
holds two of the three main systems required for the subjective 
coordinate system of self-in-space: the vestibular system measuring 
3D-angular acceleration and alignment of the head relative to gravity 
and the visual system allowing self-reference to gravity by indicators 

of the visual horizon (Lopez and Blanke, 2011; Brandt and Dieterich, 
2019). Proprioceptive self-referencing between the individual body 
segments as the third system is used to translate the vestibular-visual 
reference system from within the head into a completed coordinate 
system of the whole body relative to both support surface and space. 
These sensor systems complement each other by sensor quality and 
overlapping time resolution features. Free motion of the head with its 
integrated sensors during motion presents a particular challenge to 
this integration; it works well in healthy humans, but presents a 
challenge in which most humanoid robotics have failed. The advantage 
of an independent “head” appendage to the main body mass with 
sensor arrays allows for improved situational overview during body 
motion and the possibility to explore where the whole body would not 
fit or should remain concealed. This comes with the tradeoff of 
increased computational demand to coordinate body motion and 
stabilization based on the externalized coordinate systems 
(Kammermeier et al., 2024; Kammermeier et al., 2017).

The task of perturbed upright stance by support surface tilt 
presents a controlled environment challenge of head motion control. 
External force perturbations acting higher up on the body can 
be considered to occur more frequently in everyday conditions rather 
than small-angle support surface tilts. For the paradigm of PSP 
postural stability studies this design approach was chosen for six 
particular reasons however:

 - Tilt around the ankle joint provides a stimulation mechanism 
tailored for the inverted pendulum approach of modeling, which 
is also easily reproducible, continuously applicable and does not 
rely on encumbering additive force applicators around the torso, 
in comparison to effectors designed to have an angle of attack 
near the body’s center of mass.

 - The application of force around the ankle propagates the largest 
challenge of compensation to the most distal element of the 
multi-segmental pendulum – the head segment – as the object of 
particular interest due to the senor systems residing there: visual 
and vestibular.

 - The clinical notion of PSP patients falling frequently not to external 
force action but rather “minimal floor unevenness” or no apparent 
reason at all from neutral stance. This unexpected unevenness may 
be simulated in the way of small-angle surface tilt.

 - Also, advanced IPD patients experience falls during initiation or 
termination of gait, in which a relative delta of forward 
displacement of the upper inverted pendulum aspects translate 
against the surface. Inversely, this instability can be simulated by 
relative backward tilt of the surface.

 - The small angle challenges provide a safe and limited exposure 
challenge to severely posturally unstable patients, as 
demonstrated in the respective experimental studies 
(Kammermeier et al., 2018; Kammermeier et al., 2024), and as a 
sandbox study for challenges in engineering and robotics.

 - From small tilt angle challenges, the simulated system can 
be extrapolated to higher angle challenges and compared to the 
scarcer datasets of patient data that can be obtained in the real-
world equivalent.

To examine patients in a clinical context, an improved neural 
model created on the basis of group population data (PSP, IPD and 
healthy subjects) would allow for the definition of specific sets of 
objective disease-characteristic variables to be  recorded along the 
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individual progression of the respective disease, in order to describe 
alterations of certain variables during the natural course of the 
respective disease and – possibly - to determine changes by future 
therapeutic interventions of various kinds (e.g., medication, new 
molecular therapies, electric neurostimulation) beyond mere clinical 
grading, which remains subject to considerable inter-rater and intra-
rater inconsistencies despite all efforts of standardization (Iankova 
et al., 2020; Goetz et al., 2010). Such neural models would also allow 
for rapid automated analysis and output of specific variables 
immediately after recording in an apparative setting, which would aid 
tremendously in implementing clinical routine measurements.

The study of human posture control and the assessment of 
patterns associated with pathological conditions can be performed by 
analyzing posture control as a dynamic system in terms of input 
(stimuli) and output (body sway). In this work, we propose both a 
statistical assessment of the differences between healthy subjects and 
patients (PSP, IPD) based on a direct analysis of the input–output 
relationship expressed in terms of the transfer function and a study of 
the parameters obtained by fitting a dynamic model onto the 
experimental data. These two approaches are complementary: the 
analysis of the responses can highlight significant effects associated 
with the diseases, and the model parameters can suggest a hypothesis 
for a meaningful description of causes behind the observed effect, e.g., 
changes in joint stiffness or delay in the neural control loop. This 
approach to disease entities among groups of subjects can be envisaged 
to be helpful as a tool in diagnostic patient single trials, particularly 
when followed up along the time domain of months or even years, and 
as an instrument to study the disease in general based on population 
data in conjunction with other modalities of disease characterization 
like imaging and biobanking.

This computational approach has been used successfully in the 
past. For example, in studies on a specific eye motion control disease, 

namely downbeat nystagmus (Glasauer and Rössert, 2008), an effective 
drug treatment could be conceptualized, tested and validated thanks to 
a computational neural model. The study of posture control may also 
benefit from a dynamic system approach, which bridges the high level 
of behavioral observation to a reductionist description of the process.

2 Materials and methods

2.1 Body sway and frequency response 
functions

The frequency response function, FRF, is an empirically computed 
transfer function between the stimulus (input) and the body sway 
(output). Sway responses are averaged across all subjects’ postural 
platform stimulation sequence repetitions. The input follows a pseudo-
random ternary signal profile known as PRTS (Peterka, 2002; Davies, 
1970) (Figures 1A,B). This means that the signal alternates between 
three possible speed levels: zero (no movement), a positive speed (+s), 
and a negative speed (−s). The value of s is chosen carefully to ensure 
that the resulting movement reaches a specific range—typically 
measured in position changes, such as a tilt of 1° from peak to peak. In 
simpler terms, the movement follows a structured but unpredictable 
pattern, switching between these speed levels in a way that appears 
random, but is designed to test specific responses. A commonly used 
version of this PRTS profile is illustrated in Figure 1A.

The PRTS has a unique power spectrum, meaning that when 
analyzed in terms of its frequency content, it displays distinct peaks at 
certain frequencies. These peaks are separated by zones where no 
power is present, meaning that some frequency components are 
completely absent from the signal. This pattern, shown in Figure 1B, is 
important because it influences how the system being tested will 

FIGURE 1

Stimulus profile (PRTS), its spectrum, and example of a FRF. (A) The time profile of the PRTS signal, used as reference for the platform tilt. (B) The 
magnitude of the DFT of the PRTS, gain is a unit-less number, as it is the ratio between two angles. (C) Empirical transfer function from Goetz et al. 
(2010). (D) FRF resulting from the averaging of frequency bands. The bands on the background show the frequency ranges over which the spectrum is 
averaged: white and dark grey represent ranges associated with groups of frequencies. The sets of frequencies overlap, with light green bands 
belonging to both contiguous groups and a sample of the transition between two bands belonging to both groups. As the FRF is averaged in the 
complex domain, the average shown in the plot is not the average of the magnitudes.
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respond to different frequency components of the input. The spectra 
of the corresponding stimuli and body sway responses in space are 
computed using Fourier transforms. Finally, frequency response 
functions are computed as cross-power spectra Gxy(f) divided by the 
stimulus power spectra Gyy(f):

 

xy

yy

G
G

The values of the obtained transfer functions (Figure  1C) are 
averaged over bands of frequencies, with the resulting FRFs being 
represented by a vector of 11 complex values. As a result, the FRFs are 
defined and plotted with respect to the following frequency points.

 =  0.3 0.4 0.55 0.7 0.9 1.1 1.35 1.75 2.20.05 0.15 ,f  as 
shown in Figure 1D.

Such FRF definition, with averaging over groups of frequencies, is 
particularly significant in posture control research, where it has been 
widely adopted in the field. It was originally introduced in Peterka 
(2002) and has since influenced numerous studies that built upon its 
methodology (for example Assländer et al., 2020; Ketterer et al., 2024; 
Missen et al., 2024; Assländer, 2015; Goodworth and Saavedra, 2021). 
One key methodological decision in FRF analysis is the grouping of 
frequencies for averaging. This practice was initially motivated by the 
need to display the FRF on a logarithmic scale (Goodworth and 
Saavedra, 2021). On such a scale, the higher-frequency bands naturally 
contain more data points than the lower-frequency bands. However, 
these high-frequency data points often have a lower signal-to-noise 
ratio, meaning they are more affected by random fluctuations in the 
data. To address this issue, researchers averaged more adjacent high-
frequency points than low-frequency points. This equalizes the spacing 
of the FRFs when plotted on a logarithmic scale, making it easier to 
interpret trends across different frequencies. Additionally, this 
approach maintains similar confidence intervals across all frequency 
bands, ensuring that the reliability of the FRF estimates remains 
consistent (Goodworth and Saavedra, 2021; Goodworth and Peterka, 
2009; Otnes and Enochson, 1972). This method also implies that high-
frequency components of the response are considered less important 
within the experimental scope. This assumption is reasonable in many 
posture control experiments. For example, when a subject stands on a 
tilting support surface, the body’s postural control system behaves like 
a low-pass filter—meaning it reacts strongly to slow tilts, but does not 
respond as much to rapid, high-frequency oscillations. This low-pass 
characteristic is well-documented in studies on postural control and 
balance mechanisms (Peterka, 2002; Van Der Kooij and Peterka, 2011).

2.2 Experimental setup

The body sway responses used in this study were obtained from 
three groups of human subjects. The overall setup and detailed clinical 
inclusion criteria for the IPD and PSP groups are described in detail in 
Kammermeier et al. (2018), Kammermeier et al. (2024), and Lippi et al. 
(2023). Each group includes elderly subjects, among which were 17 
healthy subjects, 11 advanced-stage IPD patients with frequent falls at 
least once a month and 17 ambulatory PSP patients. All but one PSP 
patients were also participants of the PROSPERA study (prematurely 
ended, randomized double-blinded Rasagiline in PSP, EudraCT number 
2008–007520-26). All PSP patients were “Clinical Probable PSP” 

according to the NINDS-SPSP criteria (Respondek et al., 2013) valid at 
the time of study inclusion, subsequently refined and replaced by the 
Movement Disorders Society criteria of 2017 (Höglinger et al., 2017). All 
participants gave written informed consent, and data was anonymized at 
study inclusion following the Helsinki Declaration and the local ethics 
committee (decision 142/04; Ethikkommission der Medizinischen 
Fakultät der LMU). Patients wore their everyday clothing including 
shoes and were under their regular medication including prescribed 
dopaminergic medication in “ON,” to reflect conditions in which most 
falls occur in the clinical context, rather than creating an artificial 
barefoot and medication “OFF” condition, which would not reflect 
practical occurrence of the investigated falling problem.

All subjects were placed on a remotely controlled platform 
(Toennis), as shown in Figure 2. The platform produced a front-to-
back tilt oriented around the ankle joint axis by the mechanical setup 
of the platform, which is set up to rotate the surface of the shoes under 
the axis through the upper ankle joint (see Figure 2). The stimulation 
paradigm involved a resting condition and small-angle (0.5° and 1°) 
rotational disturbances with a pseudorandom PRTS profile for 60 s; 
each maximum angular displacement was tested in eyes-open EO and 
eyes-closed EC conditions.

3D motion capture was performed with ultrasound receivers 
(CMS20 Zebris 3D ultrasound motion capture system, Zebris GmbH, 
Isny im Allgäu, Germany).1 This is a standard set up for tracking the 
dorsal spine and body segments in posture control experiments 
(Fölsch et al., 2012; Malmström et al., 2003; Li et al., 2016). Markers 
were placed on the subjects, visible from behind, to track the head, 
upper trunk, hip, and knee position during the experiments, as shown 
in Figure 2. The ultrasound receiver CMS20S was placed 1 m behind 
subjects on the platform at roughly head level to get vision of all 
markers. The Zebris software was used to record the 3D positions.

The sampling rate was dynamic between 80 and 200 Hz depending 
on momentarily detectable markers and was resampled offline to 
100 Hz using Matlab Resamp function. The sway of the body segments 
was computed using trigonometry, e.g., computing the inclination of 
the triangle defined by the markers around the head (1, 2, 3  in 
Figure 3). Considering a maximum error of 0.5 mm (Zebris, 2024) 
and a height of the marker triangle of 25 cm ca. the precision on HS 
was around 0.002°, enough to track head motion properly.

The final dataset included the platform motion track and the 
position signals of three markers for the head, three for the chest, one 
for the lower spine, and one each above the knees, each along the 
time domain.

2.3 Head posture control model

The model from Lippi et  al. (2023) was used to fit the data. 
Specifically, in Lippi et al. (2023), some model variations were tested 
on healthy subjects; the model that produced the best fit was used here. 
The control model is based on the disturbance identification and 
compensation (DEC) principle (Mergner, 2010) and its implementation 
as a modular control system (Hettich et al., 2013; Hettich et al., 2014; 
Lippi and Mergner, 2017; Lippi, 2018). For a general and extensive 

1 www.zebris.de
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FIGURE 2

Left: The experimental setup. The test subject stands on a platform, tilting in the sagittal plane around the ankle. The subject’s feet were placed within 
marked positions, with the heels together and the tips spread 15° apart, while the arms hung loosely by the sides. The tilt axis of the platform was 
ensured to act through the anatomical upper ankle joint of the subject. Right: 3D ultrasound position markers (Zebris system) placement. Head (1, 2, 3), 
upper chest (4, 5, 6), hip (7), and lateral femoral epicondyles (8, 9). Pictures from (3). Patients were in their everyday clothing including shoes and on 
regular medication in dopaminergic “ON,” to reflect conditions in which most falls occur.

FIGURE 3

Overview of the simulation system: The observed oscillations in the legs and trunk, along with the predefined PRTS input profile, serve as inputs to 
model the motion of the neck.
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description of the control system (see Lippi and Mergner, 2017). The 
DEC is based on the hypothesis of a servo controller for body position 
(Merton, 1953), complemented by the estimation and compensation 
of external disturbances based on sensory input (Mergner et al., 1997; 
Mergner and Rosemeier, 1998). The servo controller is implemented 
as a PD, proportional derivative controller. The compensation, which 
generally includes support surface tilt and acceleration, gravity, and 
external push, is considered only for gravity and support surface tilt. 
Such compensation is a feed-forward compensation of disturbances 
based on sensory input that allows us to estimate the disturbance itself 
(Bleisteiner et al., 1961). The DEC controller is mainly used to predict 
steady-state responses, unlike other models oriented to transient 
responses (Allum and Honegger, 1992; Küng et al., 2009).

The control equations regulating the action of the servo controller 
for the neck are:

 
( )τ ε = + + 

 
Active To e ˆrqu act P D

dK K G
dt  

(1)

 
( )τ α = + 

 
Passive Torque Pass PP PD HT

dK K
dt  

(2)

 α=Gravity Compensat o ˆi n G HSG K  (3)

 α α α α= + −Support Surface Tilt Compensat ˆion ˆHS HS FS FS (4)

Where PK  and DK  are the coefficients of the PD controller, ε  is 
the error on the controlled variable that can be the estimated head in 
space position α̂HS from Equation 4 or αHT , the angle between head 
and trunk, and Ĝ  is the estimated gravity torque from Equation 3. The 
value Ĝ  is expressed as an angle equivalent in order to be summed to 
ε in Equation 1. This means that the gravity estimation is divided by 
the mass of the head multiplied by the height of its center of mass and 
the gravity constant g. this is all considered in the parameter GK  that, 
hence, is a unitless gain. Expressing the disturbance as an additional 
input for the PD exploits the derivative as an anticipation effect. In 
robotics applications, the compensation can have its own PD 
parameter to allow for fine control (Ott et al., 2016); here, only a 
singular PD is used, in accordance with previous works, where the 
DEC is used to model human responses (e.g., in Hettich et al., 2014; 
Mergner et  al., 2009). PPK  and PDK  are the passive stiffness and 
damping associated with the neck. αHS in Equations 3, 4 is the head-
in-space angle (with respect to the gravitational vertical) that here is 
assumed to come from the vestibular system without any modeled 
noise. GK  is a coefficient associated with gravity compensation. 
Usually, in humans, it is slightly under-compensated, considering the 
additional torque produced by the servo loop.

 

( )
α θ α θ

ϑ α θ α θ
α θ α θ

 + < −
= − < <
 − >

0
FS FS

FS G FS

FS FS  

(5)

The estimation of support surface tilt is affected by a 
nonlinearity reflected in the estimated α̂HS  in Equation 4. The 

foot-in-space estimation is performed by fusing the vestibular 
angular velocity signal with the proprioception of all the joints 
from the head to the ankle; a nonlinear function ( )ϑFS  is 
defined as.

The threshold θFS  is then applied to the resulting velocity signal. 
Here, as the proprioception and vestibular signals are modeled as 
ideal, the αFS  known from the experiment design (§2.2) is used to 
produce the following estimation

 
α ϑ α τ =  

 ∫ 1

0
ˆ t
FS FS FS

d d
dt  

(6)

Where 1t  is the current time and the initial condition of the 
estimator is assumed to be α =ˆ 0FS . Again, for the assumption of 
ideal proprioceptive signals, the error α α− ˆFS FS  is propagated 
directly to α̂HS , leading to Equation 4. The nonlinearity ( )ϑFS  
explains that smaller stimuli are associated with larger gains in the 
responses (Hettich et al., 2011). Although introducing an error in 
tracking body sway prevents asymptotic stability, the dead band 
does not make the system unstable; in fact, it has been 
demonstrated that the system is Lyapunov stable (Lippi and 
Molinari, 2020).

A lumped delay ∆t  representing all the delays in the loop 
affects the active control (it is in series with the PD). The sources of 
the delay are the sensory input and the motor control. For the 
control of the ankle, they are usually estimated to be between 80 
and 200 ms, depending on the subject and the test conditions 
(Antritter et al., 2014; Li et al., 2012; Molnar et al., 2021). In general, 
the delay of peripheral body joints is expected to be larger than the 
one associated with joints closer to the brain, e.g., the delay in the 
control loop of the hip is smaller than the one of the ankle: 70 ms 
and 180 ms, respectively, in Hettich et al. (2011) and Antritter et al. 
(2014). This predicts that the delay in the neck control loop will 
be  smaller. An overview of the simulated system is shown in 
Figure 3.

The dynamic of the head is simulated as a single inverted 
pendulum (SIP) characterized by the weight and the moment of 
inertia of the head, on which the active toques τact  and τPass from (1) 
and (2). The translation produces a further effect due to the sway of 
the legs and the trunk, resulting in the following dynamic system, 
where the small angle approximations α α≈sin  and α =cos 1 
are applied:

 

( )α τ τ

α

α α




= + + +
 =
   = +    

¨

¨ ¨

/HS act pass acc H

H H HS

LS TSacc L T H H

G T J

G m gh
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(7)

Where HJ  is the head moment of inertia, Hm  is the head mass, Hh e  
is the height of the head center of mass, and = 29.81 /g m s  is the 
gravity acceleration constant. Ll  and Tl  are the lengths of the trunk and 
leg segments, respectively. A standard set of anthropometric 
parameters (Winter, 2009; De Leva, 1996) is used in all the simulations 
with no specific adaptation to the single subject. Anthropometric 
parameters are reported in Table 1. The full dynamic system is shown 
in detail in Figure 4.
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2.4 Testing significant differences between 
FRFs

The differences between the groups’ averages are tested with 
a bootstrap method specifically proposed to test differences 
between groups of FRFs (Lippi, 2025a; Lippi, 2025b; Lippi, 2024). 
In detail, the confidence intervals for continuous functions 
(Lenhoff et  al., 1999) are defined in the time domain. This is 
possible because the FRF is a transfer function, so its Fourier 
transform is the impulsive response of the system (real function). 
The method to obtain the confidence bands is discussed in detail 
in Lippi (2025a). Since the tests involve unpaired samples, two 
different groups of subjects are tested under the same conditions. 
Specifically, the bootstrap hypothesis test was conducted by 
repeatedly resampling the available data with replacement to 
generate an empirical distribution of differences between group 
averages. This approach does not assume normality and is 

well-suited for cases where the data distribution is unknown or 
irregular. The procedure follows these steps:

Resampling: each group is resampled independently, with 
replacement, to generate new synthetic datasets of the same size as the 
original samples.

Computing the test statistic: the difference between the means of 
the two groups is calculated for each resampled dataset. The test value 
used is the difference between the means normalized by the variance 
of all the samples in time domain.

Building confidence bands: the repeated resampling process 
generates a distribution of possible mean differences at each point in 
time. The confidence bands are then computed by selecting the 
percentiles corresponding to the desired confidence level (e.g., 95%). 
This results in upper and lower bounds that indicate the range within 
which the true mean difference is expected to lie.

Testing the null hypothesis: the confidence bands are compared 
against the horizontal axis, representing a zero difference between 
means. If the bands do not include this zero line over a significant 
portion of the domain, the null hypothesis (that there is no difference 
between the groups) is rejected.

The residuals are analyzed to visualize the results in the frequency 
domain. Residuals are defined as the differences between the 
confidence bands and the part of the tested sample that exceeds them. 
Once the confidence bands are constructed in the time domain, the 
residuals can be  transformed to the frequency domain using the 
Fourier Transform. This process reveals how variability is distributed 
across different frequencies. Such representation provides a qualitative 
insight into whether the differences are localized at particular 

TABLE 1 Anthropometric parameters used in the posture control model.

Parameter Symbol Value

Head moment of inertia JH 0.4797 kg/m

Leg length (ankle to hip) lL 0.8543 m

Trunk length (hip to neck) lT 0.5011 m

Head COM height hH 0.2053 m

Head mass mH 4.5 kg

FIGURE 4

The Dynamic system from Equations 1–7. Here, the controlled variable is the head-in-space angle αHS. To control the head-to-trunk angle αHT, such a 
variable should be provided as input for the neural controller instead of αHS. The model includes head dynamics to evaluate the parameters relative to 
the control of the neck and uses the kinematics of the trunk and the legs as an input, a “playback” as shown in Figure 3. The lower part of the schema 
represents a sensor fusion process. As the reference is assumed to be 0°, the controlled variable equals the error ε in Equation 1. The recorded body 
sway for the trunk and legs is used as input. In contrast, the recorded head sway is used outside the simulation to optimize the parameters and 
evaluate the result.
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frequencies or spread across the spectrum, which is used after the test 
rejects the null hypothesis.

A library of functions to implement FRFs statistics and the specific 
tests with unpaired samples is available online (Lippi, 2024).

2.5 Model parameters identification

The identified parameters are KP, KD, KPP, KPD, KG, the threshold, 
and the lumped delay ∆t. The delay in the loop is important for 
shaping perception and action; for example, it is observed that an 
added delay of about 70–80 ms can already be perceived (Morice et al., 
2008) and affect performance in tracking tasks (Lippi et al., 2010). 
Hence, it is reasonably one of the parameters characterizing the 
performance in posture control, as suggested by Li et  al. (2012), 
Molnar et al. (2021), and Van Der Kooij et al. (1999), Lockhart and 
Ting (2007), and Vette et al. (2010). Delays are also a determining 
factor in the different performances of young and elderly subjects (Qu 
et al., 2009; Davidson et al., 2011). Other parameters are feedback gains. 
Specifically, the effect on the body with the support surface rotation is 
due to the passive stiffness and the delays in the loops producing the 
active torque. The gain KG applied on gravity feedback represents the 
(small) under-compensation of gravity observed in subjects. The body 
sway responses observed in experiments are nonlinear, and such 
nonlinear responses can be reproduced by the effect of the threshold 
(Mergner, 2010).

The fit is performed on the across-subject FRF response of each 
group of samples as in Assländer and Peterka (2014) and Pasma 
et al. (2018). This is done because, in the present work, the focus of 
the study is the difference between groups of FRFs associated with 
different conditions, difference that has been assessed with the test 
described in the previous subsection §2.4. The assumption is that 
group-averaged responses can effectively capture the central 
sensorimotor strategy, as they represent a cohort’s “typical” 
behavior. Using the group average as the fitting target provides a 
robust representation of the underlying control mechanisms. This 
approach reduces the influence of inter-subject variability and is 
expected to produce parameters that are representative of the 
group’s postural control strategy. This is similar to what is done in 
general in system identification where averaging multiple trials 
enhances the signal-to-noise ratio and yields more reliable 
parameter estimates by filtering out idiosyncratic fluctuations 
(Ljung and Ljung, 1999).

The model fits the data using a numeric research algorithm 
implemented by the Matlab function fminsearch that allows system 
simulation at each step. The objective function to be minimized is the 

difference between the FRF from the experimental trial and the one 
produced by the simulation (the score value in Table 2).

3 Results

3.1 Body sway responses

As an example of the full dataset obtained by the experiments the 
sway trajectories for head, trunk and legs for PSP patients with eyes 
closed are shown in Figure  5 All the head-in-space (HS) sway 
responses are shown in Figure 6. The plots provide an idea of the 
variability of the subjects’ responses within groups. Figure 6 exhibits 
the expected nonlinear response in that the difference between the LS 
response is relatively small compared to the proportion of the two 
peak-to-peak amplitudes (i.e., one twice the other) as expected from 
previous experiments (Mergner et al., 2009; Mergner et al., 2003). In 
some trials HS exhibits adjustments, i.e., movements in the order of 
0.1° degrees that appear to change the offset of head position.

3.2 Comparison of the average responses

In Figure 7 one of the performed tests is displayed in an exemplary 
fashion (control vs. PSP patients at 0.5° eyes closed EC). The 95% 
confidence bands around the difference of the means of the groups do 
not include the lateral x-axis (no difference), resulting in a rejection 
of the null hypothesis, proposing that the average of the two groups is 
the same with p < 0.05 as discussed in the next paragraph. The COM 
responses are shown in Figure 8. The average head sway responses in 
the frequency domain for the groups under different conditions are 
reported in Figure  9. Figure  5 shows that, although exhibiting a 
similar low-pass profile in the FRF, IPD is associated with smaller 
average gains than the control group and PSP. The result for head 
control is different: in Figure 7, PSP is, in general, associated with 
larger gains compared to the control. The response of the IPD subject 
has a larger gain with EC and smaller with EO, compared to the 
control. This suggests a specific effect of the examined diseases on the 
control of the head, which cannot be trivially explained by the pattern 
of COM sway.

3.3 Significant differences between groups

The test specified in 2.4 was performed to compare the 
average FRFs of the three groups given the same conditions of 

TABLE 2 Model parameters fit the average response of each group.

Group Eyes KPP KDP KP KD ∆T KG θFS Score

CO Closed 37.591 8.4535 0.004094 2.8939 0.039358 0.10619 0.02226 0.76525

CO Open 43.029 7.5394 0.53982 0.96498 0.02217 0.095583 0.12776 0.87411

IPD Closed 38.852 4.1253 5.7809 11.365 0.000673 0.018112 0.007753 0.64086

IPD Open 15.499 1.9855 6.5599 5.3434 0.001211 0.020482 0.004569 0.86278

PSP Closed 224.94 1.511 4.0473 10.459 0.00288 0.03196 0.000332 4.3685

PSP Open 32.136 4.6341 9.0265 0.41382 0.11315 0.01004 0.00016 0.94434

The value Score represents the difference between the target FRF and the FRF produced by the simulation.
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FIGURE 5

ISP body segments sway responses to 0.5° (left) and 1° peak-to-peak amplitude.
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FIGURE 6

Head sway (head in space - HS) responses to different amplitudes. CO identifies the control group.
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FIGURE 7

Bootstrap test comparing the average FRF of the control group and PSP for stimulus amplitude 1°. On the left is the difference between the group 
averages of pseudo-impulsive responses (PIR) of the two groups with 95% confidence bands. As the x-axis (representing a null difference between the 
group’s averages) is outside of the confidence bands, the two groups’ averages are assumed to be significantly (p < 0.05) different. On the right, the 
FRF of the residual, i.e., the difference between the bands and the x-axis, provides a view in the frequency domain of the difference between the two 
groups.

FIGURE 8

Average module of the COM sway responses. Notice that the scales of the graphs are different, and although exhibiting a similar low-pass profile, IPD 
is associated with smaller gains than the control group and PSP. The COM sway is not predicted by the model, but it is provided as input shown in 
Figure 3.
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visual input and signal amplitude. Significant differences were 
found between the average FRFs of the responses among the 
following groups:

For the COM sway:

 1 Control vs. IPD 0.5° EC
 2 Control vs. PSP 0.5° EO
 3 Control vs. IPD 0.5° EO
 4 Control vs. PSP 1° EO

And or the Head Sway:

 1 Control vs. PSP 0.5° EO
 2 Control vs. PSP 1° EC
 3 Control vs. PSP 1° EO
 4 Control vs. IPD 1° EO.

Also, the two groups of patients were compared, but no case 
showed a significant effect. PSP subjects were significantly different in 
head control in all the cases 5, 6, and 7, b3ut EC 0.5 pp. The residuals 
(see Figure  7) were distributed along all the frequencies without 
exhibiting any notable peak.

3.4 Model fit

The quality of the model fit is evaluated by comparing the 
experimental FRFs of the head-in-space responses with those 
simulated by the model using the optimized parameters listed in 

Table 2. In Figure 9, the average amplitude of the experimental 
FRFs across the relevant frequency bands is plotted alongside the 
simulation results. A close match between the experimental and 
simulated curves is observed, indicating that the model can 
capture the essential dynamics of head control across conditions 
and groups. In particular, the model accurately reproduces the 
low-pass behavior and the gain differences observed between the 
control, IPD, and PSP groups. The “Score” parameter in Table 2 
quantifies the residual discrepancy between the target 
(experimental) FRF and the simulated FRF, with lower score 
values indicating a better fit. The score is computed based on the 
responses for both amplitudes as the same model is used to 
reproduce both. For instance, the relatively low score values for 
the control conditions suggest that the model well-represents the 
underlying control mechanisms in healthy subjects. Figure  9 
shows that the simulation reproduces key features of the 
experimental frequency responses, such as the overall amplitude 
scaling and the frequency-specific response profiles.

4 Discussion

The presented model for postural head control in a steady 
state support surface oscillation paradigm allows for a detailed 
characterization of central postural control deficits in 
Progressive Supranuclear Palsy PSP and Idiopathic Parkinson’s 
Disease IPD, in comparison to healthy age-matched control 
subjects, based on averaged group data obtained from a 
clinical study.

FIGURE 9

Average amplitude of the FRFs of head angle relative to the gravitational vertical for the sample set compared with the simulation’s results with the 
parameters from Table 2. Notice that the scale varies between subplots. PSP is generally associated with larger gains compared to the control. The 
response of the IPD subject has a larger gain with EC and smaller with EO compared to the control.
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Among the differences between the groups revealed by the 
statistical analysis were parameters obtained by fitting the average 
head responses. For both groups of patients, a larger passive stiffness 
KPP in EC trials suggested that the head tends to move together with 
the trunk in the eyes closed condition EC. With eyes open EO, the 
active proportional gain KP is relatively larger in all cases, suggesting 
that the head is directed closer to the space vertical by the visual 
contribution to the central integration (Kelly et al., 2008; Paulus et al., 
1984). Since this held true for all of the investigated groups, findings 
support the notion of intact visual contribution to central postural 
control among PSP and IPD, despite the impaired supranuclear eye 
guidance among PSP.

In all cases, a larger gain was associated with smaller stimuli, but 
this effect was not as pronounced in IPD patients in the EO condition. 
Such nonlinear behavior has been properly predicted by adding the 
nonlinearity from Equation 5, 6. The threshold θFS  was a notable 
model parameter that could assume distinct values as a segregation 
between different groups and conditions. The value of θFS  was smaller 
for the patients’ groups than the control group, and larger for EC than 
EO in the control group. This suggests a paradoxically prompter 
response to external stimuli in difficult conditions (i.e., eyes closed 
and neurological impairment). This is consistent with previous 
findings (Kneis et  al., 2020), indicating that patients with 
chemotherapy-induced neuropathy exhibited, on average, smaller 
body-sway/stimulus gains compared to healthy control, and in line 
with the general consensus of less error-tolerant postural control in 
peripheral sensory and/or central neurological impairment.

It should be noted that there are limitations in estimating the 
system’s delay. Firstly, phase lags caused by time delays and those 
introduced by system dynamics (e.g., low-pass filters or poles) can 
produce similar effects in frequency-domain models, particularly 
when the input lacks high-frequency excitation. This is a well-
recognized limitation in system identification, where such 
components can become practically indistinguishable (Van Den 
Hof and Schrama, 1995). Specifically, in posture control 
experiments, the identified lump delay integrated different 
sources of sensory and motor delays. The identified delay may 
be shorter than the expected neural delay as low pass components 
of the model account for the phase-lag exhibited by the system as 
in (Van Der Kooij and Peterka, 2011), or be larger than anticipated, 
reflecting delays due to upper cognitive functions involved in 
more demanding tasks such as balancing on a rocking board as 
presented in Molnar et  al. (2021) and Molnar and Insperger 
(2022). A further thing to consider in the present work is that 
when the delay is very small the identified system can be under-
constrained given the reference FRF, in that the active and passive 
feedback gains are practically indistinguishable in the absence of 
delay and with the trunk maintaining an upright stance as they 
both act producing a torque that pulls the head to the upright 
position. These limitations should be  considered before 
interpreting the lumped delay as a measure of the neural delay. 
Nevertheless, the delay as a parameter is useful in characterizing 
the response of the different groups under different conditions 
and differentiating between them.

Considering the perspective of using the model to perform tests 
on patients in future clinical settings, efficient and rapid estimation of 
the parameters from patients’ trials can be  obtained using neural 

networks (Ljung et al., 2020), as demonstrated in preliminary results 
for posture control (Lippi et al., 2020). Furthermore, modeling neck 
behavior could be useful when the DEC is applied to an assistive 
device for everyday use (Lippi and Mergner, 2020), especially if the 
device supports head movements like an active version of Garosi 
et al. (2022).

Future work will exploit the possibility of retrieving model 
parameters for individual trials from single patients. This can 
be performed with patients with a known condition to monitor the 
progression of the disease (i.e., testing different time points in the 
disease). System parameters can be  used as a tool for diagnosis 
through the application of pattern recognition techniques (for 
example, in Krafczyk et al., 2006). Modeling the posture control task 
could lead to the possibility of designing interventions on the system 
to mitigate the effects of the respective diseases, for example, 
predicting the effect of known drugs on the specific condition, as 
presented in Glasauer and Rössert (2008).

5 Summary and outlook

The purview of this study was to establish a model of head 
stabilization control, separating characteristic features of PSP and IPD 
disease versus healthy controls based on averaged group data. This 
model illuminates differential central neural strategies and deficits 
between disease entities and may aid in refining robotics stability.

Future work will focus on adapting the present averaged group 
model to interpret variance in individual subject trials with known or 
unknown disease status. Adaptation to individual trials can be used to 
describe alterations of parameters during long-term progression of 
neurodegenerative disease and possible influence of therapeutic 
attempts, possibly discovering new subsets of parameters affected 
particularly during disease progression. Implementation should allow 
for immediate data interpretation after individual trials in conjunction 
with other studies, e.g., imaging and biobanking.
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