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Dynamic changes in large-scale 
functional connectivity prior to 
stimulation determine 
performance in a multisensory 
task
Edgar E. Galindo-Leon *, Karl J. Hollensteiner , Florian Pieper , 
Gerhard Engler , Guido Nolte  and Andreas K. Engel 

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany

Complex behavior and task execution require fast changes of local activity and 
functional connectivity in cortical networks at multiple scales. The roles that 
changes of power and connectivity play during these processes are still not well 
understood. Here, we study how fluctuations of functional cortical coupling across 
different brain areas determine performance in an audiovisual, lateralized detection 
task in the ferret. We hypothesized that dynamic variations in the network’s state 
determine the animals’ performance. We evaluated these by quantifying changes 
of local power and of phase coupling across visual, auditory and parietal regions. 
While power for hit and miss trials showed significant differences only during 
stimulus and response onset, phase coupling already differed before stimulus 
onset. An analysis of principal components in coupling at the single-trial level 
during this period allowed us to reveal the subnetworks that most strongly 
determined performance. Whereas higher global phase coupling of visual and 
auditory regions to parietal cortex was predictive of task performance, a second 
component revealed a reduction in coupling between subnetworks of different 
sensory modalities, probably to allow a better detection of the unimodal signals. 
Furthermore, we observed that long-range coupling became more predominant 
during the task period compared to the pre-stimulus baseline. Taken together, 
our results show that fluctuations in the network state, as reflected in large-scale 
coupling, are key determinants of the animals’ behavior.
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Introduction

The brain continuously integrates information from different sensory systems enhancing 
its ability to filter noisy signals, to construct coherent percepts and guide appropriate actions 
(Stein and Meredith, 1993; Alais et al., 2010; Green and Angelaki, 2010; van Atteveldt et al., 
2014). Such processes require the flexible and coordinated orchestration of distributed 
neuronal populations within and across brain areas (Singer and Gray, 1995; Engel et al., 2001; 
Fries, 2005; Senkowski et al., 2008; Siegel et al., 2012). Numerous studies have shown that this 
orchestration relies mostly on three modes of intrinsically generated coupling: synchronization 
of neural phase, the correlation of amplitude envelopes and the coupling between phase and 
amplitude (Siegel et al., 2012; Raichle, 2010; Canolty and Knight, 2010; Engel et al., 2013; 
Galindo-Leon et al., 2019). In addition, these coupling modes operate in multiple frequency 
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bands and scales, mediating different cognitive functions (Engel et al., 
2001; Fries, 2005; Siegel et  al., 2012; Buzsaki, 2006; Jensen and 
Mazaheri, 2010; Varela et  al., 2001; Engel and Fries, 2010), and 
providing different channels for long-range communication (Bastos 
et al., 2015; Michalareas et al., 2016). Phase coupling, in particular, has 
been suggested to serve the routing of information through cortical 
networks and to promote selective communication between distant 
brain areas (Engel et al., 2001; Fries, 2005; Womelsdorf and Fries, 
2007), as well as to mediate stimulus selection and prediction (Engel 
et al., 2001; Fries, 2005; Engel and Fries, 2010; Michalareas et al., 2016; 
Lima et al., 2011). However, how phase coupling supports the brain 
communication across scales, and how it relates to behavior, is not 
well understood.

A natural scenario to test the role and mechanisms of phase 
coupling in brain dynamics at multiple scales are multisensory tasks. 
In the human brain, studies of multi-scale network dynamics have 
remained challenging although substantial advances have been made 
using non-invasive methods such as EEG or MEG. In particular, only 
a few studies have addressed the relation between phase coupling and 
multisensory processing (Keil et al., 2014; Giordano et al., 2017). In 
animal studies, the potential role of functional connectivity involved 
in multisensory processing has so far been investigated only by 
multielectrode recordings from the same cortical areas (Lakatos et al., 
2007; Kayser et al., 2008) or by simultaneous recordings from at most 
two different regions (Ghazanfar et  al., 2008). Short-range neural 
interactions are well established at the level of microcircuits (Coulter 
et al., 2011; Bastos et al., 2012; Feldmeyer et al., 2013). Invasive studies 
on functional connectivity between distant population in behaving 
animals typically have recorded simultaneously only from relatively 
small numbers of sites (Womelsdorf and Fries, 2007; Gregoriou et al., 
2009; Miller and Buschman, 2013; Liebe et  al., 2012; Salazar 
et al., 2012).

Electrocorticographic (ECoG) arrays offer an option to study 
simultaneously the relation between multiple-scales of network 
dynamics and behavior (Bastos et al., 2015; Bockhorst et al., 2018; 
Rubehn et al., 2009; Stitt et al., 2017). Because of their bio-compatibility 
and recording stability, they have been used for the study of functional 
connectivity in networks underlying cognitive and sensorimotor 
functions (Crone et al., 2006; Bosman et al., 2012; Keller et al., 2014; 
Fukushima et al., 2015; Lewis et al., 2015) in humans (Canolty and 
Knight, 2010; Fox et al., 2018), monkeys (Bastos et al., 2015; Bosman 
et al., 2012) and rodents (Toda et al., 2018). Furthermore, small-sized 
ECoG electrodes can provide local information at the level of cortical 
columns (Bockhorst et al., 2018; Baratham et al., 2022) which, when 
distributed across distant regions in an array, provide a unique 
opportunity to study the interaction between local and global 
cortical dynamics.

Here, we investigated how changes in functional connectivity and 
power, indicative of global and local dynamics, respectively, determine 
the detection of multisensory stimuli. We  hypothesized that in a 
multisensory detection task the functional coupling between 
modalities, rather than local power, determines the performance. 
We tested this hypothesis in a large-scale cortical network involving 
visual, auditory, somatosensory and parietal areas using a custom-
made 64-channel ECoG array in behaving ferrets. Animals were 
trained in a 2-alternative-forced-choice paradigm to detect brief 
auditory and visual stimuli presented either left or right from the 
midline. A key finding of our study is that phase coupling of visual and 

auditory regions with parietal cortex was predictive of task 
performance. Our results suggest that fluctuations in the networks 
state, particular with respect to long-range connectivity, are decisive 
for the response of the upcoming task during multisensory processing.

Materials and methods

Animals

All experiments were approved by the independent Hamburg 
state authority for animal welfare (BUG-Hamburg) and were 
conducted in accordance with the guidelines of the German Animal 
Protection Law. Data were recorded in four adult female ferrets 
(Mustela putorius furo; Euroferret, Dybbølsgade, Denmark) aged 2 
and 4 years (n = 2 each). Animals were individually housed in 
standard ferret cages equipped with an enriched environment, under 
controlled conditions (21°C, 12-h light/dark cycle, with lights on at 
8:00 a.m.). The animals had ad libitum access to food pellets, while 
access to tap water was restricted for 8 h prior to the experiments and 
training procedures. All behavioral testing was conducted during the 
light cycle, specifically between 10:00 a.m. and 2:00 p.m. The animals 
were treated with a deslorelin acetate (4.7 mg implant) chip to control 
their ovarian activity (Proháczik et al., 2010). Animals were trained on 
a two-alternative forced-choice task, described in detail below, 
involving lateralized detection of visual and auditory stimuli that 
we  have established previously (Hollensteiner et  al., 2015). After 
completion of all recording sessions (for details, see below), animals 
were euthanized in deep anesthesia with a lethal dose of pentobarbital 
(400 mg/kg i.p.). Subsequently, animals were transcardially perfused 
with fixative (4% paraformaldehyde in phosphate-buffered saline) and 
brains were removed for histological processing.

Sensory stimuli

All experiments were carried out in a dark sound-attenuated 
chamber (Acoustair, Moerkapelle, Netherlands). Visual and auditory 
stimuli were generated with the Psychophysics Toolbox (Brainard, 
1997). Visual stimuli were presented on an LCD monitor (Samsung 
SyncMaster 2233, frame rate 100 Hz) placed 20 cm in front of the 
animal. Auditory stimuli were generated digitally with a sample rate 
of 96 kHz and delivered through two Beyerdynamic T1 speakers. 
Auditory stimuli consisted of white noise bursts of 100 ms duration, 
including 5 ms cosine rise/fall, presented with intensities between 2 
and 62 dB SPL. Visual stimuli consisted of circular gratings (22.5°, 
0.2 cycles/°, 5 Hz) with Michelson contrast (Cm) between 0 and 0.38. 
A static random noise pattern located in the center of the screen was 
presented to indicate trial onset by a decrease in contrast (not overall 
luminance). Multisensory stimuli consisted of both stimulation types 
presented simultaneously.

Training

Initially, ferrets were handled and accustomed to a housemade 
flat-bottomed tube, which served as the animals’ enclosure during the 
experiment. Figure 1A shows a schematic of the experimental setup. 
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Subsequently, animals were trained in the spatial detection task, 
during which the unimodal as well as crossmodal psychophysical 
thresholds were estimated. In the task, we used a crossmodal approach 
that bears on established unimodal training paradigms (Nodal et al., 
2008). Animals were restricted from access to water for a period of 8 h 
before the measurements, and conditioned by using water rewards 
during the task. In the first phase of the study, the animals were 
trained to detect unimodal auditory and visual stimuli presented in a 
randomized fashion. Auditory and visual unimodal detection 
thresholds were determined using 20 different stimulus amplitudes 
(auditory: 2–62 dB SPL; visual: 0–0.38 Cm) in a 1 down/3 up staircase 
procedure (Kaernbach, 1991). Next, unimodal and bimodal thresholds 
were assessed in a combined approach, using the previously 
determined unimodal thresholds to adjust the test parameters (for 
details of the procedure see Hollensteiner et al., 2015). Subsequently, 
the ferrets were accustomed to electrophysiological recordings during 
the detection task with a reduced set of stimulus amplitudes (eight per 
modality), adjusted to the individual psychometric functions to 
acquire a higher number of trials in the performance range of interest 
around 75% accuracy.

Detection task

The trial schedule of the detection task is shown in Figure 1B. To 
initialize a trial, the ferret had to maintain a central head position to 
break the central light-barrier for 500 ms. This caused the static 
random noise pattern in the center of the screen to decrease in 
contrast informing the animal that the window for stimulus 
presentation (from 0 to 1,000 ms after trial onset) had started. During 
this interval, the animal had to further maintain its central head 
position. A stimulus was presented for 100 ms on either the left or the 
right side. Stimulus presentation could be  unimodal visual (“V”), 
unimodal auditory (“A”) or a temporally congruent bimodal 
combination of an auditory and a visual stimulus presented on the 

same side. This combination either consisted of a variable auditory 
stimulus accompanied by a visual stimulus of constant contrast (“Av”) 
or, conversely, a visual stimulus of varying contrast supported by an 
auditory stimulus of constant amplitude (“Va”). The intensity value of 
the accompanying second stimulus with constant amplitude was set 
at a level of 75% accuracy. After stimulus offset, the animal had to 
respond within 700 ms by moving its head to the stimulated side; 
otherwise, the trial was considered as a miss (no response). If the 
response was correct the animal received a water reward (~80 μL) 
from a spout at the stimulus position and could immediately start the 
next trial. If the response occurred prematurely (before stimulus onset 
or within 100 ms after stimulus onset), was incorrect (wrong side) or 
omitted, the trial was immediately terminated, followed by a 2,000 ms 
interval during which no new trial start could be initialized.

ECoG array implantation

Micromachining technology (Rubehn et al., 2009) was used to 
design and implement an ECoG array that matched the anatomy of 
the ferret brain (Figures 2A,B). The thin-film (10 μm) polymide-foil 
ECoG contained 64 platinum electrodes with a diameter of 250 μm 
each, arranged in a hexagonal formation at an inter-electrode distance 
of 1.5 mm (Figures 2C,D).

The surgical procedure for the implantation of the ECoG array 
started with the induction of general anesthesia by using a ketamine-
medetomidine mixture (10 mg/kg and 1 mg/kg, respectively). During 
surgery, anesthesia was maintained by ventilating the animal with 
isoflurane (1–1.5%) in combination with 70% N20 and 30% O2. To 
monitor the state of anesthesia, physiological parameters such as the 
electrocardiogram (ECG) and rectal temperature were monitored 
throughout the surgery. All surgical procedures were performed under 
sterile conditions. After the operating field was prepared, a craniotomy 
was performed using a saline-cooled ultrasonic microsaw (Mectron) 
in order to expose the posterior half of the left cerebral hemisphere. 

FIGURE 1

Experimental setup and lateralized detection task. (A) Schematic of the experimental setup in a top view: (a) LCD-screen, (b) speakers, (c) three light-
barrier-waterspout combinations (left, center, right; the red dot indicates a broken light-beam), (d) pedestal. (B) Sequence of events in a single trial: 
(I) inter-trial window, (II) baseline window, (III) delay window, (IV) stimulus window, and (V) response window. The three circles below each frame 
represent the state of the light-barriers (white = unbroken, red = broken). The center of the screen displays a static circular random noise pattern.

https://doi.org/10.3389/fnsys.2025.1524547
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Galindo-Leon et al. 10.3389/fnsys.2025.1524547

Frontiers in Systems Neuroscience 04 frontiersin.org

The dura was carefully removed and the ECoG array was gently placed 
on the surface of the cortex such that it covered occipital, temporal and 
parietal areas (Figure 2D). The dura was then folded back over the 
ECoG array and an absorbable artificial dura was placed above the 
ECoG, covering the trepanation to full extent. The excised piece of 
bone was fixed back in place with titanium plates and screws and 
subsequently the gaps were filled with fast set absorbable bone putty. 
Finally, the ECoG’s connector was placed on top of the skull and fixed 
in place with titanium screws and dental acrylic. After the surgery, the 
animals received analgesic (carprofen, 2.5 mg/kg) and antibiotic 
(enrofloxacin, 5 mg/kg) medication. The animal was allowed a recovery 
period of a minimum of 8 weeks post-surgery. Throughout this post-
operative phase, body weight and behavioral patterns were closely 
monitored. Regular handling sessions were maintained to ensure the 
animal remained habituated to the experimental setup. To align 
electrode positions across animals, the ECoG array placement and the 
cortical parcellation introduced by Bizley et al. (2007) was utilized 
(Figure 2B). For each animal, the exact ECoG array position over the 
posterior cortex was photographically documented during surgery. The 
locations of all 64 ECoG electrodes were then projected onto a scaled 
illustration of a ferret model brain. Each electrode was then mapped to 
the underlying cortical area.

Electrophysiological recording and 
preprocessing

Local field potentials (LFPs) were digitized at 1.4 kHz and sampled 
simultaneously with a 64-channel AlphaLab SnR recording system 

(Alpha Omega Engineering, Israel). The high pass filter was set at 
0.1 Hz and the low pass filter at 357 Hz.

To ensure comparability across animals and modalities, only 
recording blocks with an accuracy of 75 ± 10% were considered in all 
electrophysiological analyses. Furthermore, this selection of trials 
ensured better comparability between all four modalities because the 
value that was fixed during the bimodal stimulation was set at a level 
of 75% accuracy for all stimulation amplitudes. To assess a sufficient 
amount of trials with stimulus presentation contralateral to the 
implanted hemisphere per modality in the 75% accuracy range, trials 
collected on different days were pooled; (see Hollensteiner et al., 2015) 
for non-stationarity effects across sessions.

All offline data analysis was performed using custom scripts in 
Matlab (The Mathworks Inc., MA). The hardware-filtered LFP signals 
were band-pass filtered with a phase-preserving fourth-order 
Butterworth filter between 2 and 200 Hz. Next, band-stop Butterworth 
filters at 49–51, 99–101 and 149–151 Hz were applied to notch the line 
noise. Subsequently, the continuous LFP signals were cut into epochs 
aligned to trial, stimulus and response onset, respectively. In each of 
these analysis time windows data were cut from 500 ms pre- to 500 ms 
post-onset, with 500 ms real data padding on each side to prevent edge 
artifacts in frequency space. Afterwards, we  applied independent 
component analysis (ICA) (Hyvärinen and Oja, 2000) to the 
concatenated analysis window data in order to detect and remove 
ECG, muscle and eye blink artifacts. Next, we re-referenced the LFP 
time series of each ECoG contact with the LFP time series of its next 
posterior neighbor. This processing step created 55 virtual electrodes 
from the 64 recorded contacts. The new virtual electrode was located 
in the midpoint between both real electrode positions. Subsequently, 

FIGURE 2

ECoG recordings from the ferret brain. (A) Lateral view of the left hemisphere. Lines depict sulci in the posterior part of the hemisphere. (B) Anatomical 
organization of the posterior part of the ferret brain (adopted from Bizley et al., 2007). (C) Schematic of the implanted ECoG (contact spacing: 1.5 mm; 
ø: 250 μm). (D) In-situ picture of the ECoG array over the left posterior hemisphere during implantation. LS, lateral sulcus; SSS, suprasylvian sulcus; S2, 
secondary somatosensory cortex; PPr/c, rostral/caudal posterior parietal cortex; 17, 18, 19, 20, 21, early and higher-order visual cortex; SSY, 
suprasylvian field; A1, primary auditory cortex; AAF, anterior auditory field; ADF, anterior dorsal field; PPF, posterior pseudosylvian field; PSF, posterior 
suprasylvian field. (B–D) Adapted from Stitt et al. (2017).
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the oscillatory signal components of unimodal and bimodal trials 
were analyzed using spectral decomposition.

Spectral power analysis

Channel-wise spectral power was computed by taking the square 
of the absolute value of the Fourier transform. Spectra were computed 
for all three analysis time windows using a Hanning window approach 
(2–200 Hz, 2 Hz steps, 500 ms window; for the LFP spectrogram the 
window was shifted from –500 ms to 500 ms around the window of 
interest) in 1 ms steps.

Quantification of phase locking

To estimate phase synchronization between ECoG signals, 
we calculated the phase locking value (PLV) (Lachaux et al., 1999) 
across all frequencies (2–200 Hz). In general, the instantaneous phase 
θ  was extracted from the analytic signals that were produced by the 
Fourier transform of the convolution of the ECoG time series with the 
Hanning window. The PLV between channels A and B at carrier 
frequency f  is defined as follows (Equation 1):

 
( ) ( ) ( )( )A B

AB
1

1PLV n n
N i f f

n
f e

N
θ θ−

=
= ∑

 
(1)

For an event related paradigm the circular average of phases is in 
general non-vanishing, and a non-vanishing result using the classical 
definition of PLV does not imply statistical dependence between 
phases in two electrodes. Therefore, we corrected for evoked effects 
and defined the PLV here as Equation 2

 
( ) ( ) ( )( ) ( ) ( )A B A B

ABPLV θ θ θ θ−= −i f f i f i ff e e e
 

(2)

where  denotes average over trials. For an infinite number of 
trials, the PLV defined here vanishes exactly if the phase in electrode A 
and B are statistically independent. To contrast PLV between modalities, 
we first computed the global mean PLV for the same time windows 
selected in the spectral power analysis. Subsequently, the PLV between 
anatomical regions, as defined in Figure 2B, was calculated by averaging 
across all virtual electrodes overlaying the same area. To normalize and 
compare PLV values from hit and miss trials we computed the sensitivity 
index (d′), which is defined by Equation 3:

 ( )
hit miss
2 2
hit miss

d µ µ

σ σ

−
=

+
′

 

(3)

where μ denotes the mean and σ the standard deviation for hit and 
miss trials, respectively.

Principal component analysis of functional 
connectivity

We used a similar approach to that of Leonardi et al. (2013) to 
identify hidden sub-networks during the baseline period that may 
be associated with performance by applying principal component 
analysis (PCA) to trial-based connectivity matrices. To facilitate the 
contrast in the analysis we separated matrices in groups of hits and 
misses. Before applying PCA, the global mean connectivity matrix was 
subtracted from matrices of all trials within each group before 
concatenating all recording sessions. To avoid redundancy we took 
only the lower triangular part of each nxn connectivity matrix 
(excluding elements of the diagonal) and then vectorized it to obtain 
a vector of n(n − 1)/2 elements. The vectors of all animals were 
concatenated along the trial dimension into an array of (n − 1)/2 × T 
elements, with T being the total number of trials. PCA was then 
performed on the resultant matrix. Eigenvectors or principal 
components (PCs) can be understood as features or subnetworks that 
characterize the variation across the collection of correlation matrices 
and represent network patterns. Because these capture connectivity 
patterns they are also called eigenconnectivities (Leonardi et al., 2013). 
Finally, to reduce dimensionality and obtain the main 
eigenconnectivities, matrices were thresholded by the lowest and 
strongest 10% with respect to their mean.

Directionality analysis

To estimate the direction of causal influences we calculated the 
phase slope index PSI (Ψ) (Nolte et al., 2008). PSI is highly robust 
against false estimates caused by confounding factors of very general 
nature, and is defined as Equation 4:

 
( ) ( )imag δ

∈

 
 Ψ = +
 
 
∑ ij ij ij
f F

C f C f f

 
(4)

where ( ) ( ) /ij ij ii jjC f S f S S=  is the complex coherency, S the 
cross-spectral matrix, δf the frequency resolution. F is the set of 
frequencies over which the slope is summed. The complex coherency 
C is a Hermitian matrix and consequently PSI is antisymmetric and, 
hence, directional. Intuiti vely, PSI is the slope (as a function of 
frequency) of the phase difference between two signals averaged 
within a frequency band. The slope is larger, when the time lag 
between the signal and the coupling increases. The sign depends on 
which signal is earlier. It is constructed such that it vanishes (apart 
from stastical fluctuations) if the observed signal is an instantaneous 
superposition of independent sources, and the average across 
frequencies is weighted with coupling strength. To normalize Ψ  
we divided it by its standard deviation (Equation 5)

 ( )std
Ψ

Ψ =
Ψ





ij

 
(5)

estimated by the jackknife method. The acquired PSI matrices 
were thresholded equivalently to the eigenconnectivity matrices and 
their sign was extracted.
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Results

To investigate neural responses and task-related fluctuations of 
functional connectivity, we recorded local field potentials (LFPs) via 
64-channel ECoG arrays chronically implanted in four adult 
female ferrets.

Multisensory effects on behavior

Before the electrophysiological recordings were conducted, a 
psychometric evaluation was performed on each animal to determine 
the stimulus parameters (see Methods). Figures 3A,B show examples 
of psychometric functions fitted to the behavioral data for the A and 
Av, and for the V and Va conditions, respectively. For further analysis, 
data were taken only from trials with stimulus intensities at threshold 
to allow comparisons across conditions and animals (Figures 3A,B).

Reaction times (RT) have been broadly used to quantify 
differences between unimodal and multisensory stimulation. A t-test 
was run to investigate the differences between bi- and unimodal 
conditions. Responses to bimodal stimulation were, on average, faster 
than those to unimodal stimulation (p < 0.05). To evaluate whether 
this effect was driven by the auditory or the visual condition, 
we computed a one-way analysis of variance (ANOVA) on the mean 
RT of each animal and condition, with sensory modality as a main 
factor. This revealed a main effect of condition [F (3, 12) = 5.3, 
p < 0.05], but post hoc t-tests only revealed significant differences 
between the A-trials and both bimodal conditions. The population 
averages of RTs for Av, Va and V were not significantly different 
(Figure 3C). Nevertheless, the population mean RT of V (0.207 s) was 
slightly higher than both, Va (0.194 s) and Av (0.197 s). The significant 
difference between the RTs in the A and the Av condition suggest a 
multisensory interaction effect leading to reduction in RT for the 
bimodal stimulation. However, our data do not suggest a substantial 
improvement of visual detection by a concurrent auditory stimulus.

LFP power reflects stimulus processing and 
response preparation

A major aim of our analysis of the electrophysiological data was 
to test the relation of power and functional connectivity to task 
performance by contrasting hit and miss trials. In the hit trial group, 
we included all trials with stimulus intensities around 75% threshold 
and stimulation contralateral to the implanted ECoG (265 ± 14 hit 
trials per animal). To match the number of hit trials we used all miss 
trials (236 ± 45 miss trials per animal) throughout all sessions (15 ± 2 
sessions per animal). Miss trials were defined as those with sensory 
stimulation that did not elicited a behavioral response, i.e., the ferret 
maintained the centered head position throughout the response 
window. The number of false responses, i.e., orientation of the ferret 
to the side contralateral to the sensory stimulation, were too few and 
highly variable across animals (104 ± 58 false responses per animal) 
and, thus, were not considered for analysis of the 
electrophysiological data.

We checked whether the spectral characteristics of LFPs 
immediately before task execution predicted the animal’s performance. 
To assess how LFP spectral characteristics evolve during hit, miss and 
bi- and unimodal stimulation, we computed the power across time 
windows aligned to baseline, stimulus presentation and response 
onset for each animal individually (Figure 4). Results of all animals 
were pooled after correction for different trial numbers. Power 
differences between hit and miss trials were analyzed in the theta 
(4–8 Hz), alpha (8–16 Hz), beta (18–24 Hz), gamma (30–80 Hz) and 
high-gamma (80–160 Hz) frequency band across the analysis time 
windows (Supplementary Table S1). In addition, one-way ANOVAs 
were calculated on power values within each frequency band with 
condition as the main factor to examine differences related to stimulus 
type (Supplementary Figure S1 and Supplementary Table S1).

Figure 4A illustrates the grand average spectra, while Figure 4B 
shows the time-frequency representation of power changes during 
each time window (baseline, stimulus and response onset) for both hit 

FIGURE 3

Trial selection for electrophysiological analysis and corresponding RTs. (A) Example data for task performance from one ferret. The plot shows 
psychometric functions for the uni- and bimodal condition. Stimulus response function fitted to performance data for the eight different stimulus 
intensities for the unimodal auditory condition (A) and the condition where the variable auditory stimulus was accompanied by a visual stimulus of 
constant contrast (Av). The dot diameter indicates the number of trials at a given stimulus intensity. The green ellipse indicates the stimulus intensity 
range around 75% performance from which trials were selected for subsequent analysis. The unmasked parts of the graphs indicate the range of the 
actually tested stimulus amplitudes. (B) Data from the same animal as shown in A for the unimodal visual condition (V) and the condition where the 
variable visual stimulus was accompanied by an auditory stimulus of constant intensity (Va). (C) Reaction times (mean ± standard deviation) for the four 
different conditions for the selected trials. The four different shapes (circle, diamond, cross, star) represent the single trial RT of each animal. Error bars 
indicates the mean RT ± STD across animals. Black asterisks indicate significant differences between modalities or pooled data from bimodal (Va and 
Av) and unimodal (A and V) stimulus pairs (brackets).
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and miss trials. During the baseline, only the high-gamma frequency-
band (80–160 Hz) showed moderated but significant differences, with 
higher power for miss trials (p < 0.05; FDR corrected). Comparison of 
the average spectra in the stimulus onset analysis window showed 
significant reductions for hit and miss trials in the gamma frequency-
range (30–160 Hz) compared to baseline (Supplementary Table S1). 
However, hit trials showed significantly higher power compared to 
miss trials after stimulus onset in both gamma (p < 0.001) and high-
gamma (p < 0.001) frequency bands (Figure 4A). Around response 
onset, hit trials consistently showed significantly higher power 
compared to miss trials in the theta- (p < 0.01), alpha- (p < 0.01), 
gamma- (p < 0.001) and high-gamma band (p < 0.001). Statistical 
comparison across time windows within hit- and miss-trials revealed 
significant decrease and increase in the gamma frequency range 
compared to baseline and stimulus onset, respectively 
(Supplementary Table S1; all p-values, within and across windows of 
interest, FDR corrected).

Supplementary Figure S2 shows the topographies of the respective 
spectral differences between hit and miss trials. In the baseline 
window, power topographies showed high spatial uniformity across 
all frequency bands. Around stimulus onset, notable differences 
occurred mainly in the beta band where, in hit trials, higher beta 
power differences occurred in parietal areas. The highest regional 
differences occurred in the response window. Occipital regions 
exhibited higher power across all frequency bands during response 
onset in miss trials compared to hit trials. In contrast, auditory and 
parietal areas showed increased power in lower frequency bands 
(theta and alpha) for hit trials. An increase of gamma band power 
occurred in the response window for hit trials in regions around the 
lateral sulcus (Supplementary Figure S2).

To investigate stimulus-type dependent effects within hit-trials a 
one-way ANOVA between the four conditions (Av, Va, A and V; 

Supplementary Figure S1 and Supplementary Table S1) was calculated. 
It showed no main effect in the factor condition across frequency 
bands during baseline, stimulus or response onset. This suggests that 
power changes related to stimulus processing and response 
preparation did not depend on the modality of the presented stimulus 
or on crossmodal interactions.

Functional connectivity predicts 
performance

To determine whether functional connectivity predicts the 
animals’ performance we  computed the PLV between all pairs of 
ECoG channels for the different frequency bands. PLV analysis 
corrected for evoked effects was performed for the same time windows 
as the power analysis: aligned to baseline, stimulus and response 
onset. Figure 5 displays the population average PLV spectra for all hit 
and miss trials as well as the difference between hits and misses 
(Figure  5B) and the relative spectral changes in the stimulus and 
response onset window relative to baseline (Figure 5B). Paired t-tests 
were applied between hit and miss trials within and across all time 
windows for each frequency band separately. Within each analysis 
window, significantly higher PLV was observed for hits compared to 
miss trials in all frequency bands, with exception of the theta band 
during response onset (p < 0.05, FDR corrected; Figure 5A).

When compared to the baseline time window, PLV was 
significantly reduced in the stimulus and response onset windows in 
nearly all frequency bands. Exceptions were in the theta frequency 
band for miss trials around stimulus as well as response onset.

A one-way ANOVA within analysis time windows and frequency 
bands with stimulus condition as the main factor revealed significant 
differences in PLV between stimulation conditions (Av, Va, A and V; 

FIGURE 4

Spectral power analysis of pooled hit and miss trials. (A) Grand average power spectra for all hit (green) and miss (red) trials ± standard error of the 
mean (SEM). For the baseline window absolute power is shown. Note that for the time windows around stimulus and response onset, the spectral 
changes shown are relative to the baseline window. Asterisks indicate significant differences between hits and misses within the specified frequency 
band (FDR corrected). Labels indicate theta, alpha, beta, gamma and high-gamma band, respectively. (B) Time-frequency representation of power in 
the three analysis time windows, expressed as change relative to baseline before trial onset for all hit and miss trials. The vertical line represents trial, 
stimulus and response onset, respectively.
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Supplementary Figure S3). During the baseline period there were no 
significant effects in the main factor condition in the theta frequency 
band [F (3, 44) = 2.46, p > 0.05]. However, starting with the alpha [F 
(3, 76) = 4.98, p = 0.003], beta [F (3, 60) = 3.71, p = 0.016], gamma [F 
(3, 412) = 31.89, p < 0.001] and high-gamma [F (3, 652) = 56.99, 
p < 0.001] frequency bands, there was a main effect of conditions. This 
effect persisted also for the windows around stimulus onset [theta: F 
(3, 44) = 1.23, p > 0.05; alpha: F (3, 76) = 3.74, p = 0.015; beta: F (3, 
60) = 3.5, p = 0.021; gamma: F (3, 412) = 26.12, p < 0.001; high-
gamma: F (3, 652) = 55.67, p < 0.001] and response onset [theta: F (3, 
44) = 2.31, p > 0.05; alpha: F (3, 76) = 3.63, p = 0.017; beta: F (3, 
60) = 3.67, p = 0.017; gamma: F (3, 412) = 25.12, p < 0.001; high-
gamma: F (3, 652) = 51.24, p < 0.001]. Furthermore, post-hoc t-test 
confirmed a constant pattern of significant differences between 
conditions (Supplementary Table S2). In particular, for hit trials 
connectivity was higher in the A and Av conditions than in the V 
condition, and there was a trend for connectivity in bimodal Va trials 
to be higher than in unimodal V trials (Supplementary Figure S3).

Taken together, in contrast to the power, the PLV revealed 
significant differences between hit and miss trials. These differences 
occurred over a broad range of frequencies across all analysis time 
windows. These results suggest that large-scale phase-fluctuations in 
network state are determinant to the animals’ performance.

Large-scale coupling shows specific 
changes during the task

To examine functional connectivity in relation to the topography 
of cortical areas, we assigned the data of each ECoG contact to a 
distinct region based on the functional map of cortical areas from 
Bizley et  al. (2007) (see Methods) and constructed functional 
connectivity matrices accordingly (Figure  6). Cortical areas were 
grouped in three functional systems, comprising visual (areas 17, 18, 

19, 20, 21), auditory (areas A1, AAF, ADF, PPF and PSF), and parietal 
areas (SSY, PPc, PPr, S2). Differences between hit and miss trials were 
expressed using the sensitivity index (d′).

In line with the grand average PLV results, the connectivity 
matrices generally displayed positive d′ values and, thus, higher 
functional connectivity for hit compared to miss trials (Figure 6). This 
effect was most prominent during the baseline window and decreased 
during the stimulus presentation. For the alpha, gamma and high-
gamma band, the PLV difference between hit and miss trials increased 
again in the response window. Generally, connections between early 
sensory cortices and parietal cortex displayed the highest differences 
between hit and miss trials, in particular during the baseline window 
(Figure 6; Supplementary Figure S5).

Eigenconnectivity reveals subnetworks 
related to performance

We asked whether the trial-to-trial fluctuations in functional 
connectivity during the baseline period could affect the animal’s 
performance. We first identified the subnetworks that most strongly 
contributed to fluctuations during the baseline across trials. To find 
the intrinsic structure in the patterns of connectivity, we  applied 
principal component analysis (PCA) to functional connectivity 
matrices for hits and misses along the trial dimension (see Methods). 
We focused on a subset of areas (18, 19, 21, PPc, PPr, A1, and AAF) 
from the recorded functional systems for the analysis of task-related 
subnetworks to reduce dimensionality.

Figure 7 shows eigenconnectivity patterns in the beta and gamma 
bands for hit and miss trials in the first and second PCs. Only those 
connections which had the smallest and the largest fluctuations of 
functional connectivity in the baseline window are displayed 
(complete matrices and explained variance for PCs 1–6  in all 
frequency bands are shown in Supplementary Figure S4). PC1 did 

FIGURE 5

Grand average of functional connectivity for hit and miss trials. (A) Grand average phase locking value (PLV) for all hit (green) and miss (red) trials for the 
analysis time windows (baseline, stimulus and response onset). (B) Differences between hits and misses for the three analysis windows and changes of 
PLV around stimulus and response onset, expressed as changes relative to the baseline window. Asterisks indicate significant differences between hits 
and misses within the specified frequency band (p < 0.05, FDR corrected). Labels in A denote theta, alpha, beta, gamma and high-gamma band, 
respectively.
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not show substantial differences between hits and misses (Figure 7A; 
Supplementary Figure S4). For both hits and misses, the first PC 
revealed that the largest fluctuations occurred between auditory and 
visual areas, and the smallest between visual and parietal cortices. 
Importantly, PC2 revealed substantial differences between hit and 
miss trials. These differences were most prominent in the theta, 

alpha, and beta bands, but also occurred in the gamma band 
(Figure 7B; Supplementary Figure S4). In the beta band, a higher 
fluctuation in functional connectivity between AAF and visual areas 
was a common pattern in miss trials for PC2. A similar pattern was 
shown in the gamma band (Figure  7). In contrast, the highest 
connectivity fluctuations in the beta band for hits were observed 

FIGURE 6

Matrices of functional connectivity across anatomical areas. Cells show population average phase locking values (PLV) for the different frequency 
bands, expressed as d′ for hits vs. misses, for all analysis time windows. Abbreviations as in Figure 2.
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within the visual system. From the third to the sixth components, the 
connectivity fluctuations revealed more complex patterns, with 
increases as well as decreases in both hit and miss trials 
(Supplementary Figure S4). The directionality in Figure  7 and 
Supplementary Figure S4, which was extracted from PSI matrices, 
represents the directionality of the coupling in subnetworks and does 
not necessarily carry information about directionality of 
the fluctuation.

It should be  noted that the eigenconnectivity patterns cannot 
be directly compared to the global connectivity differences between 
hits and misses described in the preceding sections because they 
reflect changes in subnetworks, relative to the average network 
coupling strength, in the two groups of trials. Importantly, our analysis 
shows that changes in connectivity do not occur arbitrarily across the 
network, but are distributed in subnetworks that show specific 
increases or decreases in phase coupling.

Between- and within-system interactions 
differ in their relation to behavior

The topography of functional connectivity changes was further 
analyzed by contrasting between-system and within-system 
interactions (Figure 8; Supplementary Figure S5). A previous study 
from our group showed that this is a suitable classification to 
determine global/local effects associated to changes in brain state 
(Stitt et  al., 2017). For hit trials, interactions between the three 
functional systems were, on average, stronger than functional 
connections within the respective system. Regarding the within-
system connectivity, the auditory system showed the lowest d′. In 
the period from baseline to stimulus onset, the strength of d′ 
decreased across all frequency bands. With response onset the 
spectral profile of d′ became more heterogeneous. In the theta-band 
d′ decreased further, whereas it remained unaltered in the 

FIGURE 7

Eigenconnectivity (EC) of hit and miss trials for the baseline window. Depicted are EC networks for beta and gamma of the first two PCs, which 
together explain 42 and 32% of the variance in the PCA for hits and misses, respectively. Green and red arrows represent hit and miss networks, 
respectively. Thick solid lines indicate the upper 10%, and thin dashed lines the lowest 10% of connections in the EC distribution. Arrowheads indicate 
the direction of information flow extracted by PSI. Colored circle segments represent the three functional systems (visual = magenta; parietal = blue; 
auditory = orange). Note that EC matrices for the first six PCs with all connection are shown in Supplementary Figure S4. Abbreviations as in Figure 2.

https://doi.org/10.3389/fnsys.2025.1524547
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Galindo-Leon et al. 10.3389/fnsys.2025.1524547

Frontiers in Systems Neuroscience 11 frontiersin.org

beta-band, and increased in the alpha-, gamma- and high-
gamma band.

For statistical analysis, we averaged PLV d′ values and derived the 
difference of d′ values between long-range (between-system) and 
short-range (within-system) connectivity and calculated statistics 
across analysis time windows for each frequency band (Figure 8; for 
statistics across systems and within analysis time windows and 
frequency see Supplementary Figure S5; for condition specific 
statistics see Supplementary Figure S6). To reveal dynamic effects 
within frequency bands of interest a one-way ANOVA with time 
window as the main factor was computed. There was no main effect 
in the theta band [F (2, 6) = 4.39, p > 0.05]. The ANOVA exposed 
significant effects for the main factor time window alpha [F (2, 
12) = 17.17, p < 0.001]; beta [F (2, 9) = 14.43, p = 0.002]; gamma [F (2, 
75) = 3.71, p < 0.001]; high-gamma [F (2, 120) = 17.94, p < 0.001]. 
Post hoc t-tests revealed significant differences between baseline and 
stimulus onset for all frequency bands with the main effect (alpha: 
p = 0.011; beta: p = 0.002; gamma: p < 0.001; high-gamma: p < 0.001), 
between stimulus and response onset for the gamma frequency range 
(gamma: p = 0.009; high-gamma: p < 0.001) and between baseline and 
response onset in the alpha- (p < 0.001) and beta- (p = 0.006) 
frequency bands (Bonferroni corrected).

Overall, comparison of functional connectivity between and within 
cortical systems across the different analysis time windows revealed that 
between- compared to within-system connectivity was stronger during 
the task period compared to the pre-stimulus baseline. In hit-trials, 
phase coupling was higher between systems in the gamma frequency 
range during stimulus onset compared to baseline and response onset. 
Furthermore, low frequency (alpha and beta) coupling between systems 
increased around response onset in hit trials compared to miss trials. 
These results suggest that fluctuations in the network state, particularly 
with respect to long-range connectivity, are related to task performance.

Discussion

This study has aimed at investigating the cortical network 
dynamics at multiple spatial scales and subnetworks. We hypothesized 
that in tasks that involve multiple distant modalities the functional 
connectivity, rather than the local activity, becomes a main determinant 
for performance. We  addressed this question in an audiovisual 
detection task in ferrets. We used an ECoG approach to record a large-
scale network comprising visual, auditory, somatosensory and parietal 
areas in behaving animals over extended time periods.

In line with our hypothesis, our data show that pre-trial baseline 
connectivity predicts the animals’ performance, suggesting that 
fluctuations in coupling across the network lead to variability in 
behavior. In contrast, mean power in the pre-trial baseline was not 
associated to performance. Analysis of the topography of connectivity 
differences between hits and misses revealed specific patterns, 
reflecting different functional subnetworks, associated to the response. 
In particular, higher global phase coupling of visual and auditory 
regions to parietal cortex was predictive of task performance, yet a 
reduction in connectivity in certain subnetworks may be necessary for 
distinct functional systems to detect stimuli appropriately. We also 
observed that long-range coupling became more predominant during 
the task period compared to the pre-stimulus baseline and changed its 
spectral profile over the course of the trials.

Relating large-scale connectivity to task 
performance

Among the established functional connectivity measures, 
coherence, in particular, has been associated to cognitive tasks in 
humans involving perceptual selection (Hipp et al., 2011), attentional 

FIGURE 8

Comparison of long-range (between-systems) and short-range (within-system) functional connectivity. (Left) Cortical regions were grouped into visual 
(magenta), parietal (blue), or auditory (orange) systems. PLV was averaged for all pairs of regions that were located within the same system (grey 
arrows) and pairs between systems (red arrows). Subsequently, d′ was calculated for hit and miss trial PLVs. (Right) Differences of between-region and 
within-region PLV (expressed as d′) are plotted as a function of carrier frequencies. Large values indicate higher between-system PLV during hit 
compare to miss trials. Symbols indicate significant differences between baseline and stimulus onset (*), baseline and response onset (o), and stimulus 
onset to response onset (+), respectively.
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selection (Michalareas et  al., 2016; Siegel et  al., 2008), working 
memory (Brookes et al., 2011) or speech processing (Giordano et al., 
2017; Giraud and Poeppel, 2012). Animal studies have demonstrated 
a relation of long-range phase coupling in various frequency ranges to 
sensorimotor processing, attentional selection and working memory 
(Bastos et al., 2015; Gregoriou et al., 2009; Liebe et al., 2012; Salazar 
et al., 2012; Bosman et al., 2012; Bernasconi et al., 2000; Roelfsema 
et al., 1997; Saalmann et al., 2012).

We found that phase coupling, in contrast to local power, differed 
already between hit and miss trials in the pre-trial baseline. The data 
indicate that stronger phase coupling in the network may lead to 
higher efficiency of stimulus processing and response preparation. 
This is in line with earlier studies that have demonstrated that 
increased synchrony enhances communication across brain areas 
[e.g., in the context of attention (Fries, 2005; Bosman et al., 2012)] 
supporting the role of functional connectivity in linking task-relevant 
modalities to areas involved in selection of responses (Siegel et al., 
2012; Miller and Buschman, 2013). Indeed, we  find that stronger 
phase coupling of early sensory to parietal areas was predictive of 
task performance.

Contrary to earlier studies, our results appear not to correspond 
to the typical vigilance- or attention-related signatures in pre-stimulus 
functional connectivity characterized by increases in high frequency 
and decreases in low frequency bands (Bosman et al., 2012; Siegel 
et al., 2008; Hanslmayr et al., 2007). Although the average connectivity 
differences between hits and misses had a rather broad spectral profile, 
analysis of the ratio between long-range (between cortical systems) 
and local interactions (within cortical systems) revealed spectral shifts 
in this ratio between the task period and the pre-stimulus baseline. 
This result highlights the role of within-area high-frequency coupling 
during stimulus processing, which may reflect stronger bottom-up 
signaling. This could relate to attentional gating, allowing relevant 
information to pass through the network to higher areas. In contrast, 
the predominance of low-frequency interactions in the epoch around 
response onset might indicate stronger top-down information flow 
(Bastos et al., 2015). Alternatively, in that interval of the trial, parts of 
the network could already return to a default state dominated by low 
frequency oscillations. Averaged across areas, spectral differences 
between connections with dominant bottom-up and top-down 
information flows, might level out and, thus, yield the broad spectral 
profile of connectivity changes observed in the present analysis.

Functional connectivity and multisensory 
processing

As discussed above, dynamic functional coupling likely constitutes 
a mechanism for integration of distributed neural signals and sensory 
systems (Singer and Gray, 1995; Engel et al., 2001; Fries, 2005; Arnal 
et al., 2015; Ploner et al., 2017). It has been suggested that similar 
mechanisms might operate for the integration of information across 
different sensory systems. Thus, multisensory interactions might 
involve dynamic coupling of oscillatory signals arising in different 
cortical systems (Senkowski et al., 2008; Talsma et al., 2010). In the 
human brain, the vast majority of studies on neural oscillations and 
crossmodal processing have focused on local power changes, and only 
few investigations have addressed the relation between multisensory 
processing and functional coupling (Keil et al., 2014; Giordano et al., 
2017). Using a data-driven approach for analysis of functional 

coupling in the human EEG, we  could recently demonstrate that 
coherence in networks involving parietal and sensorimotor areas 
predicts performance in a visuotactile matching task (Wang et al., 
2019). Simultaneous recordings from auditory cortex and superior 
temporal sulcus in the monkey have revealed increased coherence 
during congruent auditory and visual stimulation (Ghazanfar et al., 
2008; Maier et al., 2008). While these in-vivo studies investigated 
multisensory interactions only by recordings from the same cortical 
areas or by simultaneous recordings from at most two different 
regions, our study has addressed multisensory networks at a larger 
scale involving visual, auditory and parietal cortical regions. While 
our data clearly demonstrate a relation of functional connectivity to 
task performance, we did not obtain evidence for stimulus-specific 
changes of coupling between visual and auditory areas, resembling 
recent results in anesthetized ferrets (Galindo-Leon et  al., 2019), 
where modification of coupling structure occurred only on longer 
time scales and not in a stimulus-related manner.

The absence of profound connectivity effects related to 
multisensory interaction may relate to the nature of the task used in 
our study, which did not require integration of features across 
modalities, but only the rapid detection of highly transient stimuli. 
Nonetheless, our results on connectivity data support the notion that 
significant functional coupling can occur already between early 
sensory areas, suggesting that multisensory integration can already 
occur at early processing stages and does not solely rely on binding of 
information at higher processing levels (Senkowski et  al., 2008; 
Lakatos et al., 2007; Bizley et al., 2007). This is in line with anatomical 
data suggesting that direct projections from primary auditory to visual 
cortices can enable functional coupling supporting early multisensory 
interactions (Bizley et al., 2015).

Network state and behavioral variability

A key result of our study is that phase coupling differed between 
hit and miss trials already in ongoing activity in the baseline period. 
The local power in this period did not differ between hits and misses. 
Our data suggest that fluctuations in the network state occur which 
lead to variability in the animals’ behavior, and that these state changes 
are primarily reflected in shifts of long-range connectivity, rather than 
changes in the dynamics of local populations. Early studies assumed 
that ongoing neural activity corresponds to noise resulting from 
random signal fluctuations without any functional relevance (Zohary 
et  al., 1994; Shadlen et  al., 1996). However, this view has been 
challenged by evidence showing that ongoing activity carries 
information that can shape sensory and cognitive processing (Engel 
et al., 2001; Galindo-Leon et al., 2019; Keil et al., 2014; Arieli et al., 
1996; Fries et  al., 2001; Busch et  al., 2009). Such fluctuations of 
ongoing activity do not occur only locally, but are strongly 
synchronized across spatially distributed neuronal populations 
(Galindo-Leon et  al., 2019; Stitt et  al., 2017; Steriade et  al., 1996; 
Fischer et al., 2018).

Phase coupling of oscillations in pre-stimulus epochs has been 
shown both in animal and human studies to predict perception 
and performance in cognitive tasks. For instance, studies in 
monkey visual cortex indicate that fluctuations in gamma-band 
phase coupling modulate the speed at which animals can detect a 
behaviorally-relevant stimulus change (Womelsdorf et al., 2006). 
EEG studies in humans provide convergent evidence that 
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pre-stimulus fluctuations in phase coupling can modulate target 
detection (Hanslmayr et  al., 2007). Furthermore, intrinsic 
fluctuations of phase coupling are associated with fluctuations in 
perceptual states in ambiguous stimulus settings. Fluctuations in 
beta-band or gamma-band phase coupling have been shown to 
predict the perceptual state in ambiguous sensory paradigms 
(Hipp et al., 2011; Rose and Büchel, 2005) and decision making in 
near-threshold stimulation regimes (Donner et  al., 2009). Our 
current results corroborate and extend this evidence by showing 
that, at perceptual threshold, detection of the lateralized stimuli 
by the animals is biased by phase coupling in the 
pre-stimulus interval.

A crucial element in our approach is the ability to simultaneously 
monitor numerous cortical areas, enabling us to quantify within-
system and between-system interactions and to characterize these in 
a spectrally resolved manner. Our analysis showed that, in particular, 
long-range connectivity between different functional systems was 
related to successful stimulus detection. This is in line with the 
hypothesis that long-range phase coupling may serve efficient 
transmission of task-relevant information in sensorimotor networks 
(Engel et  al., 2001; Fries, 2005; Womelsdorf et  al., 2007). One 
important finding was that the variations in connectivity patterns 
associated to changes in behavioral performances, do not occur 
arbitrarily along the whole cortex, but in specific subnetworks, which 
were identified by extracting principal components of functional 
connectivity. Whether these subnetworks are associated to a decision 
making network, or rather sensory processing is not clear. However, 
since most of the nodes include primary sensory areas, and the 
connectivity changes occurred before the stimulus was presented, 
we  speculate that the first reason for miss trials is a sub-optimal 
function of stimulus coding.

Our results also support the view that the characterization of 
changes in brain-state strongly benefits from inclusion of connectivity 
analyses. The observation that changes in network state are reflected, 
in particular, in fluctuations of large-scale connectivity, is in line with 
results of other recent studies. In rats (Olcese et al., 2016) has being 
shown that functional connectivity within and between brain areas is 
modulated across behavioral states in a region-specific manner. 
Supportive evidence has been obtained in studies on the human brain 
(He et al., 2008; Supp et al., 2011). Using the same ECoG recording 
approach for the study of ongoing activity, we have observed that 
functional connectivity shows state-dependent reconfiguration which 
can also involve shifts in the ratio between short- and long-range 
interactions (Stitt et al., 2017; Fischer et al., 2018). These findings raise 
the question of possible mechanisms that might modulate large-scale 
functional connectivity in a state- and task-dependent manner. 
Possible candidates are changes in the output of ascending 
neuromodulatory systems (Harris and Thiele, 2011). Phase coupling 
has long been known to be influenced by neuromodulators (Steriade 
et al., 1993). For instance, activation of cholinergic brain stem nuclei 
has been shown to enhance gamma-band phase coupling in cortical 
networks (Munk et  al., 1996). Neuropharmacological evidence 
suggests, furthermore, that noradrenergic brain stem inputs can 
modulate large-scale functional connectivity in cortex (van den Brink 
et al., 2018).

Finally, while the use of ferrets as a model in neuroscience is gaining 
interest in research, the limitations in sample size remain a constraint 
for statistical analysis. Factors in our preparation that may be bolstered 
by small sample sizes include the variability of cortical structure across 

animals, which may, for instance, lead to different numbers of electrodes 
per cortical area, or differences between recording sessions in the same 
animal. To address this limitation, we pooled data from all animals and 
recording sessions to improve our statistical conclusions and discarded 
short sessions where the animal’s motivation was not present. Secondly, 
we employed a detection task to measure the connectivity between 
distant cortical areas. However, we cannot ignore the fact that neural 
activity and functional connectivity can be modulated by attention or 
top-down effects. We  acknowledge that with our recording setup, 
we  were unable to measure top-down contributions or levels of 
attention. Two possibilities to address this in the future would be to 
record activity in the frontal cortex and to use an additional biomarker 
to quantify attention, such as pupillometry. This issue is not minor, as 
top-down signals can modify primary areas (e.g., A1 and V1) by 
introducing common inputs, potentially leading to apparent 
connectivity that does not actually exist. This problem cannot 
be completely eliminated even by excluding zero-phase correlations 
(e.g., with imaginary coherence) or using causality measures. To 
definitively rule out common source artifacts, it would be necessary to 
directly manipulate one of the pathways, for instance through lesion or 
inactivation, but this is currently not part of our approach.

Conclusion

Our study has demonstrated functional coupling across visual, 
auditory and parietal areas during a lateralized detection task in the 
ferret. Analysis of power for hit and miss trials revealed significant 
differences around stimulus and response onset. In contrast, phase 
coupling already differed between hits and misses at baseline, 
suggesting an essential role of large-scale functional connectivity in the 
animal’s ability to perform the task. In particular, higher phase coupling 
of visual and auditory regions to parietal cortex was predictive of task 
performance. We observed that long-range coupling became more 
predominant during the task period compared to the pre-stimulus 
baseline. Taken together, these results suggest that fluctuations in the 
network state, particularly with respect to long-range connectivity, are 
critical determinants of the animals’ behavior. Future studies might 
address the relation to the underlying structural connectivity and the 
mechanisms that give rise to the observed variability of phase coupling.
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