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It has been shown that the choice of preprocessing pipelines to remove contamination 
from functional magnetic resonance images can significantly impact the results, 
particularly in resting-state functional connectivity (rsFC) studies. This underscores the 
critical importance of replication studies with different preprocessing methodologies. 
In this study, we attempted to reproduce the rsFC results presented in an original 
study by Bauer et al. in 2017 on a group of sighted control (SC) and early blind (EB) 
subjects. By using the original dataset, we utilized another widely used software 
package to investigate how applying different implementations of the original 
pipeline (RMin model) or a more rigorous and extensive preprocessing stream 
(RExt model) can alter the whole-brain rsFC results. Our replication study was 
not able to fully reproduce the findings of the original paper. Overall, RExt shifted 
the distribution of rsFC values and reduced functional network density more 
drastically compared with RMin and the original pipeline. Remarkably, the largest 
rsFC effects appeared to primarily belong to certain connection pairs, irrespective 
of the pipeline used, likely demonstrating immunity of the larger effects and the 
true results against suboptimal processing. This may highlight the significance 
of results verification across different computational streams in pursuit of the 
true findings.
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1 Introduction

The emergence of high-dimensional neuroimaging data has given birth to new challenges, 
with concerns being raised in recent years regarding reproducibility and control for biological 
and nonbiological sources of noise in MR-derived signal (Klapwijk et al., 2021; Kriegeskorte 
et al., 2009; Lindquist et al., 2019). While neuroimaging is a useful tool for answering scientific 
questions, decisions are made at each stage of analysis to mitigate sources of potential noise, 
including data collection, choice of spatial and temporal image processing techniques, 
statistical assessment, and order of their application, which can each impact the study 
outcomes. Within the past decade, numerous algorithms have been developed to minimize 
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the effect of contamination of this data from noise and artifacts and 
best practices have been proposed to optimize data collection and 
analysis (Maumet et al., 2016; Nichols et al., 2017; Poldrack et al., 2008, 
2017), although there has yet to be consensus in the field.

Functional magnetic resonance imaging (fMRI) studies, in 
particular, are vulnerable to spurious signals and challenges in 
replicating results. One investigation exposed a large number of 
studies with inflated correlation results between the fMRI blood-
oxygen-level-dependent (BOLD) response and behavioral measures 
(Vul et al., 2009). The questionably large correlations in these studies 
were attributed to the biased methods adopted for correlation analysis. 
Statisticians also probed into some of the widely used fMRI analysis 
packages and discovered that some of these methods in effect inflate 
the rate of false positives (Eklund et al., 2016). FMRI studies are also 
often underpowered (Marek et al., 2022), potentially leading to larger 
type I error and lower positive predictive values (Button et al., 2013). 
These are a few examples of how spurious results in fMRI studies can 
be partially attributed to inappropriate statistical methodologies and/
or inherently low statistical power.

Additional factors rendering fMRI studies prone to poor 
reproducibility are the flexibility in selection and combination of 
analysis techniques and insufficient reporting of detailed procedures 
in design, acquisition, and computation (Poldrack et al., 2008). Earlier 
modeling studies indicated that greater flexibility in design and 
computational approaches is associated with a greater probability of 
false positive errors (Ioannidis, 2005). This is true of fMRI in which 
nearly each study may have a unique analysis pipeline (Carp, 2012a), 
resulting in significant variability in estimates of the strength, location, 
and statistical significance of activations (Carp, 2012b). With the 
emergence of open-source neuroimaging analysis tools, additional 
sources of analytical variability have recently been acknowledged, as 
analysis pipelines for the same overarching procedure are implemented 
differently in nearly each software package (Poldrack et al., 2017). 
Consequently, replicating fMRI studies becomes challenging, as 
algorithm implementation and the ordering of preprocessing steps 
have been shown to influence study results (Carp, 2013; Lindquist 
et al., 2019). As a result, replication studies using a different dataset, 
computational approach, or pipeline are critically important in fMRI 
studies to validate the previously published findings or to reveal 
sources of variability.

In the present replication study, we attempted to reproduce the 
resting-state functional connectivity (rsFC) findings of an original study 
by Bauer et al. (2017). The original work explored the alterations in rsFC 
in a group of subjects with early ocular blindness compared with sighted 
controls. The study reported increased temporal correlations in BOLD 
signal derived from rsFC between inferior frontal and temporal areas, as 
well as a more predominant decrease in correlations between occipital 
and frontal, occipital and somatosensory/motor, temporal and parietal, 
temporal, and frontal cortices and within the temporal in early blind as 
compared to the sighted control. Importantly, some of the works prior 
to this primary study reported decrease in visual-somatosensory and 
visual–auditory rsFC (Bedny et al., 2011; Burton et al., 2014; Striem-
Amit et al., 2015) and increased rsFC in visual-frontal and visual-parietal 
areas following blindness (Burton et al., 2014; Heine et al., 2015; Watkins 
et al., 2012). In our present replication study, by using the dataset utilized 
for the original work, we aimed to repeat the analysis with a different, 
but widely used software package for the analysis of rsFC and to include 
more rigorous handling of the effects of known noise and artifacts. The 

aims of this study are (1) to try replication by using the same 
preprocessing steps as the original study but with different implemented 
algorithms, and (2) to evaluate replicability when using a more extensive 
pipeline than the original study. In our first replication approach, 
we cleaned the data by using the minimal preprocessing procedure 
similar to the original paper. In the second attempt, we incorporated 
some of the main preprocessing and denoising protocols typically 
suggested to reliably prepare the rsfMRI data for rsFC analysis.

2 Materials and methods

2.1 The target of replication

In this replication study, we utilized neuroimaging data acquired 
as a part of the original research article (Bauer et al., 2017). Briefly, 9 
sighted control (SC) and 11 early ocular blind (EB) subjects were 
included in the analysis of rsFC. Anatomical T1W scans (TE = 3.1 ms, 
TR = 6.8 ms, flip angle = 9°, voxel size 0.98 × 0.98 × 1.20 mm, turbo 
spin echo) and one 7 min rsfMRI run (TE = 30 ms, TR = 3,000 ms, 
flip angle = 80°, voxel size 2.75 × 2.75 × 3.00 mm, single-shot EPI) 
were obtained on a 3 T Philips Intera Achieva scanner. Subjects were 
blindfolded and were not guided to perform any directed task within 
the scanner. For each subject, a static fieldmap acquisition was also 
completed (TE1 = 2.3 ms, TE2 = 4.6 ms, TR = 20 ms, flip angle = 10°, 
voxel size 1.02 × 1.02 × 3.00 mm, fast field echo). The experiment was 
approved by the Institutional Review Board at the Massachusetts Eye 
and Ear Infirmary, Boston, MA, United States, and a written consent 
form was obtained from each participant.

By keeping the data identical, we  focused on replicating the 
resting-state functional connectivity results, presented in the original 
paper, using a different set of methodologies. Therefore, this work 
sought to reveal whether the same results are obtained by altering the 
analysis protocol. This replication work also helped us identify a 
coding error in implementing the correction for multiple comparisons 
in the original study. Specifically, we  identified an unintentional 
computational error in the false discovery rate (FDR) calculation used 
in the multiple comparison corrected contrast results presented in 
Figure 3B and Table 4 in the original paper. After applying an updated 
FDR correction to both the replication results and the preprocessed 
data from the original paper, it was found that none of the originally 
reported connections from the contrasts of interest survived the 
multiple comparison correction. Undeniably, the discovery of null 
scientific results and reporting them remains crucial and valuable to 
the advancement of science and thus is just as important as reporting 
the significant results. In addition, it is helpful to communicate the 
uncorrected results, especially to reveal any underlying trends in the 
data (Poline et al., 2006; Poldrack et al., 2008). Consequently, we aimed 
to focus on reproducing the initial uncorrected results presented by 
the primary research article and took a closer look at the influence of 
each pipeline on the effect sizes of interest.

2.2 Differences and similarities between 
the pipelines under study

The original paper reports that analysis was mainly implemented 
by the publicly available software package FSL FEAT v. 6.00 (Jenkinson 

https://doi.org/10.3389/fnsys.2025.1547276
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Nadvar et al. 10.3389/fnsys.2025.1547276

Frontiers in Systems Neuroscience 03 frontiersin.org

et al., 2012) and FreeSurfer v. 5.3.0 (Fischl, 2012) to perform skull-
stripping using BET, static fieldmap correction, realignment and 
temporal regression of motion parameters and their derivatives. The 
rsfMRI data was coregistered to T1W structural scans using 
boundary-based registration (BBR) (Greve and Fischl, 2009) and 68 
parcellations from the Desikan-Killiany atlas (Desikan et al., 2006) 
were reverse transformed into subject-specific space to serve as 
regions of interest (ROIs) using FreeSurfer. A custom MATLAB 
(Mathworks, Natick, MA, United States) script was used to bandpass-
filter the functional data between 0.01 Hz and 0.1 Hz, detrend the 
BOLD signal, calculate Fisher transformed Pearson correlation 
coefficients (z) between each ROI pair and create a 68×68 functional 
connectivity matrix for each subject. Group-level results were created 
by averaging the z values for each connection within each group. 
Between-group contrast maps were computed by applying a 
two-sample t-test to z values of both groups.

We devised two different preprocessing pipelines using the CONN 
toolbox 20.b (Whitfield-Gabrieli and Nieto-Castanon, 2012) to 
replicate the original results, which were generated using FSL v. 6.00 
(Jenkinson et al., 2012). In the first pipeline, we attempted to perform 
steps as similar as possible to the primary paper. We call this the 
replication minimum (RMin) model. In the second pipeline, 
we  incorporated a more comprehensive set of processing steps, 
strongly recommended for rsfMRI data (Andersson et  al., 2001; 
Molloy et al., 2014; Muschelli et al., 2014), for the removal of unwanted 

contamination with noise and artifacts prior to the subsequent 
statistical analysis. We refer to this scheme as the extensive replication 
(RExt) model. The original work and the replication models 
performed the preprocessing and ROI extraction in subject-specific 
space to minimize the effect of between-subject variability 
(Bijsterbosch et al., 2020).

Similar to the original article, the RMin model implemented a 
subject-specific volumetric analysis, used Desikan-Killiany atlas to 
parcellate the brain, and incorporated static fieldmap correction, 
realignment, temporal linear regression of motion parameters, band-
pass filtering, and detrending. However, as the Table 1 shows, although 
the pipeline steps are similar, there are inherent differences stemming 
from different algorithms used in FSL and CONN to implement each 
step. Specifically, the B0 unwarping used in the original study is based 
on a method that applies both realignment and susceptibility 
distortion correction at the same time to reduce effect of interpolation 
on blurring (Jenkinson et al., 2002; Jenkinson and Smith, 2001). In the 
RMin model, the CONN toolbox uses SPM analysis package that in 
turn relies on the algorithm implemented in the Fieldmap toolbox to 
correct the geometric distortion of the EPI images (Jenkinson, 2003; 
Jezzard and Balaban, 1995). Additionally, the head motion is corrected 
by applying a rigid body transformation, but while the original study 
used MCFLIRT (Jenkinson et  al., 2002), the RMin model used a 
procedure described in Friston et  al. (1995). Coregistration of 
low-resolution functional images to high resolution structural images 

TABLE 1 Side-by-side comparison of the 3 pipelines under study.

Original paper RMin model RExt model

Analysis tool FSL FEAT 6.00 and FreeSurfer 5.3.0 CONN 20.b/SPM12 and FreeSurfer 7.1.1 CONN 20.b/SPM12 and FreeSurfer 7.1.1

Preprocessing space Subject-specific volumetric Subject-specific volumetric Subject-specific Surface-based

Atlas Desikan Killiany Desikan Killiany Desikan Killiany

Static fieldmap correction
Yes (Jenkinson and Smith, 2001; 

Jenkinson et al., 2002)

Yes (Jezzard and Balaban, 1995; Jenkinson, 

2003)

Yes (Andersson et al., 2001)Fieldmap-by-motion interaction 

correction
No No

Realignment Yes (Jenkinson et al., 2002) Yes (Friston et al., 1995)

Slice-timing correction No No Yes

Coregistration to subject-specific 

volumetric space

Boundary-based registration (Greve 

and Fischl, 2009)

Rigid body transformation (Collignon 

et al., 1995)

Rigid body transformation (Collignon 

et al., 1995)

Resampling to subject-specific surface 

space
N/A N/A Yes

Smoothing No No Yes

Motion parameters regression Yes Yes Yes

aCompCor No No Yes

Scrubbing No No Yes

Effect of (rest) session No No Yes

Band-pass filtering
Yes (0.01–0.1 Hz) Yes (0.01–0.1 Hz) Yes (0.01–0.1 Hz)

DCT (performed by CONN) DCT DCT

Temporal filtering done after regression Yes Yes Yes

Detrending Yes Yes Yes

Both (Min and Ext) Replication Models used CONN toolbox vs. FSL toolbox in the original paper. In the RMin model, the goal was to maintain the same preprocessing steps as the original 
paper, although the implementation of these steps was different between the 2 toolboxes. The RExt model attempted to correct for the influence of additional noise and artifact sources known 
to be crucial in reducing the false positive rate in rsFC analysis. Differences between each replication model and original paper are highlighted in gray. aCompCor, anatomical component-
based noise correction; DCT, discrete cosine transform.
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in the original work uses the BBR method in FreeSurfer, however the 
RMin model uses a modified version of a prior work by Collignon 
et  al. (1995) with a change in the interpolation technique for a 
smoother cost function and faster convergence.

In the RExt model, preprocessing was performed in subject-
specific surface space using the same atlas, range, and method for 
bandpass filtering and detrending as the original paper. However, in 
this model, we  supplemented the preprocessing steps originally 
included in the primary study with additional protocols to remove the 
residual spatial and temporal distortions still present in the data. 
Importantly, the RExt model additionally corrected for the 
susceptibility distortion-by-motion interaction. RExt model combined 
the static fieldmap correction with realignment and susceptibility 
distortion-by-motion interaction correction into a single step in 
CONN, which uses SPM12 Realign & Unwarp procedure (Andersson 
et al., 2001). The susceptibility distortion-by-motion interaction is the 
degree to which motion interacts with deformation field and is 
approximated by the derivative of deformation field in relation to 
motion, which estimates the position-dependent distortions. Using 
B-spline interpolation, the functional image is then unwarped and 
resampled to match the reference image’s deformation field. Neither 
the original paper nor the RMin model incorporated correction for 
this interaction term. Additionally, the RExt model corrected for the 
temporal offset in slice acquisition times (Henson et  al., 1999). 
Scrubbing was also performed in CONN to identify potential outlier 
scans and temporally regress them out. A scan was considered as 
outlier whenever the global BOLD signal changed more than 5 
standard deviations or when a composite motion measure exceeded 
0.9 mm. To calculate this motion measure, CONN assumes a 
140 × 180 × 115 mm bounding box around the brain and the 
composite motion measure is computed as the largest displacement 
among six points each being placed at the center of 6 faces of the 
bounding box. The rsfMRI data was then resampled at the location of 
surface projections estimated for each subject using FreeSurfer. In 
order to increase the signal-to-noise ratio, surface-based smoothing 
with 5 mm FWHM was further applied (Hagler et al., 2006). Also, 
since no physiological data was recorded during the acquisition, in the 
RExt model, we decided to utilize the anatomical component-based 
noise correction (aCompCor) procedure (Behzadi et al., 2007). In this 
method, noise is modeled from the white matter and cerebrospinal 
fluid areas, as the average BOLD signal as well as the Principal 
Component Analysis first 4 components of the BOLD signal in these 
areas. These noise components were temporally removed using a 
general linear model, along with the previously extracted motion 
parameters and scrubbing confounds. Finally, the resting session 
block was convolved with the hemodynamic response function and 
modeled as another source of noise to account for the initial 
magnetization transients.

2.3 Replicated and novel analyses 
performed

Similar to the original paper, for the replication streams, Pearson 
correlation coefficients between ROI pairs were calculated and Fisher 
z-transformed to ensure a normal distribution. Each subject’s Fisher 
z values were then used to create between-group rsFC contrast 
matrices by applying two-sample t-tests to z values across the 2 groups 

for each connection pair. The resulting p-values of the contrasts were 
thresholded for p < 0.05 to yield uncorrected results for the rsFC 
matrices. Since connections are bidirectional, less than half of the 
connection pairs (68*67/2 = 2,278) were redundant in each rsFC 
matrix. As a result, we merged the positive (EB > SC) and negative 
(EB < SC) matrices together in a single rsFC map that contained both 
contrasts. This combined rsFC matrix was created for results of both 
replication models and is a reproduction of Figure 3A in the original 
paper. In addition, to facilitate the comparison between the replication 
and the original work, we calculated density of each of the resulting 
connectivity matrices by finding the percentage of connections that 
survived the thresholding (p < 0.05) for each pipeline and contrast. 
The number of connections in the replication work that survived this 
threshold and were common with the results from the original work 
were also calculated as the overlap with the original (OWO) results for 
each replication pipeline and contrast. Similarly, the percentage of 
such overlap (OWO%) was also computed as the percentage of 
thresholded results in the original work that are commonly discovered 
in the corresponding replication results. The associated formula is 
indicated in Equation 1, where Norig represents the number of 
connection pairs in the rsFC matrix that survived the p < 0.05 
threshold in the original model, OWO represents the number of 
connection pairs that survived the p < 0.05 threshold in both the 
original and a replication model (RFMin or RExt). The calculations of 
network density and overlap were not a part of the original article.

 
= ×% 100

Orig

OWOOWO
N  

(1)

In addition to replicating the mentioned figures in the original 
paper, we  inspected the distribution of each group’s effect size (z 
values) that further illustrated the effect of each of the 3 pipelines. 
We also expanded upon the original analysis to exam network density, 
which was calculated for each group and each pipeline. Network 
density was computed in two ways: by finding the percentage of 
connections that either passed the uncorrected thresholding (p < 0.05) 
or the multiple comparison FDR correction, out of all the possible 
connections in the network. Distributions of the effects were also 
compared between each replication model and the original results, 
using paired samples t-test within each study group. Finally, for each 
group and each analysis stream, the top 1% of all the z values for each 
pipeline and subject group were extracted and displayed in the 
corresponding circular connectograms. Overlap of the top 1% of the 
z values in the replication works with the original result was also 
computed and reported.

3 Results

3.1 Replication of between-group contrast 
results

We initially aimed to recreate the connectivity matrices for the 
positive (EB > SC) and negative (EB < SC) contrasts as had been 
presented in Figure  3A of the original paper. The rsFC matrices 
containing uncorrected p-values (p < 0.05) from the original and 
replication pipelines are indicated in Figures 1A–C, where the warmer 
and colder colors represent EB > SC and EB < SC contrasts, 
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respectively. The main preprocessing steps incorporated in each 
pipeline are also recorded below each matrix. Both the RMin and RExt 
models present different results compared with the original paper. 
Although, the RMin model produced connection pairs that were 
shared with the results of the original work, mainly involving the 
frontal (for EB > SC) and temporal areas (for EB < SC). The density of 
each network and the (percentage of) overlap with the results from the 

original work were also computed for each contrast. A qualitative 
assessment of the contrasts revealed that the density of the positive 
contrast results was relatively unchanged in the RMin model compared 
to the original results (2.41% vs. 2.28%) with uncorrected results 
appearing mainly in the frontal lobe in both cases. On the other hand, 
the density of the negative contrast results declined in the RMin model 
vs. the original results (3.42% vs. 12.03%). The results of the RExt 

FIGURE 1

Between-group contrast results for the 3 preprocessing pipelines. Between-group EB > SC (warmer colors) and EB < SC (colder colors) FC contrast 
results are shown for the original paper (A), the replication min model (B) and replication extensive model (C). The EB > SC network density remained 
relatively unchanged for the replication min model while increased in the replication extensive model compared with the original work. The EB < SC 
network density decreased in both replication models. Overall, the uncorrected FC network in the replication extensive model showed less overlap 
with the results from the original work compared with the replication min model. FM, fieldmap correction; M, motion correction; I, fieldmap-motion 
interaction; SliceT, slice-timing correction; Scrub, scrubbing; Smooth, smoothing; aCompCor, anatomical component-based correction; D, density; M, 
number of uncorrected pairs in the original work; OWO, overlap with the original; %OWO, percentage of overlap with the original.
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model in Figure 1C showed an increase in the network density for the 
positive contrast (6.89% vs. 2.28%) and a decrease for the negative 
contrast (5.93% vs. 12.03%). Overall, the RMin model presented a 
higher overlap of both positive and negative contrasts with the original 
results (28.35 and 20.80% respectively) compared with the RExt model 
(9.61 and 10.95% respectively). As explained in Section 2.1, the FDR 
correction presented in Figure 3B of the original work was determined 
to be invalid and as a result was not considered for replication in this 
study. In addition to this qualitative evaluation, formal testing was 
used in Section 3.2 to determine the statistical significance of the 
effects of the preprocessing pipeline on individual groups.

Figure 2 shows the uncorrected (p < 0.05) results, for the 2 contrasts 
in the form of circular connectograms for each of the 3 pipelines under 
study. Each connectogram incorporates 68 ROIs extracted from the 
Desikan Killiany atlas, comprising frontal, cingulate, temporal, parietal, 
and occipital lobes. The left and right hemispheres of the graph represent 
ROIs in the left and right hemispheres of the brain. The connections 
between ROIs are color-coded depending on the magnitude of p-values 
for a more granular representation of the uncorrected results. This 
representation was created to provide a direct comparison with 
Figures 5C,D in the original paper. A description of the ROI acronyms 
can be found in the Supplementary Table 1. Although exploring the 
effect of each preprocessing step was outside of the scope of this study, 
as an exploratory work, in the Supplementary material (Section 2), 
we also included the resulting rsFC matrices for alternative pipelines in 
which some preprocessing steps were removed.

3.2 Effect of pipelines on individual groups

To further analyze the effect of the three different analysis streams, 
we inspected how each of the approaches influenced the distribution 
of the effects (z values) as shown in Figures 3A,B for the early blind 
and control study groups. For both groups, the z values resulted from 
the original work (shown in red) and the RMin model (shown in 
violet) are centered around more positive z values (0.37 and 0.68 for 
SC and 0.32 and 0.68 for EB, for the original paper and RMin model 
respectively), compared to RExt model where z values are centered 
closer to zero for both groups (0.02 for SC and 0.01 for EB).

As opposed to the between-group contrast results for rsFC analysis, 
the individual group results yielded connections that passed the 
multiple comparison correction. The density of the FC networks after 
thresholding (uncorrected, p < 0.05) and after correction for multiple 
comparisons (FDR, p < 0.05) is summarized for each pipeline and group 
in Figure 3C. Density of the FC network followed the same trend as the 
z-distributions, with the RExt model presenting a drastically reduced 
network density for both corrected and uncorrected results (14.1% and 
22.7 in SC, 13.5 and 21.6% in EB), compared with the network density 
of corrected and uncorrected results from the original work (94.2 and 
94.5% for SC, 96.6 and 96.6% for EB) and the RMin model (99.9% for 
SC and 100% for EB in both corrected and uncorrected results).

In order to statistically evaluate the impact of preprocessing 
pipelines on the effects, for each group, the distribution of functional 
connectivity effect values from the original paper was compared with 
that of RMin and RExt models, using paired samples t-tests. This 
resulted in four tests across the two study groups with all the tests 
yielding statistically significant differences (p < 0.05). The statistics 
associated with each of these additional tests are summarized in Table 2.

3.3 Connection pairs with the largest 
effects

Finally, to uncover the specific connection pairs that more 
strongly survive each of the three preprocessing pipelines, 
we identified connections that constitute the top 1% of z values for 
each group and each pipeline. The results are summarized in the form 
of circular connectograms in Figure 4. To measure the degree to which 
the result of each replication stream overlaps with the original 
pipeline, we calculated the overlap with the original as the number of 
common connections in the top 1% z values between the original and 
each replication model. Out of the 23 connections (top 1% of all the z 
values) in the original work, 19 (83%) and 16 (70%) connection pairs 
overlapped with the top 1% z values in the RMin model for SC and EB 
groups, respectively. There were 15 (65%) overlapping connections 
between the original and RExt models for either SC or EB group. 
Table 3 indicates the connection pairs that composed the top 1% of 
effects and were shared among all the 3 pipelines for SC and EB 
groups. This included both intra- and inter-hemispheric links. As an 
exploratory work, connectivity pairs comprising the top 1% of the 
t-values for the between-group contrast were also extracted for each 
pipeline and group. Further details are included in the 
Supplementary material (Section 3).

4 Discussion

The present replication study was not able to reproduce the results 
of the original paper, using either of the two pipelines used for the 
replication. Although the between-group contrast FC maps for the 
RMin model presented connection pairs implicating frontal (for 
EB > SC) and temporal (EB < SC) regions similar to the findings in 
the original work. Overall, qualitative comparison showed that the 
overlap with the original results was less in the RExt model for both 
contrasts compared with the RMin model.

Both replication models showed a statistically significant 
difference in the distribution of effect sizes compared with the original 
study. In other words, neither of the replication models was able to 
compellingly replicate the effects distributions. A closer examination 
of the distribution of FC effects after using each pipeline revealed that 
z values for both the original and RMin models were centered around 
more positive values whereas the RExt model shifted the effect values 
towards zero. This, in effect, resulted in the uncorrected and multiple 
comparison corrected networks that were noticeably less dense in the 
RExt model compared to the other pipelines under study. In other 
words, the RExt model reduced the number of positive (and likely 
false positive) findings. This is due to the expected influence of all the 
additional processes incorporated in the RExt model; for instance, 
aCompCor estimates and removes the residual effect of non-neural 
noise sources like cardiac signal, respiration, and head motion 
(Behzadi et al., 2007; Muschelli et al., 2014) and has been shown to 
likely increase the sensitivity and specificity of brain network’s positive 
rsFC correlations (Chai et al., 2012). Slice timing correction, another 
step that is excluded from the original study, has been shown to 
improve the extraction of functional networks and increase the 
accuracy of the BOLD time series associated with each voxel by 
removing temporal offsets (Parker and Razlighi, 2019). Additionally, 
since the structural artifacts, such as motion, can interact with the 
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magnetic field (Bijsterbosch et  al., 2020), in the RExt model 
we incorporated the removal of susceptibility distortion-by-motion 
interaction. This step provides a better estimate of the fieldmap and its 
derivative with respect to motion and thus further reduces the residual 

motion-related variance (Andersson et al., 2001). Finally, the RExt 
model also included spatial smoothing of the functional data, a well-
documented procedure to increase the temporal signal-to-noise-ratio 
(Brodoehl et al., 2020; Molloy et al., 2014; Triantafyllou et al., 2006). 

FIGURE 2

Circular connectograms of uncorrected connections. Circular connectograms of the uncorrected connections (p < 0.05) further illustrates the 
difference between the pipelines’ outcomes. Each connectogram is composed of 68 ROIs extracted from Desikan Killiany atlas with ROIs from left and 
right brains hemispheres represented on left and right separately. See the Supplementary materials for ROI names abbreviations.
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Nevertheless, spatial smoothing is a debatable topic for brain 
functional networks and the choice of the smoothing kernel can 
impact the FC networks (Alakörkkö et al., 2017; Triana et al., 2020).

In our RMin model, when we attempted to implement the same 
preprocessing steps as the original work, both the between-group 
contrasts and the group-level results still showed discrepancies from 
the original study. Further investigation into the potential sources of 
this incongruity revealed that the similar steps are in effect 
implemented based on different algorithms in the two software 
packages used. FSL, used in the original work, implements the static 
field map correction and realignment based on the methods 
proposed by Jenkinson et al. (2002) and Jenkinson and Smith (2001) 
and (boundary-based) registration based on Greve and Fischl (2009). 
In contrast, CONN/SPM 12, used in the RMin model, implements 
each of these steps with other distinct algorithms (Collignon et al., 
1995; Friston et  al., 1995; Jenkinson, 2003; Jezzard and Balaban, 
1995). Therefore, the incongruity observed between the original 
study and RMin model may be due to dissimilar implementations of 
the same steps in the two software packages, a source of 

irreproducibility previously highlighted in other studies 
(Carp, 2012b).

Besides the contribution of diverse computational schemes, 
another factor that can lie at the heart of the irreproducibility of the 
results from the original study is the low statistical power. It is 
reasonable that finding study participants with the specific visual 
deficit under study in the original paper can be  complicated, 
nevertheless the small sample size will result in low power. Collecting 
rsfMRI data for longer periods from each subject could have 
minimized this effect (Poldrack et al., 2017).

Interestingly, the highest FC effects (z values) appeared to 
predominantly belong to specific connection pairs regardless of the 
analysis pipeline. This demonstrates that large FC effect sizes are more 
likely to remain immune to the adverse effects of suboptimal 
preprocessing pipelines. On the other hand, these large z values likely 
represent the true results, as it has been previously demonstrated that 
the true positive findings are inclined to replicate more across studies, 
while this does not hold true for the false positive results (Moonesinghe 
et al., 2007). The observed overlap in connections among different 

FIGURE 3

Distribution of FC effects for individual groups. Distribution of FC effects (z values) is shown for SC (A) and EB (B) groups. While the results of the 
original study and the replication min model are centered around more positive z values, the replication extensive model shifted the distribution more 
towards zero. The density of the (corrected and uncorrected) network shown in (C) was affected by the selected preprocessing pipeline, with the 
original work and replication min model presenting density closer to 100% and the replication extensive model presenting a drastically reduced density.

TABLE 2 Summary of statistics of paired samples T-tests for comparing functional connectivity effects of the original study with the RMin and RExt 
models.

p-value T-statistic Degrees of 
freedom

95% CI (of pairs 
differences)

SD (of pairs 
differences)

Original vs RMin (EB) <0.001 −74.86 2,277 [−0.37 – 0.35] 0.23

Original vs RExt (EB) <0.001 65.52 2,277 [0.29 – 0.31] 0.22

Original vs RMin (SC) <0.001 −57.38 2,277 [−0.32 – 0.30] 0.26

Original vs RExt (SC) <0.001 68.23 2,277 [0.34 – 0.36] 0.24

CI, confidence interval; SD, standard deviation.
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FIGURE 4

Connection pairs with the largest effects for each pipeline. Connection pairs that constitute the top 1% of z values in the z-distribution (99% percentile 
and higher) were identified for each pipeline and each group. These pairs are shown as links in the circular connectograms. Both RMin and RExt 
models present results with notable overlap with the results from the original analysis. M, number of pairs identified in the original study comprising the 
top 1% of z values; OWO, overlap with the original (number of links in the replication models that overlap with the original results). See the 
Supplementary material for ROI names abbreviations.
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preprocessing streams in this study may underscore the importance 
of verifying results across different pipelines in search of the true 
results; an ultimate goal particularly critical for studying 
clinical populations.

It is important to emphasize that the findings of this replication 
study are limited by the specific computational toolboxes used, CONN 
and SPM, and their release versions. However, the use of a widely used 
toolbox like CONN enabled us to utilize its comprehensive pipelines 
that preclude the need for using various application tools for 
preprocessing pieces. In the RMin model, this allowed us to investigate 
the impact of different algorithms used for the implementation of the 
same steps compared with the original pipeline, which was one of the 
aims of the study. Admittedly, future works are encouraged to also 
investigate the impact of different implementations of the same 
computational algorithms for identical preprocessing steps. In 
addition, the small number of participants and the inherently low 
statistical power of the study may hinder any reproducibility effort, 
regardless of the analytical pipeline used. Lastly, although the three 
processing streams under study were conceptually and qualitatively 
compared throughout the study, the main goal of this article has been 
to investigate whether the original results can be achieved by utilizing 
a different set of computational streams on the same data.

5 Conclusion

The aim of our study was to conceptually replicate the rsFC findings 
of an original study of early ocular blindness (Bauer et  al., 2017). 
We were not able to fully replicate the results in the original study with 

our two proposed preprocessing pipelines, partly due to addition of 
more rigorous steps for removal of the noise and artifacts, and also 
likely due to different implementations of the same steps. Importantly, 
we highlighted some specific functional connection pairs in the study 
group that tend to arise regardless of the computational stream.
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Cuneus
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Inter-hemispheric
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PostCing
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SupPar
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Cuneus
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Lingual

Left intra-hemispheric
Frontal–parietal Frontal–frontal Occipital-occipital

PreCent-PostCent ParsTrian-ParsOper Lingual-PeriCalc

Right intra-hemispheric
Frontal–parietal

PreCent-PostCent
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