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Hidden Markov Models (HMMs) have emerged as a powerful tool for analyzing

time series of neural activity. Gaussian HMMs and their time-resolved extension,

Time-Delay Embedded HMMs (TDE-HMMs), have been instrumental in detecting

discrete brain states in the form of temporal sequences of large-scale brain

networks. To assess the performance of Gaussian HMMs and TDE-HMMs in this

context, we conducted simulations that generated synthetic data representing

multiple phase-coupled interactions between different cortical regions to

mimic real neural data. Our study demonstrates that TDE-HMM performs

better than Gaussian HMM in accurately detecting brain states from synthetic

phase-coupled interaction data. Finally, for TDE-HMMs, we manipulated key

parameters such as phase coupling variability, state duration, and influence

of volume conduction effect to evaluate the models’ performance under

varying conditions.
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1 Introduction

Large-scale brain networks refer to patterns of synchronized activity across different
brain regions (Damoiseaux et al., 2006; Menon, 2023). The dynamic nature of these
connectivity patterns, often referred to as brain states, underlies various cognitive
functions, from perception and attention to memory and decision-making (Loitfelder
et al., 2012; Machner et al., 2021). Understanding the mechanisms that govern transitions
between these states is essential for gaining insights into the neural basis of brain functions.
To this purpose, data from high temporal resolution electrophysiological techniques such
as magnetoencephalography (MEG) and electroencephalography (EEG) are particularly
instrumental since they can capture synchronization of neural oscillations, a foundational
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dynamic characterizing large-scale brain networks. Specifically,
phase coupling between oscillations in different brain regions
is thought to play a crucial role in inter- and intra-network
communication, laying the foundation of cognitive processes such
as perception, attention, memory, and decision-making with their
constant interplay between brain states (Fries, 2005; Lachaux et al.,
1999; Varela et al., 2001). Here, we will refer to a brain state as a
millisecond-scale phase coupling of neural oscillations at a specific
frequency between segregated brain regions (Marzetti et al., 2019,
2023).

Once defined, such brain states can then be extracted by
employing Hidden Markov Models (HMMs) (Yoon, 2009). HMMs
consist of probabilistic models assuming an underlying Markov
process, referring to a system transitioning across a finite number of
hidden states over time. Each state generates an observable output,
such as a neural signal. By modeling the temporal dependencies
between these states, HMMs can be used to infer the most
likely sequence of hidden states given a sequence of observations
(Rabiner and Juang, 1986). One common implementation of
HMMs is Gaussian HMMs, which assume that the observed data
are generated from a mixture of Gaussian distributions, where
each Gaussian component represents a different brain state. By
estimating the parameters of these Gaussian distributions, Gaussian
HMMs can identify the most likely sequence of brain states
over time. Gaussian HMMs have been successfully applied to a
variety of domains, including speech recognition, natural language
processing, and bioinformatics. In recent years, Gaussian HMMs
have also gained traction in neuroscience, where they have been
used to identify different brain states from EEG, MEG, and
functional magnetic resonance imaging (fMRI) data (Coquelet
et al., 2022; Dang et al., 2017; Fauchon et al., 2022; Obermaier et al.,
1999). However, Gaussian HMMs might not adequately capture
the complex temporal dynamics of neural data. Specifically, the
Gaussian HMM mainly focuses on the amplitude changes while
ignoring phase coupling (Baker et al., 2014; Quinn et al., 2018).
These limitations are particularly problematic for EEG and MEG
studies, which rely on analyzing brain signal coupling at specific
frequencies over short time windows (Marzetti et al., 2019).

To address this limitation, Time-Delay Embedded Hidden
Markov Models (TDE-HMMs) have been developed (Vidaurre
et al., 2018b). TDE-HMMs extend Gaussian HMMs by
incorporating information from the lag version of data. This
approach allows for more flexible modeling of temporal
dependencies and enhances the accuracy of state inference.
Furthermore, TDE-HMMs account for power covariations and
phase coupling between pairs of regions (Quinn et al., 2018;
Vidaurre et al., 2018b). Since phase coherence is a fundamental
mechanism for cortico-cortical communication (Fries, 2005),
integrating these dynamics into HMMs is expected to yield a more
accurate decoding of brain states. TDE-HMMs were previously
used to unveil fast transient brain states characterizing resting
state activity and to characterize cortical dynamics underlying
cognitive tasks, such as face recognition and working-memory
processes (Baker et al., 2014; Quinn et al., 2018; Rossi et al., 2023,
2024; Seedat et al., 2020; Zhang et al., 2021) Yet, it has been
shown that TDE-HMMs are primarily deriving states based on
power fluctuations, rather than phase coupling-based functional
connectivity (Vidaurre et al., 2018b).

Thus, a question remains regarding the extent to which TDE-
HMMs can accurately detect states driven by phase-coupling based
functional connectivity. While TDE-HMMs are hypothesized to
provide a richer description of brain dynamics than Gaussian
HMMs, no systematic comparison has been performed yet.
Accordingly, the primary goal of this study is to determine
whether TDE-HMMs can more accurately model ground-truth
brain states, based on the phase coupling of neuronal oscillations, in
a controlled synthetic environment. If so, our secondary goal is to
investigate the method’s performance as the underlying dynamics
become increasingly complex by manipulating phase coupling
levels, phase difference variability, state duration, and volume
conduction effects.

2 Materials and methods

2.1 Synthetic coupled sources generation

We simulated 78 uncoupled signals using a band-limited
process. Each signal corresponded to the centroid of the i-th
Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al.,
2002) cortical parcel. We generated these time series by summing
sinusoids spanning the target frequency band, in our case the alpha
frequency band (Fc = 10 ± 2 Hz). The sinusoids were produced
with small frequency increments (0.01 Hz), with each sinusoid
assigned an independent random amplitude and phase. A fifth-
order autoregressive (AR) filter was then applied to introduce the
desired temporal smoothness. The duration of simulated data for
each session was five minutes, with a sampling rate of 125 Hz.

We then generated 10 distinct states, following a Markov
process and based on a random transition probability matrix
and a random initial probability vector (Vidaurre et al., 2018b).
Concurrently, we generated a state sequence, with the duration
of states at each occurrence randomly assigned from a uniform
distribution over a range of interest.

Each state was characterized by a unique adjacency phase
coupling matrix. This matrix outlines which cortical parcels are
phase-coupled to other parcels with a specific phase difference. The
number of phase-coupling connections in the adjacency matrix of
the state was randomly determined from a uniform distribution.
Moreover, the chosen couplings were randomly selected from all
potential couplings.

For each coupling and each state, the phase difference was
randomly sampled from a uniform distribution ranging from -π
to π. To simulate each phase coupling within a state, we computed
the analytic signals of the two sources using the Hilbert transform.
During the active periods of the state, the instantaneous phase
of the second source was adjusted to maintain a fixed phase
difference relative to the first source, as determined by the initial
random sampling. Moreover, to introduce variability to such phase
difference, a random value drawn from a Gaussian distribution with
zero mean and a specified standard deviation of phase difference
(std-pd = 0.1, 0.3, 0.5) was added to each instance of the state
occurrence. The instantaneous amplitude of the original signals was
preserved to ensure that only the phase component was modified
during coupling (Basti et al., 2022).
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Successively, the signals were projected to the scalp using
a forward model. We used the MNI template 3-shell boundary
element method (BEM) head model. Then, the lead-field matrix
was constructed using the positions of 126 EEG electrodes from the
10–5 international system. Source-space data was then transformed
into the sensor-space by multiplying the source data with the
lead-field matrix.

To emulate a realistic dataset, non-biological and biological
noise were generated and combined. This was achieved by using a
multivariate Gaussian distribution with zero mean and a covariance
matrix:

Cn = LLT + λI (1)

where L denotes the lead-field matrix, T is the transpose operator,
I is the identity matrix, and λ is a scalar parameter that weights
the contribution of instrumental noise to the biological noise
covariance matrix. The total sensor-level variance was decomposed
in equation (1). The first term models the variance due to
biological sources, represented by the lead-field matrix, while
the second term captures the additional variance introduced by
instrumental noise. We computed λi separately for each sensor as
λi = 0.1 × var

(
signali

)
, where the subscript i, denotes the signal

at sensor i, ensuring that the added noise depends on the variance
of each sensor’s signal.

Later, noise was sampled from covariance matrix Cn. The
quality of the sensor level data was quantified by signal-to-noise
(SNR) ratio and defined as follows:

SNR = 10log10
var (sensor)

var (γ × noise)
(2)

where γ is the scaling factor to adjust SNR at different level. Finally,
by changing γ and adding noise, signals with controlled and specific
SNR levels were created.

The resulting noisy signals were then projected back to the
source space. To do so, we used an 8-mm-spaced grid in the
MNI space with 3,887 vertices alongside the standard BEM MNI
head model to calculate the lead-field matrix. The inverse problem
was solved with the array-gain beamformer approach and the ill-
conditioned covariance matrix was handled with a regularization
parameter which was set to 5% of the average sensor power
(Westner et al., 2022). By using the AAL atlas, we reduced the
dimensionality of the source voxel data to 78 cortical parcels. For
each parcel, Principal Component Analysis (PCA) was applied to
all voxels belonging to the parcel, and the first PC was selected to
reduce the voxels time courses to the parcel signal. To reduce the
effect of volume conduction, we applied leakage correction by using
the innovations orthogonalization (Pascual-Marqui et al., 2017).

2.2 State inference

State inference was performed using two different approaches:
Gaussian HMM and TDE-HMM.

In the TDE-HMM, the original data of size P × T, where
P represents the number of parcels and T the time points, was
expanded by incorporating lagged versions of the data. This
process creates an extended matrix known as the time-delay
embedded space with dimensions (P × (NL + 1)) × (T − NL),
where NL represents the number of lags. Since this increases

the dimensionality, PCA was applied to reduce the data
dimensionality. After PCA, the resulting time-delay embedded
space has dimensions D × (T − NL), where D is the number of
PCs. We retained only the PCs that represented 60% of the total
variance, while the lag was set from −1 to 1 sample lag, for a total
of three lags. Such a short lag length was selected to avoid excessive
complexity, which would have been too computationally expensive.

In the Gaussian HMM, the association between states and
observations was modeled by a zero-mean Gaussian distribution.
However, prior to training and to be aligned with TDE-HMM
analysis, we performed PCA to the data, and we retained only the
principal components explaining 60% of the variance.

Finally, we used stochastic inference to estimate the parameters
of the Gaussian HMM and TDE-HMM (Vidaurre et al., 2018a) and
the most likely sequence of states was extracted using the Viterbi
algorithm (Rabiner, 1989).

We ran five repetitions of the Gaussian HMM and the TDE-
HMM on z-scored and concatenated sessions. The number of states
prior to the inference was set to 10, since it is a prerequisite of
the model learning process. After inferring the state time series,
we assessed the performance of the models by correlating the
ground truth data with the inferred state time series. Since the order
of the states might not be the same as the ground truth across
the repetitions, the states were reordered by using the Munkres’
algorithm (Munkres, 1957). These analyses were carried out using
the HMM-MAR toolbox (Vidaurre et al., 2018b).

Figure 1 shows the workflow of our analysis.

2.3 TDE-HMM performance evaluation
tuning various parameters

Following a comparison between HMMs and TDE-HMMs,
we explored the performance of TDE-HMMs by tuning various
parameters such as SNR sensitivity (SNR levels: 3, 5, and 10 dB),
phase coupling complexity (low with std-pd = 0.1, moderate with
std-pd = 0.3, high with std-pd = 0.5), state duration and density,
and volume conduction.

Given the superior performance of TDE-HMMs across most
simulated conditions, we selected it to further evaluate the stability
of HMMs at varying simulation parameters. Based on this,
following the comparison stage, we examined the effect of state
duration on the performance of TDE-HMMs. The simulations
maintained the same SNR, phase variability levels and number of
connections range as per the model comparison stage. However,
two distinct ranges for state durations were tested: short (30–
100 ms) and long (500–1,000 ms).

We then proceeded to change the state density, which we
defined as the number of phase-coupled connections per state.
Simulations were performed using two density ranges: 50–100
and 100–150 connections. State durations were kept between 30
and 1,000 ms, while SNR levels and phase variability remained
consistent with the previous simulation.

Finally, we assessed the impact of volume conduction on
model performance for parcellated source-reconstructed data, and
orthogonalized data. Simulations were conducted by keeping the
same SNR, phase variability levels, state duration and number of
phase-coupled connections as at the comparison stage.
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FIGURE 1

The workflow of the simulation study from left to right: we simulated the electrical activity of 78 centroid regions as uncoupled sources. Then, state
sequences were defined using Markov processes, with a random duration. The adjacency matrix of a state was randomly designed based on
phase-coupled connectivity. According to the adjacency matrix of a state, coupling was applied to selected sources during the occurrence of a
state. Source data was projected to the sensor level adding biological and non-biological noise. The data underwent source reconstruction using
LCMV beamforming reduced to parcellation. Orthogonalization was then applied to mitigate source leakage. State inference was performed using
HMM and TDE-HMM. Finally, TDE-HMM performance was assessed under varying parameter settings.

3 Results

Each part of this study comprised of 18 levels, based on
combinations of three SNR levels, three phase variability levels,
and two variations of specific parameters. These parameters
included HMM type (Gaussian HMM and TDE-HMM), state
duration (long and short), state density (50–100 and 100–150
phase-coupled connections), and data type (source-reconstructed
and orthogonalized). To assess the differences among these 18
conditions, we performed a one-way Welch’s ANOVA. Moreover,
post-hoc pairwise comparisons were conducted using the Games-
Howell test, with the significance level set at 0.01.

3.1 Performance comparison of Gaussian
HMM and TDE-HMM under varying SNR
and phase variability conditions

Our results show that the TDE-HMM outperforms the
Gaussian HMM over all conditions of phase variabilities and SNRs
[FWelch(17.00, 316.92) = 116.98, p < 0.001], as shown in Figure 2.
Post-hoc analysis indicates significant differences between Gaussian
HMM and TDE-HMM over all conditions of phase variabilities

and SNRs, as it is displayed in Table 1. The performance of both
models improved with increasing SNR (Supplementary Table 1).
Phase variability also shown an impact on performance especially at
low SNR levels. Higher phase variability reduced the performance,
particularly for the Gaussian HMM. In contrast, TDE-HMM
was more robust to phase variability under noisy conditions
(below 5 dB). Instead, at high SNR levels (5 and 10 dB), the
TDE-HMM performance was relatively unaffected by high phase
variability (Supplementary Table 2). Notably, under low phase
variability (std-pd = 0.1) and high SNR (10 dB), the performance
gap between TDE-HMM and Gaussian HMM narrowed down,
indicating that both methods performed comparably well in such
optimal conditions.

3.2 Impact of state duration on
TDE-HMM performance

Across all SNR and phase variability levels, TDE-HMM yielded
higher performance levels at longer durations compared to shorter
ones F{Welch(17.00,321.87)} = 129.44, p < 0.001 (Figure 3). However,
this effect was not consistent across all conditions, as indicated
by the results of pairwise comparisons using the Games-Howell
test (Table 2). At SNR of 3 dB, regardless of phase variability, no
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FIGURE 2

Mean correlation between inferred and ground truth state time series across repetitions, with error bars representing the standard error. (A–C)
illustrate the effects of phase variability (std-pd: 0.1, 0.3, 0.5) at different SNR levels (3, 5, 10 dB) on the performance of Gaussian HMM (Blue) and
TDE-HMM (Orange). (*p < 0.05; **p < 0.001).

TABLE 1 Comparison of the TDE-HMM and Gaussian HMM performance over identical conditions of SNR and phase variability, based on the post-hoc
Games-Howell test.

Phase
variability

SNR (dB) Mean difference Standard error p-value 0.99% confidence interval

Lower
bound

Upper
bound

0.1 3 0.172 0.023 < 0.001 0.076 0.268

5 0.064 0.020 0.183 −0.022 0.151

10 0.034 0.002 < 0.001 0.026 0.043

0.3 3 0.214 0.043 0.001 0.035 0.394

5 0.281 0.031 < 0.001 0.149 0.413

10 0.105 0.014 < 0.001 0.043 0.167

0.5 3 0.162 0.050 0.125 −0.042 0.368

5 0.272 0.040 < 0.001 0.106 0.438

10 0.234 0.035 < 0.001 0.083 0.386

significant difference is observed, exhibiting that under low SNR
the capability of model decreases. In contrast, under high SNR of
10 dB, there is always significant difference.

3.3 Impact of state density on TDE-HMM
performance

Our results indicate that TDE-HMM infers states derived
from 100 to 150 connections equally or even more accurately
compared to the 50–100 connections condition [FWelch(17.00,
323.60) = 105.49, p < 0.001] (Figure 4). This indicates that

increasing the number of phase-coupled connections improves the
ability of TDE-HMM to accurately infer states. At high SNR level
of 10 dB, the performance of TDE-HMM was high irrespective of
the number of phase-coupled connections, achieving correlations
close to or above 0.9 across all phase variability levels. However
post-hoc Games-Howell test (Table 3) shows significant difference
in correlations between 100–150 and 50–100 connections in 10 dB
SNR at low and high phase variability. Despite these significant
differences, the difference in performance is negligible. Moreover,
the impact of the state density on the performance of TDE-HMM
is more obvious at low SNRs, as the post-hoc illustrates significant
difference at 3 dB SNR with low and moderate phase variabilities.
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FIGURE 3

Mean correlation between ground truth and inferred state time series for TDE-HMM under varying state durations: 30–100 ms (Dark Green) and
500–1000 ms (Light Green). SNR levels are represented on the x-axis and phase variability levels are shown in the panels (A–C). Error bars show the
standard error of the correlation. (*p < 0.05; **p < 0.001).

TABLE 2 The difference of TDE-HMM performance, derived from pairwise comparisons using the Games-Howell, comparing long (500–1,000 ms) and
short (30–100 ms) states’ duration across the three levels of SNR (3, 5, and 10 dB) and three levels of phase variability.

Phase
variability

SNR (dB) Mean difference Standard error p-value 0.99% confidence interval

Lower
bound

Upper
bound

0.1 3 0.102 0.044 0.679 −0.079 0.284

5 0.147 0.036 0.014 −0.004 0.299

10 0.049 0.002 < 0.001 0.041 0.058

0.3 3 0.163 0.043 0.031 −0.015 0.343

5 0.171 0.023 < 0.001 0.073 0.269

10 0.061 0.002 < 0.001 0.052 0.071

0.5 3 0.163 0.047 0.075 −0.031 0.358

5 0.269 0.044 < 0.001 0.086 0.453

10 0.141 0.033 0.006 0.004 0.278

3.4 Examining the impact of volume
conduction on TDE-HMM performance
across source and leakage-corrected
source data

Figure 5 displays the correlation between the ground truth state
time series and the inferred state time series across repetitions for
two data level: source-level, and orthogonalized-level [FWelch(17.00,
170.88) = 108.10, p < 0.001]. At the source-reconstructed level, the
correlation values were consistently lower than the orthogonalized

level across all SNRs and phase variability, illustrated by post-hoc
Games-Howell test (Table 4). Only in one condition of low phase
variability (std-pd = 0.1) and SNR = 3 dB, no significant difference
was observed.

4 Discussion

The primary aim of this study was to systematically compare
the performance of Gaussian HMMs and TDE-HMMs in decoding
functional connectivity-derived brain states from synthetic data.
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FIGURE 4

Mean correlation between ground truth and inferred state time series for TDE-HMM across repetitions for different numbers of phase-coupled
connections (Light Purple: 50–100; Dark Purple: 100–150). Panel (A–C) refers to different phase variability levels. Error bars represent the standard
error. (**p < 0.001).

TABLE 3 The pairwise comparison of TDE-HMM performance between two data having various number of phase-coupled connectivity per state
(50–100 and 100–150 connections) over three levels of SNR (3, 5, and 10 dB) and three levels of phase variability.

Phase
variability

SNR (dB) Mean difference Standard error p-value 0.99% confidence interval

Lower
bound

Upper
bound

0.1 3 0.054 0.009 < 0.001 0.015 0.094

5 0.049 0.019 0.543 −0.035 0.134

10 0.003 0.001 < 0.001 0.001 0.005

0.3 3 0.166 0.030 < 0.001 0.036 0.297

5 0.052 0.002 < 0.001 0.039 0.064

10 −0.016 0.022 1.000 −0.111 0.078

0.5 3 0.182 0.048 0.027 −0.014 0.380

5 −0.002 0.040 1.000 −0.169 0.164

10 0.011 0.001 < 0.001 0.006 0.015

Our results indicate that TDE-HMMs consistently outperform
Gaussian HMMs in terms of correlations between decoded
brain states and ground truth. Furthermore, TDE-HMMs proved
relatively resilient in non-ideal scenarios akin to those observed
in real EEG data, such as lower SNR levels and high phase
instability. Nevertheless, higher SNR levels tended to yield higher
correlation between ground truth and estimated states, establishing
the importance of SNR levels in determining the performance of
both models. Phase variability further increased the uncertainty
posed by low SNR, resulting in additional decreases in Gaussian
and TDE-HMMs performance. Remarkably, only TDE-HMM

demonstrated resilience to phase variability under high SNR level.
This robustness underscores the reliability of TDE-HMM for
scenarios where phase dispersion or noise could compromise
connectivity detection.

One real-world scenario characterized by such unfavorable
conditions is studied on clinical populations. These
contexts often suffer from low SNR levels due to both
pathophysiological factors and challenges in data acquisition.
Nonetheless, a recent study (Rossi et al., 2024) successfully
decoded clinically relevant functional connectivity states
in Multiple Sclerosis patients using TDE-HMM. Given
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FIGURE 5

Mean correlation between ground truth and inferred state time series across source-reconstructed level (Dark Red), and orthogonalized level (Pink)
under varying SNRs of 3, 5, and 10 dB and phase variability panels (A–C) levels (std-pd = 0.1, 0.3, 0.5). Error bars represent the standard error. (*p <
0.05; **p < 0.001).

TABLE 4 The comparison of TDE-HMM in inferring states from signals at orthogonalized and source level data over three levels of phase variability at
SNR (3, 5, and 10 dB).

Phase
variability

SNR (dB) Mean difference Standard error p-value 0.99% confidence interval

Lower
bound

Upper
bound

0.1 3 0.482 0.061 < 0.001 0.194 0.770

5 0.081 0.027 0.216 −0.016 0.179

10 0.036 0.004 0.001 0.016 0.056

0.3 3 0.496 0.059 < 0.001 0.234 0.758

5 0.641 0.052 < 0.001 0.432 0.851

10 0.738 0.049 < 0.001 0.539 0.937

0.5 3 0.557 0.051 < 0.001 0.339 0.775

5 0.437 0.066 < 0.001 0.178 0.697

10 0.396 0.066 < 0.001 0.130 0.662

our findings of higher TDE-HMM reliability under non-
ideal conditions, it is likely that the successful encoding of
clinically relevant features was enabled by the method’s noise
resilience.

After establishing the superior performance of TDE-HMM
over Gaussian HMM, we proceeded evaluating the performance of
TDE-HMM under varying conditions of noise, phase variability,
state duration, and network density. We found that longer
states were inferred more accurately than shorter ones, and this
trend was observed across all SNR and phase variability levels.

This result indicates that shorter states are more vulnerable to
noise and variability, while longer states remain more stable
and distinguishable. While previous studies have used HMMs to
capture fast brain states (on average 50–100 ms) in resting-state
data (Coquelet et al., 2022; Quinn et al., 2018; Vidaurre et al.,
2018a; Vidaurre et al., 2018b), our findings suggest that decoding
fast brain dynamics with TDE-HMMs should be performed only
under optimal experimental conditions (i.e., low noise and phase
dispersion). Nonetheless, the longer states identified here still fall
within the millisecond range, enabling the exploitation of the

Frontiers in Systems Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1548437
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-19-1548437 April 17, 2025 Time: 15:28 # 9

Pieramico et al. 10.3389/fnsys.2025.1548437

high temporal resolution of EEG and MEG (Bai et al., 2021;
Cho et al., 2024; Coquelet et al., 2022; Fauchon et al., 2022;
Jiang et al., 2023).

Moreover, we established the impact of network density, as
quantified by the fraction of phase-coupled connections, on the
TDE-HMM performance. Specifically, we found that inferring
denser states was yielding equal or even better performance
compared to the lower-density states. Importantly, accurate
estimation was achieved also under low SNR and high phase
variability conditions. These results suggest that increasing the
density of the network, and therefore its complexity, enhances the
reliability of TDE-HMM in inferring states. Several studies on real
MEG and High Density EEG (hd-EEG) data showed the relatively
high spatial resolution of these techniques (Hedrich et al., 2017;
Stoyell et al., 2021), this finding suggest that TDE-HMM analyses
should be preferentially performed on such setups.

Furthermore, the impact of volume conduction on TDE-HMM
performance highlighted the importance of leakage correction on
source-level data. At source-reconstructed level, severe volume
conduction effects resulted in poor performance, where TDE-
HMM was unable to reliably infer the temporal deployment of
state transitions. However, applying orthogonalization effectively
mitigated leakage effects and improved the performance. Therefore,
preprocessing choices could have a significant impact on TDE-
HMM performance, especially the steps aimed at mitigating
volume conduction.

This study has some limitations that should be addressed in
future research. First, due to limited computational resources,
the signals were simulated at a sampling frequency of 125 Hz.
Increasing the sampling frequency could enhance the accuracy
of decoding short-lasting brain states and would be particularly
beneficial for investigating higher-frequency oscillations, such
as gamma rhythms. Moreover, because our simulations were
bound to the alpha band, future studies could examine TDE-
HMM performance across other frequency ranges. In addition,
due to computational constraints, we employed a TDE-HMM
configuration that embedded a lag of only three samples. Extending
the model’s memory by incorporating additional lag samples could
further improve its ability to capture temporal dependencies and
increase the accuracy of state inference. Finally, biological noise
was here simulated by projecting the activity of simulated noise
sources at sensor level, in the future it will be interesting to
consider also noise extracted from artifactual components derived
from real EEG data.

Future studies could explore using TDE-HMMs to decode
latent functional connectivity brain states in real time. For
instance, such states could guide brain-state-dependent, EEG-based
transcranial magnetic stimulation (TMS) protocols (Marzetti et al.,
2023; Vetter et al., 2023). Accurate modeling of brain states is
essential for advancing state-dependent TMS, a technique that
holds promise for improving outcomes in neurorehabilitation,
cognitive enhancement, and psychiatric interventions (Burke et al.,
2019; Rossi et al., 2009).

5 Conclusion

This study highlights the superior performance of TDE-
HMMs compared to Gaussian HMMs at inferring hidden

brain network across both favorable and unfavorable scenarios
involving SNR, state duration, and phase variability. In general,
TDE-HMMs exhibited relative resilience to unfavorable
conditions, with performance drops becoming evident only
under worst-case scenarios. Moreover, TDE-HMMs performed
consistently better under high network density ground-
truth conditions and when using orthogonalized source
data instead of sensor data, providing insights on optimal
methodological choices for their effective implementation.
Overall, this study validates the robustness of TDE-HMM for
inferring state time series representing phase-coupled brain
networks and demonstrates the foundation for its application on
real-world EEG data.
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