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Here, Freeman Neurodynamics is explored to introduce the reader to the

challenges of analyzing electrocorticogram or electroencephalogram signals

to make sense of two things: (a) how the brain participates in the creation of

knowledge and meaning and (b) how to di�erentiate between cognitive states

or modalities in brain dynamics. The first (a) is addressed via a Hilbert transform-

based methodology and the second (b) via a Fourier transform methodology.

These methodologies, it seems to us, conform with the systems’ neuroscience

views, models, and signal analysis methods that Walter J. Freeman III used and

left for us as his legacy.

KEYWORDS
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1 A brief introduction to Freeman Neurodynamics in
the study of brains

Since the publication of Walter Freeman’s book “Mass Action in The Nervous System”

(Freeman, 1975), much water has flowed under the bridge. In the text, Freeman attempted

to answer questions like, “What are the neural mechanisms, and what is the behavioral

significance of the electroencephalogram (EEG)?” Most of the experimental aspects of his

study are based on the mammalian olfactory system. Here, the neuron is depicted in the

context of its interrelation with other neurons that form interactive masses. Initially, the

neuron is described with the aid of linear differential equations, with some descriptions

of “lower level models” that are used to derive models at a “higher level.” The exploration

continues with “non-linear input output relations of neurons in masses” formulated as

coefficients in linear differential equations that are amplitude dependent, and the effects

on the behavior of masses are analyzed. The electrical fields are conceived as the main way

to indirectly observe the activity of neurons, individually and in masses, and the properties

that emerge from feedback within neural masses are addressed. Finally, a description of the

mechanisms of “neural signal processing” at the level of neural masses is provided.

Fifteen years later in “Neurodynamics: An Exploration inMesoscopic Brain Dynamics”

(Freeman, 2000), Freeman focuses on presenting data, models, and experimental

techniques with a mesoscopic approach to brain dynamics. To understand the mesoscopic

level in brain dynamics, Freeman conveniently invokes the notion of neuropil, as

populations of neurons, to move away from the microscopic level, the neuron as the center

of attention of the neuron doctrine.
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Neuropil is the densely interconnected tissue in the cortex,

which is the most complex substance in the known universe

(Freeman et al., 2001). Moreover, a neuropil with 10,000 to

100,000 neurons can be taken as the building block of Freeman

neurodynamics; the K0 sets (Freeman, 1975) and more complex

and larger populations of neurons, described by Freeman as

“mature neuropil,” seem to be fundamental to his mesoscopic

approach when he wrote in his study (Freeman, 2000) that:

In cellular terms, in a mixed population of excitatory and

inhibitory neurons the excitatory cells excite each other as

well as the inhibitory cells, and the inhibitory cells inhibit

each other as well as the excitatory cells. This configuration

of excitatory and inhibitory populations encapsulates this

topology of synaptic interactions in mature neuropil, so it

is the centerpiece of mesoscopic brain dynamics. It is both

the conclusion of microscopic cellular studies and the starting

point for modeling mesoscopic interactions.

The macroscopic level is conceived as large brain systems

or the whole brain. When studying the mesoscopic level, the

focus is placed on the study of brain dynamics as manifested

in the electromagnetic fields measured at the cortex or scalp

via a network of electrodes used in electrocorticogram (ECoG)

or electroencephalogram (EEG) systems of measurement. Then,

the signals are analyzed as spatio-temporal patterns of brain

dynamics and displayed as brain dynamics movies emphasizing

theta, alpha, beta, and gamma rhythms. These models show

the outlines of the forms that are likely to be taken by field

theories describing the global cooperative interactions governing

the functions of entire cerebral hemispheres through the formation

of patterns that resemble the dynamics of tornados, turbulence,

and fractalness in spatio-temporal brain dynamics, of large-scale

neural activity. In that way, the mesoscopic level of interaction

serves as a stepping stone to bridge the gap between the

neuron and the large systems of the brain, displaying large-scale

integration in global brain dynamics and states. This requires

many empirical models and experiments accomplished at a

mesoscopic level.

In studies conducted by Barrie et al. (1996) and Freeman

and Barrie (2000), evidence was found for the self-organization

of Amplitude Modulated (AM) patterns via conditioned stimuli,

where presumably the primary receiving areas maintained a

master–slave interaction. These relevant spatio-temporal AM

patterns describing the destabilized areas of the cortex after stimuli

were found in gamma activity on the millimeter scale. These AM

patterns, together with Instantaneous Frequency (IF) and Analytic

Phase (AP) measurements derived from the Hilbert transformed

signals in filtered relatively narrow bands, became the object

of much study years after the publication of this book till the

present time (Freeman and Quiroga, 2013; Kozma and Freeman,

2016).

It is important to mention that Freeman and Quiroga focused

on ECoG and EEG brain signals derived from animal and

human studies. This was the object of their book “Imaging Brain

Function with EEG—Advanced Temporal and Spatial Analysis of

Electroencephalographic Signals,” as they wrote:

“This book is about temporal and spatial patterns that we

find in the electric fields on the scalp (electroencephalogram,

EEG) and cerebral cortex (electrocorticogram, ECoG) (Lopes da

Silva, 1993; Basar, 1998). The patterns are enigmatic, ephemeral,

easily dismissed as noise, and by most accounts epiphenomenal

(Freeman and Baird, 1989). Yet, some of the patterns are neural

correlates of intentional actions, specifically the perception and

discrimination of sensory stimuli by alert, aroused human and

animal subjects. For this reason, they have become a focus of our

experimental and theoretical investigations. What can they tell

us about how brains work? What tools do we need to record and

analyze them?” (Freeman and Quiroga, 2013, p. vii, preface).

It is precisely this approach that has been inspirational to

Davis’s work in collaboration with Robert Kozma and Walter J.

Freeman III, until his last days on earth (24 April 2016 was the day

of his passing).

In Freeman’s last book with Kozma, they presented a set of

models and studies of brain dynamics. Freeman’s pioneering work

included establishing the hierarchy of neurodynamics from K0

to KIII sets in the 70s, starting from granules of 10s or 100s of

thousands of neurons to sensory cortices (Freeman, 1975). This

work was extended in the early 2000s to intentional neurodynamics

throughmultisensory integration andGestalt formation in KIV sets

(Kozma and Freeman, 2003; Kozma, 2007; Freeman and Erwin,

2008).

This is verymuch in line with and supportive of our exploration

here since, in order to study how the brain participates in the

creation of meaning for intentional action, we have focused on

oscillations and wave dynamics caused by fields in the brain,

as Freeman and Kozma have suggested, to complete the neuron

doctrine in their book titled “Cognitive Phase Transitions in the

Cerebral Cortex—Enhancing the Neuron Doctrine by Modeling

Neural Fields” (Kozma and Freeman, 2016). It is important to

note that they have dedicated their book to us “[. . . ] scientists who

persevere in questioning prevailing dogma in search of wisdom in

the frontiers of neuroscience” (p. vi), and a set of scholars have

expressed their commentaries about the value of this work in their

own field of research. In the following, we mention some of the

main ideas of some commentary (chapters) from some scholars.

We start with Bernard J. Baars, who states that “WJ Freeman

and Robert Kozma have developed a strikingly novel approach

to mass action in the brain, especially the horizontal dendritic

neuropil of cortex.” Moreover, in his commentary, he “considers

selected hypotheses from Kozma and Freeman (in press) from the

viewpoint of Dynamic Global Workspace Theory, a rigorous effort

to account for conscious (reportable) brain events.” (Baars, 2016).

Steven L. Bressler indicates that the purpose of his commentary

“ [. . . ] is to advance our understanding of the functional actions

that occur between different areas of the mammalian neocortex.”

Then, he emphasizes that the “[. . . ] topic is of immense importance

to the question of the neural basis of cognition, both in animals

and humans.” (Bressler, 2016). Frank W. Ohl reviews “a set of

studies that have recently improved our understanding of the

nature of large-scale coordinated activity on a mesoscopic scale

[. . . ] by exploiting two experimental conditions.” (Ohl, 2016).

Hans Liljenström explores “both upward and downward causation
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in cortical neural systems, using computational methods with

focus on cortical fluctuations.” He highlights the development

of models of “paleo- and neocortical structures, in order

to study their mesoscopic neurodynamics, as a link between

the microscopic neuronal and macroscopic mental events and

processes.” (Liljenström, 2016). Paul J. Werbos has provided

constructive criticism contrasting his views with the ones of Kozma

and Freeman. He has remained open to the possibility that field

effects could be important to studying and understanding the brain

and mind and given us a plausible quantum perspective (Werbos,

2016).

Finally, we provide the reader with a set of quotes relevant to

our next section, summarizing themain ideas of the approach taken

by Vitiello (2016), as follows:

1. “The observed dynamic amplitude modulated (AM)

assemblies of coherently oscillating neurons are described

in the frame of the quantum field theory of spontaneously

broken symmetry theories.”

2. “In the process of formation of the coherent AM patterns, the

brain goes from disordered, gas-like, high entropy regime to

liquidlike organized neuronal configurations of low entropy,

and a representation in terms of thermodynamic generalized

Carnot-Rankine cycles is proposed.”

3. “The resulting thermodynamic model incorporates criticality

and phase transitions. Long range correlations at the basic

quantum level may sustain emphasis [sic] in neuronal

interactions generating AM patterns.”

4. “The formation of topologically non-trivial structures, such

as vortices, null spykes, phase cones observed in a criticality

regime is described in the frame of the dissipative model.”

The methodologies to be explored in the following sections and

some results obtained with their application have been grounded

on the study by Freeman and Kozma. Here, the focus, as stated

before, is on answering two questions via these methodologies:

(a) how the brain participates in creating knowledge and meaning

and (b) how to differentiate between cognitive states or modalities

in brain dynamics. It is important to note that EEG and ECoG

signal analysis could be complemented with other techniques,

such as functional magnetic resonance imaging, that could

provide a more robust and complementary spatial assessment of

brain activity (Eichele et al., 2005, 2008; Freeman et al., 2009;

Bressler and Menon, 2010; Freeman and Quiroga, 2013). Other

relevant approaches have been considered by Werbos and Davis

(2017), as well as studies on fuzzy systems applied to EEG

(Yu et al., 2025; Cao et al., 2020), are beyond the scope of

this study.

Of the two methodologies we present here, one methodology

is centered around the Hilbert transform and the other is

centered around the Fourier transform (Kamen and Heck, 1997;

Hsu, 1995) via the computation of the power spectrum derived

from the Fast Fourier transform algorithm or the periodogram.

Before explaining the methodologies, let us delve into one of the

central ideas in Freeman’s Neurodynamics, the ideas of meaning

and intentionality.

2 Meaning and knowledge creation for
intentional action

Freeman’s Neurodynamics presents a conception of the brain

that is very different from a computer, a processor of information

only. As a great system neuroscientist, he described the brain as a

living organ within a living body, engaged with its environment,

geared to the creation of knowledge, and meaning for intentional

action. He told us that the currency of the brain, far from

being meaningless sensory information only, happens to be

meaning, comprising various categories of meaning, as they inform

intentional action in the world, shared with fellow human beings,

animals, plants, and rocks, among other elements of nature and

social life. He gave us a very thorough account of this pioneering

idea in his work (Freeman, 2000, 2003, 2004b).

He managed to inspire scientists and philosophers alike to

think deeply and formulate testable theories about how the brain

derives meaning from sensory input, after large-scale integration

in the form of Gestalts, that lead to the execution of plans

of action. A plausible mathematical formulation of intentional

neurodynamics is given in the KIV model (Kozma and Freeman,

2003), a culmination of decades-long work on the hierarchy of

Freeman K sets (Freeman, 1975).

The reader is invited to experience howmeaning emerges when

gazing at the image in Figure 1 and to then write down, from

the start of the experiment, the times at which meaningful images

emerge, at least two of them. This will give the reader a notion of

the time it takes for meaning to arise, considering that he or she has

been gazing at meaningless sensory information for a while until

meaning emerged. It is suggested that the reader take the time now

to do the experiment and then continue reading!

If the reader stared long enough at Figure 1, he or she may have

witnessed the brain creating two meaningful images, an old lady

and a young woman, both in the same picture. This is remarkable,

as one or both images could have gone unnoticed until and unless

the brain “did the trick” to show them to the reader’s visual field

of perception.

Some questions then are as follows: What would be the AM

patterns associated with this gazing task while the reader waits for

the meanings to reveal themselves? What would the brain be doing

at the “eureka” moment? What kind of activity would the brain

manifest while writing the times (intentional actions) at which the

images happened? What kind of transitions would be observed in

brain dynamics from one brain state to the other?

These questions have been addressed in several studies where

intentionality has been grounded in the philosophy of Aquinas,

concerning intention and brain dynamics (Freeman, 2008). Further

work was done by others in studies of the hypothesized Cycle of

Creation of Knowledge and Meaning (CKM), from basic animal

studies to human studies associated with meditative states and

transcendence (Davis et al., 2015a,b; Davis and Gillett, 2023; Davis

et al., 2024). Freeman and Kozma gave us a set of models and

studies of brain dynamics that are very much in line with and

supportive of our exploration here (Freeman et al., 2001; Kozma

and Freeman, 2003, 2016).
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FIGURE 1

Is used here in an experiment for the reader in meaning creation in

brain dynamics. Credit: “My Wife and My Mother-in-Law,” William

Ely Hill, Puck, Vol. 78, No. 2018 (November 6, 1915).

The next section describes the signal processing methodologies

that allow for the classification of cognitive states from

different perspectives.

On one hand, we can study the CKM in different brain

modalities, such as meditation (MED) and scrambled word

resolution (WORDS). We can do that for each frequency band

selected and then understand the similarities and differences

between participants in different modalities for different bands. In

these kinds of studies, we measure pragmatic information peaks

and the number of peaks per second computed from the analytic

signals derived from the Hilbert transform.

On the other hand, the distinction between or classification

of different cognitive states can also be derived from applying

robust comparative statistical analysis to measures such as the

Shannon entropy index (Shannon andWeaver, 1971), the Pearson’s

first order skewness coefficient (Pearson, 1895), the dominant

frequency, and power associated measures, derived from the

normalized power spectrum.

3 Hilbert and Fourier transform-based
brain signal analysis methodologies

The Hilbert Transform Methodology (HTM) has been used by

Davis et al. (2024), and the Fourier TransformMethodology (FTM)

has been applied by Davis et al. (2023a). Here, both methodologies

are described, with the aim that the reader who is interested in

applying them to his or her own studies will have a good guiding

document to do so. In Table 1, a summary of the steps involved in

each methodology is presented.

Fourier transform-based frequency analysis has been used in

many relevant EEG studies when stationarity conditions are met

or achieved when dealt with properly to compute the power

spectrum. However, EEG signals are noisy, non-stationary, non-

linear, showing discontinuities associated with sometimes abrupt

transitions from brain to brain state (Huang et al., 1998). In the case

of rapid changes and transients of brain signals, Hilbert’s analysis

showed clear benefits since the end of the 20th century (Le Van

Quyen et al., 2001). The Hilbert transform is a linear operator that

allows for the analysis of non-stationary signals via the study of

the instantaneous frequency that derives from the Analytic Phase

(Freeman and Quiroga, 2013).

The mathematical techniques associated with these

methodologies are extensively described by Freeman and Quiroga

(2013), along with sound neurophysiological interpretations.

Freeman and Quiroga have made a great effort to explain the

benefits of applying the Hilbert transform when analyzing EEG

and ECoG signals. They also explain how to interpret changes in

analytic amplitude and phase of oscillations in different frequency

bands, as interpreted by systems and cognitive neuroscientists,

such as Buzsáki (2006). For detailed explanations, see Chapters 2,

4, 6, 9, and 10 of the study by Freeman and Quiroga (2013). In

general, the Analytic Phase and Instantaneous Frequency allow

identifying synchronization and desynchronization moments

between signals as measured by different electrodes. Analytic

amplitude is a good marker, showing changes related to cognitive

tasks, for example, particularly in the Gamma frequency band

(Kozma and Freeman, 2017; Buzsaki, 2019). Concerning the

Pragmatic Information index derived from Analytic Amplitude,

it has the property of being an excellent marker of the onset of

changes in amplitude until the brain returns to background activity

after relevant stimuli are detected and processed (Freeman, 2004a,

2005; Freeman and Vitiello, 2006).

Alternative methods to the Fourier transform have been

proposed, namely, time-varying methods such as the short-time

Fourier transform, the use of Wavelets, and the Hilbert transform.

It is important to note that using Morlet wavelets and the Hilbert

transform has also shown benefits when dealing with complex, non-

stationary, and non-linear signals (Quiroga et al., 2002; Freeman

and Quiroga, 2013). A detailed description of each methodology is

presented with a subset of the data obtained from a study in human

cognition, where EEG experiments were conducted in six different

modalities1 for 20 participants. The data were collected at Ian J.

Kirk’s Lab, Center for Brain Research at The University of Auckland

in New Zealand. The results are shown in a set of publications by

Davis et al. (2023a,b).

1 Meditation (MED), scrambled words resolution (WORDS), ambiguous

images discovery (IMG), mental arithmetic (MM), listening to and

di�erentiating between pleasant sentences and gibberish (SENT), and

watching a video that displays ambiguous images with a music audio (VDO).
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TABLE 1 Description of the steps for each methodology used for brain signal analysis.

Steps HTM Comments Steps FTM Comments

Remove Artifacts from raw EEG data

for each electrode to obtain clean data.

Use a Notch filter to remove

50–60Hz. Filter all types of

artifacts and detrend the data.

Remove Artifacts from raw EEG data for

each electrode to obtain clean data.

Use a Notch filter to remove 50–60Hz.

Filter all types of artifacts and detrend

the data.

Filter the Clean EEG data in the band of

interest for each electrode.

Use an FIR bandpass filter with

appropriate parameters. The

signals ought to be ideally sampled

at 1,000 Hz.

Compute the Power Spectrum using the

Fast Fourier Transform or the

Periodogram, for each electrode, in

sub-windows of 500ms.

Normalize each Power Spectrum in each

sub-window, for each electrode, and

save them for further computations.

Apply Hilbert Transform. Compute Analytic Amplitude

(AA), Analytic Phase (AP), and

Instantaneous Frequency (IF) for

all electrodes.

Compute the Shannon Entropy Index (H)

from the Normalized Power Spectrum for

each electrode in each sub-window.

You will need the probability per

frequency band derived from each

Normalized Power spectrum.

Compute Pragmatic Information Index

(PI) and Number of Peaks per Second

(NPS).

PI= AA2/ED, where ED is the

Euclidean distance between the AA

or AP signal in each particular time

step t∗ , from all electrodes.

Find the dominant frequency (the mode)

for each power spectrum.

The Normalized Power Spectrum is

treated as an empirical probability

distribution.

Compute Pearson’s 1st-order skewness

coefficient (PSk) from the Normalized

Power Spectrum for each electrode in each

sub-window.

Compute the mode, mean, and standard

deviation of the empirical probability

distribution derived from the

Normalized Power spectrum.

Compute Total Power (TP) from the

Normalized Power Spectrum for each

electrode in each sub-window.

Compute mean and standard deviation

for H, PSk, DF and TP for each electrode

over all sub windows. This can also be

done per participant, modality and band

according to the needs for analysis.

Software, such as Octave, Python, or MATLAB, among others, will be needed to perform all computations.

4 Hilbert transform-based brain signal
analysis methodology

To derive signals in different bands and to be able to learn about

the dynamics of meaning creation, we had to filter the signals and

then perform a Hilbert transform as described in Equations 1, 4

(King, 2009; Hahn, 1995).

By applying the Hilbert Transform, each EEG electrode signal

s(t) is transformed to SA(t) as follows:

SA(t) = s(t) + i s(t)
∗

(1)

SA (t) = AA (t) ei AP(t) (2)

where s(t)∗ = 1
π
p.v.

∫ +∞

−∞

s(t′)
(t−t′)dt

′ and where p.v. is the Cauchy

Principal value.

We compute the Analytic Amplitude (AA), Analytic Phase

(AP), and Instantaneous Frequency (IF) as follows:

AA (t) =

√

s (t)2 + s (t)∗2 ; AP (t) = atan

(

s (t)∗

s (t)

)

(3)

IF (t) =

(

1

2π

) (

1AP (t)

1t

)

=

(

1

2π

) (

AP (t) − AP(t − 1t

1t

)

(4)

The MATLAB “hilbert” function was used to compute the

imaginary part s(t)∗ from the real-valued signal s(t).

In Figure 2, we observe some of the important features of

the signals derived from the Hilbert transform and how they

relate to each other so that the moments of synchronization

and desynchronization for all 128 channels are easily identified.

A very relevant moment where we observe highly synchronized

signals is from 2,075 to 2,250ms, where the signal amplitude

SA(t), the analytic amplitude squared AA(t)2, the Analytic Phase

AP(t), the Euclidean distance ED(t) based on AP(t), the pragmatic

information index He(t), and the instantaneous frequency IF(t)

are shown.

Relevant studies show the use of this methodology throughout

the years (Freeman et al., 2003; Kozma et al., 2012; Davis et al.,

2015a,b; Kozma and Freeman, 2003, 2016).

A comparison between two participants, based on the

pragmatic information index in the modalities MED and WORDS,

is presented.

4.1 Computation of the pragmatic
information index

To analyze the origin, structure, and role of background EEG

activity, Freeman invoked the notion of Pragmatic Information (PI,

He index) in Freeman (2004a), where he writes that:

This ratio is analogous in form to a definition of order by

Haken (1983, p. 181, Equation 6, p. 178), and to “pragmatic

information” defined by Atmanspacher and Scheingraber

(1990) using the concept of “efficiency” (Equations 8–10) as a

“fundamental extension of Shannonian information” (pp. 731–

2). Thus, He might be regarded as an index of the time-varying

quantity of the information in wave packets that is displayed in

sequences of their AM patterns.

Freeman (2005) writes that:

Recent advances in the application of theHilbert transform

to EEGs in the beta and gamma ranges (Freeman and Rogers,

2002; Freeman, 2004a) led to the detection in the EEG of spatial
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FIGURE 2

Illustrates moments of synchronizations and desynchronization for all 128 channels, with highly synchronized signals between around

2075–2250ms, where (a) is the signal amplitude SA(t), (b) the analytic amplitude squared AA(t)2, (c) Analytic Phase AP(t), (d) Euclidean distance ED(t)

based on AP(t), (e) pragmatic information index He(t), and (f) instantaneous frequency IF(t).

AM patterns having high degrees of coherence, stability, and

intensity. These epochs were identified with high values of an

index, He, that Atmanspacher and Scheingraber (1990) labeled

“pragmatic information.”

The Pragmatic Information Index (PI, He) has been used to

detect the creation of knowledge and meaning in brain dynamics in

a way that would allow us to explain plans of action after a salient

stimulus has been identified as meaningful.

In the study by Freeman and Vitiello (2006), they state that the

best predictor of the “onset times of ordered AM patterns was the

ratio of the rate of free energy dissipation to the rate of change in

the order parameter.” The ratio is the pragmatic information index2

(PI), He (t), following Atmanspacher and Scheingraber (1990), as

a fundamental extension of and alternative to the Shannonian

information, and formulated as stated before. In the study by

Freeman and Vitiello (2006), they used the approximation given in

Equations 8, 9, 10 in Freeman (2004a), as follows:

He (t) =
〈

A
2 (t)

〉

De (t) (5)

2 The symbol 〈〉 represents the spatial ensemble average, where A(t), the

analytic amplitude is a measure of distance that can be based on analytic

amplitude AA(t), or on analytic phase AP(t). Here we have defined A(t) and

De(t) as AA(t) and ED(t), respectively.

Let us define Ne as the number of electrodes placed on the scalp

of the participants to measure brain activity to derive the squared

analytic amplitude as A2(t), represented as a spatial vector at each

time step t, where A(t) = {A(t)1, A(t)2, ..., A(t)Nc}, where A
2(t)

is treated as an order parameter. The Euclidean distance then is

defined as:

De(t) = |A2(t) − A
2(t − 1)|

2
(6)

If we choose to express De(t) as a function of AP(t), then the

computations are as follows in Equations 7–11.

Let us define a time index as t = 1, 2, . . . .., t∗,. . . ., T and an

electrode index as i= 1, 2, .. . . , Ne. Then, it follows that:

1 AP(t∗)i = AP
(

t∗
)

i
− AP

(

t∗
)

i−1
∀ i = 2, Ne, for t = t∗ (7)

1 AP(t∗) =
{

1 AP(t∗)1,1 AP(t∗)2 ,. . .1AP(t∗)Ne
}

(8)

De

(

t∗
)

=
∣

∣1 AP(t∗)
∣

∣

2
∀ i = 2, Ne (9)

De

(

t∗
)

=

√

√

√

√

Ne
∑

i=2

[

1 AP(t∗)i
]2

(10)

De (t) =
(

De (1) , De (2) , . . . ., De

(

t∗
)

, . . . De (T)
)

∀ t = 1, T

(11)

where i is a particular channel, t∗ is a particular point in time,Ne is

the total number of channels (electrodes), and T is the time length

of the signal or last temporal point.
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FIGURE 3

Shows a comparison between two participants in the modalities MED and WORDS in terms of PPS. A threshold (Th) is set to indicate a significant PPS

of interest.

Following in Figure 3, a comparison based on He(t) between

two participants in the modalities MED and WORDS is shown.

It can be observed that Participant 3 shows a smaller number of

significant peaks per second (PPS) for the modality MED than for

the modality WORDS. For Participant 7, the opposite is observed;

the modality MED shows more PPS than the modality WORDS.

It must be noted that this is just an example where 2,000ms

of data from stimulus nine (S9) in each modality for the frequency

band theta is shown. When taken together, with all the stimuli per

modality per participant in each band, some important patterns

start to emerge, as shown in Figure 4. Most of the band’s behaviors

are very similar for all modalities for both participants, as shown in

Figures 4a, b.

However, some differences can also be outlined, where

Participant 3 shows a significantly lower amount of PPS in the

modality MED for the High Gamma (H-Gamma) frequency band

than Participant 7, who displays a very high number of PPS for the

same modality and band. In the modality WORDS, we observe, in

general, higher PPS values for Participant 3 than for Participant 7.

A better assessment can be done in Figures 4c, d, where it

can be observed that the modality MED shows less PPS activity

for Participant 3 than Participant 7. All bands’ activities are

shown in Figures 4e, f. Apart from that, most modalities seem to

behave statistically similarly. This will need further research to be

conclusive. It is important to note that in Figure 4, all themodalities

and bands studied in the work by Davis et al. (2024) are displayed

for illustration only for Participants 3 and 7. From the end of this

section onwards, the focus will continue to be on modalities MED

and WORDS.

Let us remember that the results presented here rely on twenty

(20) participants only, and the modalities selected aim to illustrate

the application of the methodology presented. It is important to

highlight that this will allow for the exploration of how the brain

participates in creating knowledge and meaning, as studied by

Davis and Kozma (2013) and Davis et al. (2013). This subject will

be elaborated on in the coming section.

Now, we are ready to proceed to the exploration of the power

spectrum-based methodology.

5 Fourier transform-based brain signal
analysis methodology

In this section, several power-spectrum-based indices of

interest are introduced to aim at a classification of different

cognitive states (Davis et al., 2020). The indices of interest are

the Shannon entropy index (H), Pearson’s 1st-order skewness

coefficient (PSk), Total Power (TP), and Dominant Frequency

Band (DF).

The entropymeasure H, as introduced by Shannon andWeaver

(1971), is used, giving the degree of randomness in an EEG signal,

the Pearson’s 1st-order skewness coefficient (PSk), as a measure of

structure described by the degree of asymmetry of a distribution,

as shown by Pearson (1895) and further explored by Groeneveld

and Meeden (1984). The Pearson’s 1st-order skewness coefficient,

described and formulated by Weisstein (2022), is based on the

mean, standard deviation, and mode. Following the computation

of H, PSk, TP, and DFB3 are shown in detail.

3 It is important to note that the measures of interest, H, PSk, TP, and

DFB, are computed in windows of 500ms. This window may vary from

study to study, and it is to be determined by the research team according

to the specific needs for analysis. Moreover, DFB and DF will be used

interchangeably unless noted.
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FIGURE 4

Shows Participant 3 (a, c, e) and Participant 7 (b, d, f) PPS for every modality and band (a, b), Mean PPS with confidence intervals per frequency band

(c, d), Mean PPS with confidence intervals for each modality (e, f). In this figure, all the modalities and bands studied in Davis et al. (2024) are

displayed for an illustration only, for Participants 3 and 7.

The power spectrum becomes a very useful tool, as explained

by Freeman and Quiroga (2013) in Chapter 2. Moreover, in more

recent studies, the use of the power spectrum has been proposed to

compute the Shannon Entropy Index (H), Pearson’s first skewness

coefficient (PSk), Total Power (TP), and Dominant Frequency (DF;

Davis et al., 2020).

5.1 Computation of the H, PSk, TP, and DFB

In this section, the equations for the computations of the

measures of interest based on the discrete form of the Temporal

Power Spectrum (PSDt) are presented as follows:

PSDt
.
= PWi (FBi) ∀ i, for each time window t (12)

where PWi corresponds to the power of frequency band “i” (FBi).

and DFB=max (FBi) ∀ i, for each time window t

or alternatively, the mode of the PSDt

From the normalized PSDt, H is derived as follows:

H = −
∑

n
i=1pi∗ log2

(

pi
)

(13)

where pi =
PWi

TP

and TP is the total power computed as:

TP =
∑

n
i=1PWi (14)

The PSk computation is as follows:

PSk =

∣

∣

∣

∣

(MeanPSDt −ModePSDt )

SDPSDt

∣

∣

∣

∣

(15)

In Equation 15, ModePSDt refers to the dominant frequency

band (DFB or DF). The parameters MeanPSDt and SDPSDt refer to
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FIGURE 5

Shows the EEG electrode grid positions with numbers (top left), the computational matrix associated with the grid of electrodes (bottom left), and a

spatial 2D landscape image displaying the H measure per electrode, based on the computational matrix (top right). This image could be derived from

values of H, PSk or any other measure of interest.

the mean and standard deviation, respectively, derived from the

normalized PSDt and treated as a probability distribution.

When computing H, the probability pi derived from the PSDt

is used, where the number of a particular band is described by a

fixed number “i” for all PSDt when applied to any participant and

modality, as follows:

PSDt
.
= PWi (FBi) ∀ i = 4, 5, 6, . . . , 48 Hz (16)

The need arises sometimes to use a modified version of H

called Hc, as treated by Rajaram et al. (2017). Hc may apply when

comparing brain dynamics for different brain areas in different

bands, participants, and modalities, which would depend on a

unique and specific probability distribution. This is outside of the

scope of the present study.

A qualitative comparison between Participants 3 and 7 in the

modalities MED and WORDS for H and PSk values is presented.

Before doing that, an explanation is given of the basics from where

the images for analysis are derived. Figure 5 shows a flow chart

to understand the spatial 2D landscape images, displaying values

for H to compare different cognitive states between participants in

different modalities. This also applies to PSk or any other measure.

In Figure 6, some results for Participants 3 and 7 are shown

by displaying the H and PSk measures in modalities MED

and WORDS.

Particularly in MED (Left), it can be observed that Participant

3 presents lower PSk values in the central prefrontal cortex

and higher ones in the center of the central region. Moreover,

Participant 7 shows a more even distribution of PSk values for all

areas. The entropy values show a similar pattern.

WORDS (Right) shows that the values for PSk are very similar

for both participants apart from the central and left and right

prefrontal areas, which show higher values of PSk for Participant 3.

In general, the values for H are higher for Participant 3

than for Participant 7, and it can be observed that Participant

3 shows high entropy values for the central, left, and right

prefrontal areas.

Finally, it is very clear from Figure 7 (Top and Bottom) that

both the values of H and PSk are higher for modality WORDS

than for modality MED for both participants. It is important

to mention that the values for all electrodes (the whole brain)

from all 500ms windows are included in the computation of

the mean and errors for H and PSk for both participants in

both modalities.

Now, we are ready to move to the Dominant Frequency Band

(DFB) analysis via several types of images and displays. The first
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FIGURE 6

(Left) Shows PSk and H values in comparative landscapes, for Participants 3 and 7 in modality MED. (Right) Shows PSk and H values in comparative

landscapes, for Participants 3 and 7, in modality WORDS. Note that the label Front refers to the front of the brain and similarly for the Back and

Right labels.

FIGURE 7

(Top) Shows a comparison between Participants 3 and 7 for mean values of H and PSk, with 95% confidence intervals, for modalities MED and

WORDS. The mean values are computed from the values of all the electrodes (the whole brain) taken from all 500ms windows. (Bottom) Shows

mean values of H and PSk with 95% confidence intervals for modalities MED and WORDS for Participants 3 and 7.

type shows the time spent in the DFB in different brain areas and,

overall, in the whole brain.

Figure 8 shows such displays for Participant 3 in the

modality WORDS. It is clear that the Alpha band dominates

in the brain dynamics of this participant. However, the

theta, L-beta, and H-beta frequency bands show some

significant time spent in those bands in the central and

prefrontal areas.

Figure 9 shows the same type of display for Participant 7,

also in the modality WORDS. Again, the Alpha band dominates

the brain dynamics of this participant. However, this participant

shows a significant amount of time spent in the theta, L-beta, and
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FIGURE 8

Shows, for Participant 3, in modality WORDS, six 2D spatial landscapes, in di�erent frequency bands, of the di�erent brain areas that measure the

time that the DFB is in each band (left). Overall time spent by DFB in each band (right).

H-beta frequency bands in the prefrontal, parietal, and occipital

cortices, respectively.

Overall, both participants show relatively very similar

behaviors. It is important to note at this stage that both participants

live a peaceful life in nature and practice meditation on a regular

basis. That explains why the dominant frequency band for

both is the Alpha band, based on a previous recent publication

(Davis et al., 2023a). Moreover, some differences are observed

for both participants, as mentioned before, which is something

expected since every participant’s brain dynamic is very different

and idiosyncratic.

This type of qualitative analysis may prove to be very

useful in clinical research as a tool for diagnostic pathologies

associated with certain brain patterns in certain areas

and bands.

In Figure 10 (Top and Bottom), the statistics associated with

the DFB for each modality for each participant are shown. When

comparing the behavior of both participants in both modalities

based on DF, we observe that DF for modality WORDS shows

larger numbers than for modality MED. Moreover, modality

WORDS shows similar values for both participants, while for

modality MED, Participant 7 shows slightly larger numbers than

Participant 3, although both are clearly dominated by the Alpha

frequency band.

Furthermore, in Figure 10, different behaviors based on TP

for each modality for each participant are observed. The behavior

of both participants in both modalities based on TP shows

that TP values are smaller for modality WORDS than for

modality MED.

Participant 7 displays significantly greater values for TP

for both modalities. The question that arises is what that

would mean when distinguishing the kind of brain dynamics

that both participants show since they are of a similar age

range, cultural upbringings, and lifestyle; however, one is a

female and the other a male, both living in a peaceful and

caring community. This is reminiscent of Freeman (1995). Such

situations have been shown to promote correlations between

participants’ physiological rhythms, such as in Heart Rate

Variability studies, that presumably, and most likely, are associated

with brain dynamics, whereas Alpha brain rhythms are, in

turn, associated with psychophysiological coherent states, that

may be prevalent among such community members (Plonka

et al., 2024). Could it be that Participants 3 and 7 are

somehow synchronized in Alpha rhythms, considering that most

of the time, their brain dynamics are dominated by the Alpha

frequency band? This certainly needs further investigation with a

larger database.

In Figure 10 (Bottom), the quantitative statistical analysis

associated with the above qualitative analysis is presented.

To finalize this section, a graphic synthesis of the analysis

results that are derived from the power spectrum for both

participants in both modalities are presented, to obtain all the
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FIGURE 9

Shows, for Participant 7, in modality WORDS, six 2D spatial landscapes, in di�erent frequency bands, of the di�erent brain areas that measure the

time that the DFB is in each band (left). Overall time spent by DFB in each band (right).

FIGURE 10

(Top) Shows a comparison between Participants 3 and 7 for mean values of the Dominant Frequency (DF), with 95% confidence intervals for

modalities MED and WORDS (left) and the Total Power (TP) values (right). (Bottom) Shows mean values of Dominant Frequency (DF) with 95%

confidence intervals and the values for Total Power (TP) for modalities MED and WORDS for Participants 3 and 7.
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FIGURE 11

Shows power spectrum with measures of interest, namely, H, PSk, DF, and TP for both participants in both modalities.

measures of interest, namely H, PSk, DF, and TP, as shown in

Figure 11.

There are significant differences between the power spectrums

of both participants as expected from our previous analysis. The

power spectrum of Participant 7 shows a bimodal distribution,

where the Alpha and Beta bands show more power than

Participant 3.Moreover, modalityMED showsmore power for both

participants. All the values for the measures of interest and plots

are shown.

6 Some reflections on the cycle of
creation of knowledge and meaning

Through the years, from 2011 to 2025, in Davis’s collaboration

with Walter J. Freeman, while he was alive, together with his

collaboration with Robert Kozma, Grant Gillet, and Florian

Schübeler, till the present day, the hypothesized cycle of creation

of knowledge and meaning in different cognitive states remains his

main field of study in Cognitive Science.

Davis’s reflections on different categories of meanings and

values (Davis, 2009) and the relevance that they have for human

intentional action and values-based decision-making, points in

the direction of “[. . . ] fundamentally richer understandings that

include the primacy of action, intention, emotion, culture, real-time

constraints, real-world opportunities, and the peculiarities of living

bodies.” (Freeman and Núñez, 1999, p. ix). This remains one of

the most important areas of knowledge to develop if we ought to

survive long enough to preserve humanity and advance to better

scenarios of individual inner peace and social harmony, particularly

in this age of AI.

The main research questions are: (a) How does the brain

participate in the creation of knowledge and meaning? (b) How

do we classify different cognitive states and categories of meanings

when different brain oscillations are manifested in different areas

FIGURE 12

Shows mean NPS with confidence intervals for modalities MED and

WORDS, in every band, for all twenty (20) participants taken

together. See more general results in Davis et al. (2024).

of the brain, when the human being is presented with different

kinds of stimuli coming from his or her environment, as well as

internal signals, such as the ones generated when the human being

is thinking, meditating, or being creative? Moreover, (c) What

would it mean for human beings to master, at will, the creation

of meanings and values of his or her choice, together with the

choosing of lifestyles conducive to a sound spiritual and intellectual

foundation, general wellbeing, and the power to contribute to social

harmony via new social contracts?

As explained in one of the sections above, the mathematical

framework used to derive a measure for meaning creation from

brain signals is the Hilbert Transform methodology, from where,
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FIGURE 13

Shows a snapshot of the twenty (20) participants in modality MED. These snapshots are obtained each for every 500ms, and when played one after

the other, it creates an animation or movie. This is called the art of encephalography.

after a set of steps, we derive NPS that have been associated

with meaning creation moments and thought patterns in previous

studies (Davis et al., 2015a,b, 2024; Joshua Davis et al., 2024).

In Figure 12, it can be observed that the Mean NPS shows

significantly different behaviors for different bands within each

modality and that modality MED displays much lower values than

modality WORDS for the Beta and Gamma bands, while very

similar values for theta and alpha. This may respond to findings

associating theta and alpha as gating bands on which Beta and

Gamma ride. This has been shown to relate to thalamo-cortical

theta rhythms by Werbos and Davis (2017) and in studies showing

the alpha and theta linkage (Freeman and Quiroga, 2013; Jensen

and Mazaheri, 2010). Note that theta and alpha have also been

shown to be prevalent in meditative and relaxation cognitive states

(Lagopoulos et al., 2009).

Finally, it is important to say that as part of the methodology,

a set of brain dynamics movies have been derived that allow

the display of spatio-temporal patterns of behavior in the

measure or index of our choice. In Figure 13, a snapshot

of the 20 participants in modality MED is shown. These

snapshots are obtained each 500ms, and when played one

after the other, it creates an animation or movie. This is

called the art of encephalography (Davis et al., 2015a,b; Davis,

2017).

These movies allow encephalographers, neuroscientists,

cognitive scientists, and students to learn about brain dynamics in

different cognitive states and significant moments of meaning and

knowledge creation when choosing the appropriate measures and

indices. As a wine connoisseur is trained for years to recognize wine

characteristics when tasting them, an encephalographer-connoisseur

could be trained via the art and science of brain dynamics movie

watching to identify cognitive states and relevant brain events.

This, when done in collaboration with systems neuroscientists

and cognitive neuroscientists, can lead to the refinement of actual

theories and the creation of new brain theories.

7 Conclusion

Freeman Neurodynamics, and part of his legacy, has been

briefly introduced. He has provided the foundations for a

methodology that has been presented and that incorporates

the application of the Hilbert and the Fast Fourier transforms

algorithms in the computation of pragmatic information

indices leading to the NPS index, and Power Spectrum based

indices, such as H, PSk, DF, and TP, which show significant

brain events and different cognitive states. Some results have

been derived from real human data to illustrate the power

and benefits associated with the methodology presented. It

has been pointed out briefly the implications of using this

methodology in these kinds of studies for the understanding

of meditative states in contrast with more engaged states,

presumably accompanied by a sense of individual inner peace and

general wellbeing.

We must keep in mind the limitations of the methodologies

presented when applying the pragmatic information index in

dealing with a complex system such as the brain, particularly when

making an attempt to understand how the brain participates in the

creation of meaning.

Other methodologies to deal with these complexities have been

applied and also deserve careful attention (Buzsaki, 2019; Kelso and

Tognoli, 2007; Zhang et al., 2019).

In general, we ought to account for individual variability, which

could make it difficult to derive generalized results. One way to

deal with such a challenge would be to use machine learning

methods for individualized analysis considering participant’s

specific characteristics, particularly dealing with cognitive states

characterization (Lombardi et al., 2025). This could complement

and enhance the analysis. Other methods could be useful for

the task, as mentioned before and shown in Werbos and Davis

(2017), and also in the application of fuzzy systems to EEG signal

characterization (Yu et al., 2025; Cao et al., 2020). Other methods
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that have been used in different fields may also apply to EEG signal

analysis and deserve consideration (Versaci and Morabito, 2018;

Versaci et al., 2025).

It is anticipated that the use of this general methodology will

contribute to deepen our understanding of brain dynamics, diverse

cognitive states, and their neuro-energetics (Noack et al., 2017); in

the context of intentional action, this will certainly require more

research, with a more diverse and larger database of participants to

reach more conclusive results.

We dedicate this study to the memory of Walter J. Freeman, a

beloved friend and collaborator to two of the authors.
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