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The brain criticality hypothesis has been a central research topic in theoretical

neuroscience for two decades. This hypothesis suggests that the brain

operates near the critical point at the boundary between order and disorder,

where it acquires its information-processing capabilities. The mechanism that

maintains this critical state has been proposed as a feedback system known as

self-organized criticality (SOC); brain parameters, such as synaptic plasticity, are

regulated internally without external adjustment. Therefore, clarifying how SOC

occurs may provide insights into the mechanisms that maintain brain function

and cause brain disorders. From the standpoint of neural network structures, the

topology of neural circuits also plays a crucial role in information processing,

with healthy neural networks exhibiting small world, scale-free, and modular

characteristics. However, how these network structures a�ect SOC remains

poorly understood. In this study, we conducted numerical simulations using

a simplified neural network model to investigate how network structure may

influence SOC. Our results reveal that the time scales at which synaptic plasticity

operates to achieve a critical state di�er depending on the network structure.

Additionally, we observed Dragon king phenomena associated with abnormal

neural activity, depending on the network structure and synaptic plasticity time

scales. Notably, Dragon king was observed over a wide range of synaptic

plasticity time scales in scale-free networks with high-degree hub nodes. These

findings highlight the potential importance of neural network topology in shaping

SOC dynamics in simplified models of neural systems.

KEYWORDS

brain criticality hypothesis, self-organized criticality (SOC), neuronal avalanches,
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1 Introduction

A number of empirical and theoretical studies have examined the brain criticality

hypothesis, which is derived from an idea in statistical physics and complex systems science

(Beggs and Timme, 2012; O’Byrne and Jerbi, 2022). In brief, this hypothesis posits that

neural networks operate near a critical point that is the boundary between disordered

and ordered phases, and exhibit critical phenomena whose sizes follow a power law

distribution and long-range spatial or temporal correlations. Also, the properties stemming

from criticality can maximize some functions such as information processing capabilities
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and transmissions, suggesting that a brain benefits from being

critical (Shew and Plenz, 2013; Bertschinger and Natschläger, 2004;

Kinouchi and Copelli, 2006; Boedecker et al., 2012; Avramiea

et al., 2022; Haldeman and Beggs, 2005; Safavi et al., 2024). While

much empirical evidence that brains exhibit critical properties

has been accumulated (Petermann et al., 2009; Shew et al., 2009;

Friedman et al., 2012; Tagliazucchi et al., 2012; Shriki et al., 2013),

a considerable number of studies reported that brain disorders

are associated with non-critical dynamics [reviewed in Zimmern

(2020)]. For example, in the brain dynamics of individuals with

neurological disorders such as epilepsy and schizophrenia, there

was a deviation from the power law neural avalanche (Meisel et al.,

2012; Poil et al., 2012). Considering the benefits of criticality, it is

natural that brain disorders may be influenced by loss of criticality.

Thus, it is essential to elucidate how the deviations from critical

states occur for understanding, predicting brain disorders.

For the brain to be critical, the factors (i.e., control parameters)

underlying the brain system, such as synaptic strength, must be at

or near the appropriate values, i.e., critical value. How are such

parameters of the neural networks of (healthy) individuals tuned

to be the value? It has been suggested that self-organized criticality

(SOC) plays an important role in that (Beggs and Plenz, 2003;

Levina et al., 2007; Meisel and Gross, 2009; Rubinov et al., 2011;

Ma et al., 2019). SOC refers to the property of feedback systems

that are homeostatically keeping a critical state based on internal

rules without external controls. An example of SOC in the brain is

synaptic plasticity by which synaptic strength is adaptively tuned

to a desirable state (Hesse and Gross, 2014; Beggs and Plenz, 2003;

Ma et al., 2019). Previous studies showed that control parameters

determining the system dynamics can hover around a critical point

depending on the parameters of the plasticity rules or homeostatic

mechanisms that give rise to SOC (Bonachela and Munoz, 2009;

Bonachela et al., 2010; Kinouchi et al., 2019). This results in not a

critical system perfectly tuned but a quasi-critical system.

Moreover, a peculiar phenomenon known as “Dragon king” has

been identified in complex systems through SOC (self-organized

criticality) (Sachs et al., 2012; Kinouchi et al., 2019). Dragon kings

refer to events that appear as statistically significant outliers within

distributions that otherwise follow a power law, characterized by

their extremely large scale and departure from the overall scaling

behavior (Sornette, 2009). Such phenomena have been observed

in a variety of systems, including financial markets, earthquakes,

weather systems, and the brain (Sornette and Ouillon, 2012; Lei,

2012; Peters et al., 2012; Süveges and Davison, 2012; Osorio et al.,

2010), and in the brain, they are thought to be associated with

dysfunctions in neural activity, such as epilepsy. Unlike typical

large events observed in supercritical states, Dragon kings are

distinguished by their qualitative and statistical singularity. That is,

they are extreme outliers that do not follow the expected scaling

laws, such as power law distributions. Importantly, these events

are not merely large-scale events that become more frequent in

the supercritical regime, but are instead associated with distinct

internal feedback mechanisms that destabilize the equilibrium

maintained by SOC (Kinouchi et al., 2019). In neuroscience, this

distinction is of particular importance. This is because Dragon

king-like events—such as pathological epileptic seizures—are not

simply exaggerated versions of typical neural avalanches, but are

believed to emerge from the breakdown of regulatory systems (e.g.,

synaptic plasticity) that normally serve to stabilize criticality. Thus,

the occurrence of Dragon kings may indicate a collapse of SOC

itself. Such abnormal neural activities are thought to arise from a

failure in the self-organizing mechanisms that sustain criticality.

For example, numerical simulations of spiking neural networks

have reported that abrupt fluctuations in synaptic strength can

trigger Dragon king-like events in the distribution of neuronal

firing (Kinouchi et al., 2019). Furthermore, an analytical solution of

a simplified model has demonstrated that the interplay between the

increase and decrease of a control parameter determines whether

Dragon kings emerge (Mikaberidze et al., 2023). These findings

suggest that the parameters governing SOC can have a direct impact

on the dynamics and functional performance of the neural system.

Therefore, understanding the emergence of Dragon kings is not

just merely a refinement of criticality theory, but is also crucial for

identifying and potentially preventing pathological brain states that

result from failed self-organization. This makes the study of Dragon

king phenomena highly relevant to both theoretical neuroscience

and clinical applications.

In general, brain dynamics underlies network structures (i.e.,

topology). While experimental evidence suggests that healthy

neural networks possess three key network structures: small

worldness, modularity, and scale-freeness (Stam, 2004; Achard

et al., 2006; Bassett et al., 2010), in neural networks associated

with certain health issues, one or more of these properties are

often found to be lacking (Heiney et al., 2021). Although these

facts indicate that network structures have important roles in

information processing, how properties of networks contribute

to brain functions related to information processing remains

insufficiently explored. One possible direction is to explore the

relationship between brain criticality and network structures.

Previous studies show how the critical point changes or the critical

regime stretches depending on the structure of the neural network

(Pazzini et al., 2021; Kinouchi et al., 2019; Costa et al., 2017; Wang

and Zhou, 2012; Moretti and Muñoz, 2013). However, the way in

which network structure affects the characteristics of SOC is not

fully understood.

In this study, we numerically investigated how structural

characteristics of simplified neural networks may contribute to

realizing and maintaining a critical state, within the framework

of SOC. By constructing various network structures, ranging from

random networks to small world, modular, and scale-free networks,

we examined how each structuremay affect the emergence of power

law distributed neural avalanches and the occurrence of Dragon

king phenomena. Particular attention was given to the interplay

between synaptic plasticity timescales and network topology. The

findings of this modeling study are expected to provide insights

into the potential relationships between network structure and

SOC-related dynamics, shedding light on missing links in the

understanding of SOC mechanisms.

2 Methods

2.1 Modeling of neural networks

To model neural networks, we utilize the discrete time

stochastic Leaky Integrate-and-Fire (LIF) model following previous
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studies (Kinouchi et al., 2019; Pazzini et al., 2021). This model

expresses the phenomenon of neuronal firing, in which a neuron

generates an electrical signal when the membrane potential exceeds

a certain threshold and transmits it to other connected neurons.

In a deterministic LIF model, the same input always generates

the same output. However, in the actual brain (for example, in

cortical neurons), although generally stable responses are observed,

slight variability can be seen across trials, and even when the same

stimulus is presented repeatedly, some variation in the neuronal

response is confirmed (Bryant and Segundo, 1976; Mainen and

Sejnowski, 1995). Therefore, in this study, we use a stochastic LIF

model to account for the subtle stochastic fluctuations.

Let N denote the number of neurons, and the firing of neuron i

at time t is represented by Xi[t], where Xi = 1 indicates firing and

Xi = 0 indicates non-firing. LetVi[t](≥ 0) represent themembrane

potential of neuron i at time t. If neuron i fires at time t, then its

membrane potential at time t + 1 is set to Vi[t + 1] = 0.

When there is a connection from neuron j to neuron i, let

neuron j be the presynaptic cell and neuron i the postsynaptic cell.

The synaptic strength from the neuron j to i is denoted asWij(> 0),

and the reverse value Wji is set as 0 because of unidirectionality.

If there is no connection between neurons i and j, both Wij and

Wji are set to 0. The time evolution of the membrane potential Vi

is following:

Vi[t + 1] = µiVi[t]+ Ii[t]+
1

ki

N
∑

j=1

WijXj[t]. (1)

Here, µi and Ii[t] represent the leak parameter and external

input at time t, respectively. Then, ki is the number of inputs to

the neuron i.

The firing probability of the neuron i at time t is determined by

its membrane potential Vi[t]. Thus, let P(Xi[t] = 1|Vi[t]) denote it.

We simply assume that the probability becomes non-zero when Vi

exceeds the threshold θi, and the larger the value of Vi, the higher

the firing probability. On the other hand, when the membrane

potential Vi does not exceed the threshold θi, neuron i may still

fire spontaneously with a small probability, denoted as pspont. This

relationship is expressed as follows:

P (Xi[t] = 1 | Vi[t]) ≡

{

8 (Vi[t]) if Vi[t]− θi > 0,

pspont otherwise,
(2)

8 (Vi[t]) =
Ŵi (Vi[t]− θi)

1+ Ŵi (Vi[t]− θi)
. (3)

In Equation 3, Ŵi represents the gain parameter of the neuron

i (with Ŵi > 0.0). Consequently, when the membrane potential Vi

of the neuron i exceeds the threshold value θi (Vi > θi), the firing

probability of the neuron i is determined by an increasing function

of the gain parameter Ŵi and the difference between the membrane

potential Vi and the threshold θi. In this study, unless otherwise

specified, the following parameters are used:N = 10, 000,µi = 0.0,

Ii[t] = 0.0, pspont = 0.0001, Ŵi = 0.8, and θi = 0.0.

2.2 Derivation of the critical value

To estimate the critical value Wc of the average synaptic

strength, we calculate the susceptibility χs. The avalanche size s

is defined as the total number of neurons that become active,

from the moment when the number of spikes first becomes non-

zero among the 400 neurons to the point when it returns to

zero. Susceptibility is a well-established metric that quantifies

the sensitivity or instability of the dynamics of a system, even

in the absence of external input, and is theoretically known to

exhibit a peak at the critical point (Fisher, 1967; Stanley, 1987).

Consequently, the critical point can be inferred as the value of

W at which χs reaches its maximum. In this analysis, we focus

on the case in which the average synaptic strength W remains

constant over time. The simulations were carried out by varying

W from 0.00 to 4.00 in increments of 0.01. For each value of W,

we performed sufficiently long simulations, recorded all avalanche

sizes s, and computed the mean 〈s〉 and the second moment
〈

s2
〉

.

The susceptibility χs was then defined as:

χs =
〈

s2
〉

− 〈s〉2 (4)

By plotting χs(W), we identified the value ofW that maximized

the susceptibility, and defined this value as the critical synaptic

strengthWc. The result is shown in Supplementary Figure S1.

2.3 Mathematical model for self-organized
criticality

For SOC in neural network models, various mathematical

models have been proposed in previous studies (Kinouchi et al.,

2020). Among these, we consider a model in which the synaptic

strength Wij fluctuates over time according to increasing and

decreasing only when neuron j is connected to neuron i following

a previous study (Pazzini et al., 2021). The time evolution ofWij is

described by

Wij[t + 1] = Wij[t]+
1

τ
− uWij[t]Xj[t]. (5)

Here, τ (> 0) is the time constant that determines how slow the

synaptic strength Wij increases, and u(0 < u < 1) is the synaptic

depression coefficient. In summary, the synaptic strength Wij for

the connection from presynaptic neuron j to postsynaptic neuron

i increases by a fixed amount at each time step but decreases when

the presynaptic neuron j fires. This mathematical model assumes

synaptic plasticity and provides a simplified model for potentially

reproducing SOC. The initial value of the synaptic strength Wij[0]

is set to the critical valueWc, and numerical analysis is performed.

2.4 Deviation index from the critical value
of synaptic strength

As an indicator of how much the average synaptic strength

W[t] of the entire network at time t deviates from the critical value

Frontiers in SystemsNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1590743
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Sugimoto et al. 10.3389/fnsys.2025.1590743

Wc, we calculate the Mean of Error (ME) and Mean of Absolute

Error (MAE) following:

ME =
1

tb − ta + 1

tb
∑

t=ta

(W[t]−Wc), (6)

MAE =
1

tb − ta + 1

tb
∑

t=ta

|W[t]−Wc|. (7)

Specifically, we compute the average of the difference between

W[t] and the critical value Wc over the period from ta = 104

to tb = 105. In this way, we analyze the variation in synaptic

strength across the entire network. However, for neurons with an

in-degree of 0 or 1, the synaptic strengthWij follows Equation 5 and

continuously increases by 1/τ at each time step. This is because the

decrease term in the plasticity rule, which depends on the activity of

the presynaptic neuron j, only takes effect when that neuron fires.

In the case of in-degree 0, there is no presynaptic input at all, so the

synaptic strength keeps increasing without constraint. Even for in-

degree 1, if the single presynaptic neuron rarely fires, the decrease

term is seldom applied, leading again to unbalanced growth ofWij.

As a result, these neurons can influence the accurate evaluation of

the network-widemean synaptic strengthW[t] at time t. Therefore,

when calculating the mean synaptic strength W[t] for the entire

network, the synaptic strengths Wij of these neurons are excluded

from consideration.

2.5 Construction of neural networks

To construct a directed network that has small world

properties, scale-free characteristics, or modular structures, we

use the Watts-Strogatz (WS) model (Watts and Strogatz, 1998),

the Barabási-Albert (BA) model (Barabási and Albert, 1999), and

the Stochastic Block (SB) model (Holland et al., 1983). Based

on these models, we generate five types of network structures:

a regular network, a small world network, a scale-free network,

a modular network, and a random network constructed from

the Erdős-Rényi (ER) model (Erdős and Rényi, 1959), with the

number of neurons and synaptic connections kept consistent. The

direction of links is randomly determined. To avoid immediate

recurrent loops that could obscure causal relationships in cascade

dynamics, bidirectional connections are excluded. This modeling

choice allows us to isolate the effects of network structure and

synaptic plasticity without interference from short feedback cycles.

Details on the construction of the modular network are provided

in the Supplementary Section 1.1. Unless otherwise specified, we

construct networks with an average degree of eight in this study.

The clustering coefficients of the networks used in this study are

provided in the Supplementary Table 1.

2.6 Classification of neural network
dynamics

To understand the synaptic plasticity conditions under which

neuronal avalanches occur, we classify the state of the neural

network using the firing distribution based on the total number

of neurons that fired in a cascade. When the neural network

reaches a critical state, cascades of varying sizes occur, and the

distribution follows a power law. On the other hand, when large-

scale neuronal firings occur frequently, resulting in a deviation

above the power law, a “Dragon king” phenomenon can occur

(Sornette, 2009). One method to determine whether the Dragon

king phenomenon is present is to test whether the distribution

statistically matches a power law (Janczura and Weron, 2012;

Pisarenko et al., 2014). Furthermore, studies investigating how

Dragon kings arise in SOC have also employed statistical hypothesis

testing (Mikaberidze et al., 2023). However, in studies such as

this one, which considers neural networks, the distribution may

not always follow a typical power law but a truncated power

law. Since no methods have been proposed to address such cases,

we do not adopt the statistical hypothesis testing methods used

in previous studies. Therefore, in this study, to understand the

synaptic plasticity conditions under which neuronal avalanches

occur, we classify firing states based on the distribution of the

total number of neurons involved in cascading firings into four

categories: “Dragon king” (deviations from the power law due to

frequent large-scale cascading firings), “Subcritical” (insufficient

firing), “Critical” (a critical state following the power law), and

“Supercritical” (always large-scale cascading firings). Let the total

number of neurons that fire in a cascade (i.e., the avalanche

size) be denoted as s. The vector of avalanche sizes generated

by simulation is represented as s. After performing numerical

analyses up to t = 100, 000 over a sufficient period, the values

of two parameters, τ , and u, in Equation 5, which determine the

timescale of synaptic plasticity, may lead to prolonged cascades

of neuronal firing. As a result, the size of s may become small.

In this study, if the number of elements in vector s is five or

fewer (i.e., |s| ≤ 5), the state is classified as supercritical. For

cases where this condition is not met, the remaining states are

classified into three categories. To avoid dependence on the initial

state, the first five elements of s [i.e., (s1, s2, s3, s4, s5)] are removed

before constructing the Complementary Cumulative Distribution

Function (CCDF). When the total number of neurons in cascades

is small [in this study, if the maximum value of elements in s

is 102.5 or less, i.e., max(s) ≤ 102.5], the state is classified as

subcritical. For cases with sufficiently large cascade sizes, states

are classified as either dragon king or critical. This classification

is determined by fitting the CCDF to a truncated power law and

evaluating whether the observed distribution deviates from the

fit. For details on the method of fitting the CCDF to a truncated

power law, please refer to the Supplementary Section 1.3. The use

of a truncated power law instead of a simple power law is justified

by the finite size of the network, which can introduce cutoffs

in the power law behavior. Specifically, when CCDF
(

102
)

=

P
(

s ≥ 102
)

< 10−2 and the CCDF deviates by more than 1.1

times from the CCDF predicted by the truncated power law,

the state is classified as dragon king. Supplementary Figure S2

presents the CCDF classified into these four categories using

this method.

3 Results

First, we present graphs showing the state of each neural

network (Figure 1A), the conditions under which criticality occurs,
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and the deviation of the average synaptic strength W from the

critical value Wc when the parameters of Equation 5 are set to

τ = 500 and u = 0.1 as the timescale. These include the

cascade size distribution (Figure 1B), the time-series graph of

the average synaptic strength W[t] (Figure 1C). The probability

density function (PDF) corresponding to Figure 1B is provided

in the Supplementary Figure S3. The firing distribution adheres

to a truncated power law in modular and random networks

(Figure 1B). In the regular, small world, and scale free networks,

dragon king events—departures from the power law distribution—

are observed (Figure 1B; Regular, Small world, Scale free). Here,

it is important to note that power law behavior is not unique to

the critical state. To confirm the scaling laws involving multiple

power laws near the critical pointWc, we analyzed the relationship

between the number of neurons firing in cascades, the duration

of firing events, and the interplay between these two factors

(Sethna et al., 2001; Scarpetta et al., 2018). These results are

provided in the Supplementary Figure S10. The findings suggest

that, across all network structures, the relationship between the

number of neurons firing in cascades and the duration of firing

events approximately follows a scaling trend. However, noticeable

deviations from the theoretical slope (α − 1)/(β − 1) were

observed. Thismismatchmay reflect the fact that strict assumptions

required for scaling laws—such as temporal scale separation and

stationarity—are not necessarily satisfied in systems exhibiting self-

organized criticality. Indeed, in regular, small world, and scale-free

networks, we observed Dragon king events, which represent large

deviations from power law behavior (Figure 1B). These deviations

suggest that the systemmay depart from criticality, or that multiple

dynamical regimes coexist. Therefore, while the observed data

display features consistent with critical-like behavior, they should

not be interpreted as definitive evidence of criticality. Further

investigation is needed to develop robust criteria for identifying

criticality in self-organized neural systems. Additionally, while

the average synaptic strength W in all networks demonstrates

SOC behavior, variations in W depend on the network structure

(Figure 1C). Specifically,W fluctuates below the critical valueWc in

networks with high clustering coefficients, such as regular and small

world networks (Figure 1C; Regular, Small world). Conversely,

in modular, scale free, and random networks, W fluctuates near

Wc (Figure 1C; Module, Scale free, Random). These findings

demonstrate that, under the assumption of synaptic plasticity with

a timescale of τ = 500 and u = 0.1, dragon king events

occur in regular, small world, and scale free networks. Moreover,

regardless of this outcome, variations in the behavior of the

average synaptic strength W depend on the network structure.

Supplementary Figure S4 shows the trajectories of average synaptic

strength W and average firing rate ρ for each network. The

method for calculating the average firing rate ρ of neurons, which

will appear frequently in the following sections, is provided in

the Supplementary Section 1.4. In this study, the initial value for

the simulations was set to the critical value Wc. However, even

when the initial value was set to a different value away from

the critical point, it was confirmed that the system ultimately

converged to Wc, indicating that the conclusions of this study

are not significantly affected by the choice of initial conditions

(Supplementary Figure S5). A previous study also reported this

point (Pazzini et al., 2021). The emergence of criticality may

partly depend on the specific form of the synaptic plasticity

rule (Supplementary Figure S6). To further explore the role of

network geometry, we conducted additional simulations using

two-dimensional (2D) and three-dimensional (3D) regular lattice

networks, each configured to match the node number and degree

of the one-dimensional (1D) regular network. The results showed

that, in both 2D and 3D networks, the average synaptic strength

W remained close to the critical value Wc, with no significant

deviation. This contrasts with the deviation observed in the 1D

regular network and suggests a dimensional dependence in the

emergence and stability of self-organized criticality. Detailed results

are provided in the Supplementary Figure S9. To further investigate

the influence of network structure, we conducted simulations

using theWatts–Strogatz model with various rewiring probabilities

p (p = 0.0001, 0.001, 0.1), thereby generating networks with

different degrees of small world characteristics. This allowed us to

examine a continuum of networks ranging from regular to random

structures. The results of these simulations are presented in the

Supplementary Figure S9.

Next, we present distribution of the neural avalanche of

various neural networks under different timescales of synaptic

plasticity and the deviations from the critical value Wc (Figure 2).

Regular networks, small world networks, and scale-free networks

exhibit a broader range of synaptic plasticity timescales where

dragon king events occur compared to the other two network

types (Figure 2A; Regular, Small world, Scale free). In particular,

scale free networks rarely achieve a critical state across most

synaptic plasticity timescales (Figure 2A; Scale free). For regular

and small world networks, critical states are realized when the time

constant τ is small, and the synaptic strength decay coefficient u

is relatively large, or when τ is large and u is moderately small

(Figure 2A; Regular, Small world). In contrast, modular networks

and random networks achieve critical states when τ is large and

u is small (Figure 2A; Module, Random). The extent to which

the average synaptic strength W deviates from the critical value

Wc also depends on the network structure, with regular and

small world networks showing particularly pronounced deviations

(Figure 2B; Regular, Small world). Moreover, independent of

network structure, it was observed that the average synaptic

strength W deviates from the critical value Wc depending on the

value of τ (Figures 2B, C). Specifically,W tends to exceedWc when

τ is small, and fall below Wc when τ is large (Figure 2C). This

deviation also varies with network structure and is particularly

prominent in regular and small world networks (Figures 2B, C;

Regular, Small world). In the main analysis, events were classified

as Dragon kings when the CCDF deviated by more than 1.1 times

from the cumulative frequency expected under a truncated power-

law distribution. However, even when the classification threshold

was changed to 1.3 or 1.5 times the expected frequency, the overall

results remained largely unchanged (Supplementary Figures S14B,

C). Additionally, changing the average degree of the network

or the number of modules B in modular networks did not

alter the timescales of synaptic plasticity required to achieve

criticality (Supplementary Figures S12, S13). On the other hand,

changes in the leak parameter of the LIF model significantly

influenced the timescales of synaptic plasticity required to achieve
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FIGURE 1

Firing distribution of neurons and time evolution of the average synaptic strength W for each network structure, assuming synaptic plasticity with

τ = 500 and u = 0.1. (A) Visualization of networks. All networks are drawn with N = 100 nodes and m = 400 edges for display purposes. In the

scale-free network, the nodes are drawn larger in proportion to their degree. (B) CCDF based on the total number of neurons that have been fired in

a chain reaction, s. The red solid line represents the result of fitting the distribution to a truncated power law. α is the power law exponent. (C)

Visualization of the time evolution of the average synaptic strength W. The red dashed line represents the critical value Wc.
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FIGURE 2

The state of the neural network and the deviation of the average synaptic strength W from the critical value Wc, assuming various synaptic plasticity

conditions and di�erent neural network structures. The state of the neural network and the deviation of the average synaptic strength W from the

critical value Wc were compared across di�erent network structures when various synaptic plasticity conditions were assumed within the range of

100 ≤ τ ≤ 1000 and 0.1 ≤ u ≤ 0.9 in Equation 5. (A) For each value of the time constant τ and synaptic depression coe�cient u, the state of the

neural network is classified as “Dragon king,” “Subcritical,” “Critical,” or “Supercritical,” and the results are indicated by color. (B) For each value of the

time constant τ and synaptic depression coe�cient u, the degree of deviation of the average synaptic strength W from the critical value Wc is

calculated using ME indicator according to Equation 6. (C) As in (B), the deviation is computed for each τ and u, but using the MAE indicator defined

in Equation 7.
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FIGURE 3

Comparison of the deviation of mean synaptic strength from the critical value Wc and inter-spike interval (ISI) distributions across di�erent network

structures. The numerical analysis conditions are τ = 200 and u = 0.5. (A) For each network structure, simulations were conducted 100 times, and

the di�erence (ME) between the time-averaged synaptic strength during t = 104 ∼ 105 and the critical value Wc was calculated. The box plots show

the distribution of ME for each network structure. To evaluate the e�ect of network structure on ME, a one-way analysis of variance (ANOVA)

followed by pairwise multiple comparisons was performed. Statistically significant di�erences were observed in all pairwise comparisons between

network structures
(

p < 2.2× 10−16
)

. (B) Distributions of inter-spike intervals (ISI) for each network structure.

criticality (Supplementary Figure S11). These findings suggest that

the timescales of synaptic plasticity required to maintain a

critical state vary depending on the structural properties of

the network and the state of neural activity. Furthermore,

they indicate that the correlation between the maintenance of

criticality and the deviation of the mean synaptic strength

from its critical value is influenced by the network structure

(Supplementary Figure S7).

Based on the results obtained thus far, it has become evident

that in regular and small world networks, the mean synaptic weight

W deviates from the critical valueWc (Figures 2B, C; Regular, Small

world). We investigated the extent to which the mean synaptic

strength deviates from the critical value Wc for each network

structure, focusing on a specific synaptic plasticity parameter.

Figure 3A presents the results, where simulations were repeated 100

times for each network type. For each trial, the difference (ME)

between the time-averaged synaptic strength over the interval t =

104 ∼ 105 and the critical value Wc was computed and visualized

using box plots. To evaluate the effect of network structure on ME,

we conducted a one-way analysis of variance (ANOVA). The results

revealed statistically significant differences in ME between all pairs

of network structures
(

p < 2.2× 10−16
)

. Next, we sought to clarify

why the distribution of synaptic weights differs depending on the

network structure. As shown in Equation 5, changes in synaptic

strengthWij are highly dependent on neuronal spiking activity. To

investigate how frequently neurons fire in each network structure,

we calculated the distribution of inter-spike intervals (ISI) for each

network (Figure 3B). These results indicate that, in both regular

and small world networks, the ISI distributions exhibit burst-like

characteristics compared to those in other network types. This

implies that in networks with predominantly local connectivity,

neuronal firing tends to occur in spatially and temporally clustered

patterns. In other words, when a neuron fires, its neighboring

neurons tend to fire in rapid succession, leading to temporally

concentrated activity (i.e., bursts). Such burst dynamics cause

the synaptic weights to decrease rapidly, resulting in a sustained

deviation of the mean synaptic weight W from the critical

valueWc.

In scale free networks, it was revealed that dragon king

events occur under many synaptic plasticity timescales, and critical

states are not realized (Figure 2B; Scale free). But why does

this happen? To clarify this reason, we focused on a specific

synaptic plasticity time scale in a scale-free network and plotted

the average firing frequency ρ for each in-degree of neurons in

both chain activations that followed a power law distribution

and those identified as Dragon king events (Figure 4B). Figure 4A

illustrates the timing of chain activations classified as following

a power law distribution, those identified as Dragon king events,

and periods of no activation, using color to indicate these

events on the temporal evolution of the mean synaptic strength

W. From the results shown in Figure 4A, it was evident that

dragon king events occur during the periods when the average

synaptic strength W decreases. This finding aligns with previous

research (Mikaberidze et al., 2023). Furthermore, the results in

Figure 4B reveal that in chain activations identified as Dragon

king events, neurons with a higher in-degree (i.e., hub nodes)

exhibit a higher average firing frequency ρ, indicating a positive

correlation. In contrast, no such correlation is observed in chain

activations that follow a power law distribution. These findings

suggest that the presence of hub structures, characteristic of

scale free networks, increases the average firing frequency of

neurons. This leads hub nodes to fire more frequently than

low-degree neurons, causing the neuronal firing distribution to

deviate from the power law principle of “mostly small-scale firings

with occasional large-scale events.” As a result, Dragon king

events emerge.
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FIGURE 4

Behavior of the average synaptic strength W in scale free networks and the average firing frequency for both dragon king events and power law

abiding neural avalanches. The numerical analysis conditions are τ = 600 and u = 0.1. (A) Behavior of the average synaptic strength W during the

time interval t = 20, 000 ∼ 25, 000. The states where dragon king events, power law abiding neural avalanches, and no firing occur are indicated by

di�erent colors. (B) The relationship between the in-degree of each neuron and the average firing rate ρ of the neurons. The two straight lines

indicate regression lines.

4 Discussion

In this study, we numerically examined, using a mathematical

model, the potential for neural network structures to induce critical

states. First, it was revealed that the timing of functional synaptic

plasticity required to achieve a critical state (commonly referred

to as the time scale) differs depending on the network structure.

Furthermore, depending on the network structure and the time

scale of synaptic plasticity, the firing distribution of neurons

was observed to deviate from the power law, resulting in the

emergence of dragon kings. This phenomenon was particularly

notable in scale-free networks containing high-degree hub nodes,

where dragon kings were confirmed to occur over a wide range

of synaptic plasticity time scales. These findings suggest that the

interplay between the structural properties of neural networks and

the time scale of synaptic plasticity may influence the realization

and maintenance of critical states in simplified neural models.

This result cannot be derived from mean-field approximations

that disregard network structures or from SOC analyses using

gain parameters as control variables in neurons (Kinouchi et al.,

2019). Thus, this modeling study highlights, from the perspective

of SOC, the potential importance of network topology in shaping

critical dynamics.

Previous empirical studies have suggested that the presence of a

“rich-club” structure in neural networks, where hubs are densely

interconnected, facilitates efficient information transmission and

functional integration across the entire brain (Van Den Heuvel

and Sporns, 2011; Van den Heuvel and Sporns, 2013; Ball et al.,

2014). In contrast to this perspective, we propose, based on

a simplified neural network model, that in network structures

where a small number of hubs connect to a majority of nodes,

dynamic changes in synaptic strength based on the synaptic

plasticity assumptions expressed by Equation 5 may hubs more

likely to fire compared to low-degree neurons. Consequently, this

affects the overall dynamics of the neural network, potentially

resulting in abnormal neuronal firing phenomena such as Dragon

king, potentially resulting in abnormal neuronal firing phenomena

such as Dragon king. While previous studies highlighted the

advantages of hubs, our modeling results suggest their potential

to contribute to dynamic instabilities. Specifically, when hubs

function normally, they enhance the efficiency of information

transmission throughout the brain. However, if synaptic dynamics

promote excessive firing of hubs, it could destabilize the dynamics

of the network. Traditional studies have not sufficiently focused on

the behavior of hubs within the SOC framework. However, our

modeling study suggests that excessive firing of hubs could lead

to significant changes in synaptic strength, affecting the overall

network dynamics.

The structural characteristics of neural circuits play a crucial

role in the regulation of synaptic strength and the maintenance of

critical states. Our modeling results revealed that in networks with

high clustering coefficients, the deviation of the average synaptic

strength from its critical value was observed, in contrast to Random

networks. Previous studies have indicated that the topology of

neural networks influences neuronal firing patterns (Zhao et al.,

2018; Nolte et al., 2020). Furthermore, in random networks, it

has been confirmed that self-organized criticality is independent

of the time scale of synaptic plasticity, ensuring that the system

consistently operates near the critical value (Kinouchi et al., 2019).

In contrast, in networks with high clustering coefficients, such

as regular and small world networks, when a specific neuron

fires, its adjacent neurons are highly likely to fire as well. This

increase in local firing activity induces heterogeneity in the neural

network, such as a reduction in synaptic strength in certain regions.

Consequently, the average synaptic strength may deviate from

the critical value. However, it was confirmed that these networks

still retain the ability to maintain an overall critical state. Our

results suggest that in simplified network models, networks with

high clustering coefficients can tolerate local variations in synaptic

strength and diversity in firing patterns while preserving criticality

at the global level. This extension of conventional SOC frameworks

observed in random networks may provide insights into the

adaptability of more complex network structures. Additionally,

this characteristic may reflect fundamental mechanisms that help

balance stability and flexibility in neural circuits, potentially playing

an important role in information processing.
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Synaptic plasticity, which involves changes in synaptic strength,

has a significant impact on the dynamics of neural networks

and plays a crucial role in achieving and maintaining critical

states (Stepp et al., 2015; Rubinov et al., 2011). When this

plasticity functions appropriately, neural networks can perform

efficient information processing and maintain stable functions.

Previous studies have explained that short-term and long-term

plasticity each plays distinct roles in achieving critical states

(Zeraati et al., 2021). Short-term plasticity is considered to

help maintain dynamics around the critical point by acting as

a feedback mechanism through temporary changes in synaptic

strength, keeping the system close to a critical state. Although

this adjustment occurs rapidly, its effects are temporary and do

not contribute directly to long-term stability. On the other hand,

long-term plasticity is thought to play a role in stabilizing neural

networks in critical states through sustained changes in synaptic

strength. While this plasticity contributes to maintaining and

stabilizing critical states, its direct relationship with learning and

memory formation is not yet fully understood. Consequently, our

modeling results suggest that achieving and maintaining critical

states in simplified networks may not be directly linked to learning

and memory formation, and these functions may need to be

regarded as distinct processes. In this study, short-term plasticity

corresponds to the upper-left regions of the plots in Figure 2,

while long-term plasticity corresponds to the lower-right regions.

In random networks and modular networks, critical states are

achieved through long-term plasticity, consistent with previous

research. Under conditions of short-term plasticity, all five network

structures exhibit either subcritical states or Dragon kings, failing to

achieve critical states. For network structures with high clustering

coefficients, such as regular networks and small world networks, the

interplay of short-term and long-term plasticity in our simulations

appears to enable the realization of critical states. These modeling

results suggest that the effects of network structure and plasticity

on neural dynamics are diverse, and that the functional role of

plasticity may heavily depend on the current state of neural activity

and specific properties of the network. While understanding how

synaptic plasticity facilitates the realization and maintenance of

critical states is important, its direct relationship with learning and

memory formation remains unclear. It is essential to recognize

these functions as separate processes.

Previous studies have examined how biologically established

synaptic plasticity mechanisms, such as Hebbian learning, are

related to the emergence of criticality in neural networks. For

example, Uhlig et al. (2013) theoretically analyzed the interaction

between Hebbian learning and critical dynamics, showing that

neuronal activity near the critical point plays a crucial role in

achieving both sparse activity and high memory capacity in

associative memory networks. Their study demonstrated that

the interplay between Hebbian learning mechanisms and critical

dynamics contributes to balancing memory retrieval and stability.

These findings suggest that learning-oriented plasticity rules can

significantly influence the dynamical regime of neural networks,

including the emergence of criticality. In contrast, the synaptic

plasticity model employed in the present study is not based on

associative learning rules such as Hebbian learning, but rather

on a more abstract framework of homeostatic regulation driven

by the average activity of neurons. The primary goal of our

model is to maintain synaptic strengths near the critical point,

thereby allowing the network to self-organize toward a critical

state. Consequently, our model is not directly comparable to

Hebbian-type rules, which are designed to support learning and

memory. Instead, the present study aims to theoretically examine

the conditions under which criticality emerges and is stabilized,

using a simplified and abstract model. Notably, our additional

analysis (see Supplementary Figure S6) revealed that self-organized

criticality (SOC) can also be reproduced using an alternative

homeostatic plasticity model proposed by Brochini et al. (2016).

This result suggests that the emergence of criticality does not

depend on a specific plasticity rule. In future work, it will be

important to incorporate Hebbian-type rules to further investigate

the interaction between criticality and learning functions. However,

the primary objective of the present study is to theoretically clarify

how homeostatic mechanisms contribute to the maintenance

and breakdown of criticality across different network structures.

Therefore, our model is not limited to synaptic depression,

but instead encompasses a broader class of activity-regulating

mechanisms. In this way, our modeling approach provides a

complementary perspective to Hebbian-based models and offers

novel insights into how network-level homeostasis supports the

emergence of critical dynamics in the brain.

The topology of neural networks and the time scale of synaptic

plasticity are critical factors in maintaining brain function and

adaptability. Understanding how their failure leads to neurological

disorders is of paramount importance for unraveling brain

pathology. In this study, our modeling results revealed that

local connections characteristic of networks such as regular

networks and small world networks may facilitate the realization

of critical-like states in simplified models when short-term and

long-term synaptic plasticity function appropriately. However, for

example, when neural networks transition from a small world

network to a randomnetwork, short-term plasticity (corresponding

to the upper-left region in Figure 2 may transform critical-

like states into Dragon king dynamics, potentially impacting

information processing capacity. On the other hand, while the

impact of modularity loss on brain function has been debated

(Heiney et al., 2021), our modeling results suggest that even

when modularity is lost and networks transition to random

structures, critical-like states might remain largely unaffected.

However, previous research has suggested that when hierarchical

modular structures are assumed, the parameter range of synaptic

connection strength that supports critical states widens. This allows

neural networks to more easily maintain critical states under

varying conditions, demonstrating robust performance against

external disturbances (Wang and Zhou, 2012; Moretti and Muñoz,

2013). This may highlight the significant influence of hierarchical

structures on maintaining critical-like states. Future research will

need to focus on elucidating the specific mechanisms by which

changes in modularity and small world properties contribute to

brain disorders.

There are several important limitations that should be

considered regarding the present model. First, our model does

not incorporate inhibitory neurons, which play a central role in

regulating neural activity. Inhibitory connections are critical for
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stabilizing both local and global network dynamics, and it is well

established that excitatory-only models tend to promote excessive

propagation of neural activity. Previous studies by Shew et al.

(2011) has reported that large-scale avalanches resembling dragon

king are more likely to emerge without inhibitory mechanisms.

Based on these findings, it is highly plausible that the Dragon king

phenomena observed in the present study could be mitigated if

inhibitory neurons were incorporated into the model. Therefore,

the absence of inhibitory regulation may have had a significant

impact on the dynamics of the model, potentially introducing

behaviors that differ from those seen in actual brain circuits.

Second, the networks employed in this study are characterized

by exceptionally high clustering coefficients. However, large-scale

human brain networks have been reported to exhibit comparatively

low clustering coefficients (Achard et al., 2006; Bullmore and

Sporns, 2009). Furthermore, a balance between local excitatory

and inhibitory connections is maintained in the human brain,

and sparse long-range connections enable both global synchrony

and efficient information transmission. As a result, brain dynamics

exhibit a hybrid structure combining partial modularity with sparse

connectivity (Sporns and Zwi, 2004; Kaiser and Hilgetag, 2010). In

light of these previous findings, caution is warranted when directly

applying the properties of “criticality in highly clustered networks,”

as demonstrated in this study, to biological brain networks. In

reality, local clustering, inhibitory regulation, and sparse long-

range connectivity likely interact intricately, allowing localized

firing to be controlled while simultaneously maintaining global

efficiency and stability.

Finally, we will discuss future challenges related to this study.

One critical question is how critical phenomena support efficient

information processing in neural networks. Previous studies have

already suggested that critical phenomena are influenced by

network structure and synaptic plasticity (Heiney et al., 2021;

Plenz et al., 2021), but how these phenomena are involved in

the brain’s overall information transmission and computation

remains insufficiently understood. In particular, many questions

remain about the specificmechanisms by which critical phenomena

contribute to the brain’s adaptive learning capabilities and memory

formation. Additionally, understanding how the dragon king

observed in this study is related to neurological disorders will

be an important research challenge. For instance, the impact

of the dragon king on the information processing capacity of

neural networks and how it manifests in the early stages of

neurological disorders remain unclear. Future research should aim

to elucidate the mechanisms through which abnormal neuronal

firing leads to various neurological diseases. This understanding

will be crucial for advancing our knowledge of brain function

and pathology.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YS: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Visualization, Writing – original

draft, Writing – review & editing. HY: Methodology, Project

administration, Supervision, Writing – review & editing.

MA: Conceptualization, Funding acquisition, Investigation,

Methodology, Project administration, Resources, Supervision,

Validation, Writing – original draft, Writing – review

& editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

by JSPS KAKENHI Grant Number JP22K12235.

Acknowledgments

We would like to thank Dr. Anna Levina for reading the initial

draft of the manuscript and providing constructive comments. We

also appreciate Doshisha University’s support for the open-access

publishing grant.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnsys.2025.

1590743/full#supplementary-material

Frontiers in SystemsNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1590743
https://www.frontiersin.org/articles/10.3389/fnsys.2025.1590743/full#supplementary-material
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Sugimoto et al. 10.3389/fnsys.2025.1590743

References

Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. (2006).
A resilient, low-frequency, small-world human brain functional network
with highly connected association cortical hubs. J. Neurosci. 26, 63–72.
doi: 10.1523/JNEUROSCI.3874-05.2006

Avramiea, A.-E., Masood, A., Mansvelder, H. D., and Linkenkaer-Hansen, K. (2022).
Long-range amplitude coupling is optimized for brain networks that function at
criticality. J. Neurosci. 42, 2221–2233. doi: 10.1523/JNEUROSCI.1095-21.2022

Ball, G., Aljabar, P., Zebari, S., Tusor, N., Arichi, T., Merchant, N., et al. (2014). Rich-
club organization of the newborn human brain. Proc. Nat. Acad. Sci. 111, 7456–7461.
doi: 10.1073/pnas.1324118111

Barabási, A.-L., and Albert, R. (1999). Emergence of scaling in random networks.
Science 286, 509–512. doi: 10.1126/science.286.5439.509

Bassett, D. S., Greenfield, D. L., Meyer-Lindenberg, A., Weinberger, D. R., Moore, S.
W., and Bullmore, E. T. (2010). Efficient physical embedding of topologically complex
information processing networks in brains and computer circuits. PLoS Comput. Biol.
6:e1000748. doi: 10.1371/journal.pcbi.1000748

Beggs, J. M., and Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J.
Neurosci. 23, 11167–11177. doi: 10.1523/JNEUROSCI.23-35-11167.2003

Beggs, J. M., and Timme, N. (2012). Being critical of criticality in the brain. Front.
Physiol. 3:163. doi: 10.3389/fphys.2012.00163

Bertschinger, N., and Natschläger, T. (2004). Real-time computation at the
edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436.
doi: 10.1162/089976604323057443

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N.M., and Asada,M. (2012). Information
processing in echo state networks at the edge of chaos. Theory Biosci. 131, 205–213.
doi: 10.1007/s12064-011-0146-8

Bonachela, J. A., De Franciscis, S., Torres, J. J., and Munoz, M. A. (2010). Self-
organization without conservation: are neuronal avalanches generically critical? J. Stat.
Mech. Theory Exp. 2010:P02015. doi: 10.1088/1742-5468/2010/02/P02015

Bonachela, J. A., and Munoz, M. A. (2009). Self-organization without conservation:
true or just apparent scale-invariance? J. Stat. Mech. Theory Exp. 2009:P09009.
doi: 10.1088/1742-5468/2009/09/P09009

Brochini, L., de Andrade Costa, A., Abadi, M., Roque, A. C., Stolfi, J., and Kinouchi,
O. (2016). Phase transitions and self-organized criticality in networks of stochastic
spiking neurons. Sci. Rep. 6:35831. doi: 10.1038/srep35831

Bryant, H. L., and Segundo, J. P. (1976). Spike initiation by transmembrane current:
a white-noise analysis. J. Physiol. 260, 279–314. doi: 10.1113/jphysiol.1976.sp011516

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Costa, A. A., Brochini, L., and Kinouchi, O. (2017). Self-organized supercriticality
and oscillations in networks of stochastic spiking neurons. Entropy 19:399.
doi: 10.3390/e19080399
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