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Neural network models of
autonomous adaptive
intelligence and artificial general
intelligence: how our brains learn
large language models and their
meanings

Stephen Grossberg*

Departments of Mathematics and Statistics, Psychological and Brain Sciences, and Biomedical

Engineering, Boston University, Boston, MA, United States

This article describes a biological neural network model that explains how

humans learn to understand large languagemodels and their meanings. This

kind of learning typically occurs when a student learns from a teacher about

events that they experience together. Multiple types of self-organizing brain

processes are involved, including content-addressable memory; conscious

visual perception; joint attention; object learning, categorization, and cognition;

conscious recognition; cognitive working memory; cognitive planning;

neural-symbolic computing; emotion; cognitive-emotional interactions and

reinforcement learning; volition; and goal-oriented actions. The article advances

earlier results showing how small language models are learned that have

perceptual and a�ective meanings. The current article explains how humans,

and neural network models thereof, learn to consciously see and recognize an

unlimited number of visual scenes. Then, bi-directional associative links can be

learned and stably remembered between these scenes, the emotions that they

evoke, and the descriptive language utterances associated with them. Adaptive

resonance theory circuits control model learning and self-stabilizing memory.

These human capabilities are not found in AI models such as ChatGPT. The

current model is called ChatSOME, where SOME abbreviates Self-Organizing

MEaning. The article summarizes neural network highlights since the 1950s

and leading models, including adaptive resonance, deep learning, LLMs,

and transformers.

KEYWORDS

neural network, ChatSOME, learning, recognition, cognition, language, emotion,

consciousness

Learning language meanings from viewing visual
scenes

Neural network models that can realize artificial general
intelligence

This article continues to develop a neural network model of the key brain processes

that enable a child or adult to learn language utterances and their meanings. Learning
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language meanings includes learning of associative links between

language utterances and the perceptual events in the world that they

describe, as well as the learner’s emotional responses to these events.

Such learning typically begins when a baby who knows no language

listens to, interacts with, and imitates people who do, often parents

or other caregivers.

Grossberg (2023) modeled how multiple brain regions interact

to support the initial learning of language utterances and their

meanings. This explanation is built upon biological neural network

models of how our brains make our minds, which have been

incrementally developed over the past half century. These models

provide principled and unifying explanations of data from many

psychological and neurobiological experiments about essentially all

the main processes, whereby our brains make our conscious minds

in both healthy individuals and clinical patients. These include

models of howwe consciously see, hear, feel, and know things about

the world, and use our conscious states to effectively plan and act to

realize valued goals.

The brain processes that are modeled to enable these

explanations include vision and visual object recognition; audition,

speech, and language; development; attentive learning and

memory; cognitive information processing and social cognition;

reinforcement learning and motivation; cognitive-emotional

interactions, including reinforcement learning; navigation;

cognitive and motor planning; sensory-motor control and robotics;

and mental disorders, such as Alzheimer’s disease, autism, medial

temporal amnesia, schizophrenia, ADHD, PTSD, auditory and

visual agnosia and neglect, and disorders of slow wave sleep. These

models involve many parts of the brain, ranging from perception

to action, and multiple levels of brain organization, ranging from

individual spikes and their synchronization to cognition. The

models have also been applied and specialized to solve large-scale

problems in engineering, technology, and AI.

Taken together, these models provide a blueprint for what I

call Autonomous Adaptive Intelligence, or AAI, while others may

prefer the term Artificial General Intelligence, or AGI. By either

name, these models may be realized by neural network models and

architectures, as well as by physical embodiments in the controllers

of many types of machines, including VLSI chips and adaptive

mobile robots. A self-contained and non-technical overview and

synthesis of this progress over the past 50+ years is described by

Grossberg (2021b). All the articles by Grossberg et al. cited in this

article can be downloaded from https://sites.bu.edu/steveg.

The analysis in Grossberg (2023) was restricted to the learning

of short language utterances and their perceptual and affective

meanings. Typical sentences were “Watch mommy throw the

ball” or “Look at mommy throw the ball.” These sentences

and their meanings were explained in terms of how learned

brain representations of the sentences, and their associative

links to learned brain representations of perceptual and affective

experiences, are learned in real time as a child interacts with

a teacher.

To realize AAI or AGI, this kind of language competence needs

to be generalized to the learning of large numbers of language

utterances and their perceptual and affective meanings. This is the

goal of the current article. This article explains that two parallel

streams of research activity in AI have developed over the years,

with little interaction between them. This article will hopefully help

correct that problem.

This enhanced neural network model provides an alternative to

the large language models, or LLMs, like ChatGPT, that some AI

practitioners believe can provide a foundation for AGI. This belief

is not supported by the well-known fact that LLMs, due to the way

in which they promiscuously heap together information that they

take from the internet, have no values, intelligence, or goals, and

literally do not know what they are talking about.

For example, a 2025 article entitled Proof or Bluff: Evaluating

LLMs on 2025 USA Math Olympiad (Petrov et al., 2025) concluded

that “Using expert human annotators, we evaluated several state-

of-the-art reasoning models on the six problems from the 2025

USAMO within hours of their release. Our results reveal that all

tested models struggled significantly, achieving <5% on average.”

In addition, the deep learning models that are used to help

create LLMs are untrustworthy (because they are not explainable)

and unreliable (because they can experience catastrophic forgetting

of their learned memories at any time while being trained using

hundreds or thousands of trials by slow off-line learning). These are

just two of the 17 serious computational problems that have long

been known about the back propagation model that is the learning

algorithm used by deep learning and that were never faced by the

other research stream in AI (Grossberg, 1988, 2020). Despite these

problems, deep learning and LLMs have recently been used inmany

applications, notably by Google DeepMind. Partly, this is due to

the advent of huge databases on the internet (e.g., pictures of cats)

and networks of extremely fast and powerful computer servers. It

is primarily due to the fact that many models help to solve model-

independent problems that any reasonable model can handle. The

future of AAI and AGI will depend, I contend, on models that have

avoided the computational problems noted above, such as the ones

summarized in this article.

As in Grossberg (2023), to contrast the present work with

ChatGPT, I call my model the ChatSOME model, where the

abbreviation SOME stands for Self-Organized MEaning.

To extend ChatSOME to incorporate large language

corpora, neural network models are needed of brain processes

whose emergent properties give rise to the following kinds

of psychological functions, over and beyond those used in

Grossberg (2023). This extension is possible because all these

models have already been published in archival articles, which

include principled explanations and quantitative computer

simulations of large amounts of psychological and neurobiological

data that validate their concepts, neural mechanisms, and

emergent properties.

The current article will not repeat technical details that

have been published in these articles. Rather, I will provide

heuristic explanations to make the article self-contained, along with

citations of the original archival articles for readers who want to

know details.

The main scenario that the article models is one in which

a learner explores arbitrarily many visual scenes while a teacher

guides the learner’s visual attention to different parts of the scene

and uses language to describe what the learner is seeing.
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This competence requires an analysis of how a young learner’s

brain may achieve visual scene understanding even before learning

how to describe parts of the scene using language.

After linguistic descriptions of many scenes are achieved with

the help of teachers, a child or adult can explore new scenes

using previously learned skills to understand them even without an

explicit teacher.

Several brain processes are needed to achieve such

competencies. Only those that are essential for a heuristic

understanding will be described so that the article does not become

too long.

How our brains achieve visual figure-ground perception of the

objects in a 3D scene, a 2D picture, or a screen. Separating objects

from each other and from their backgrounds in scenes or screens

is needed before individual objects can be attended, learned, and

recognized. This process was modeled in articles such as Grossberg

(1993, 1994, 1997, 1998, 2016), Grossberg and McLoughlin (1997),

Grossberg and Pessoa (1998), Grossberg and Wyse (1991, 1992),

and Kelly and Grossberg (2000).

How our brains use binocular fusion of our two eyes to

enable eye movements to scan a 3D scene while learning invariant

recognition categories of the objects in the scene. Binocular fusion

is the process by which the scenic images received by each of our

two eyes are fused into a single image that is perceived in depth.

Invariant object recognition enables recognition of an object from

any of its views, positions, and sizes. These processes were modeled

in articles such as Cao et al. (2011), Fazl et al. (2009), and Grossberg

et al. (2014).

How our brains achieve scene understanding by using scenic

context to efficiently drive a visual search that shifts spatial attention

and eye movements around the scene while incrementally learning

the scene’s objects and object positions, as well as the spatial contexts

within which they occur in the scene. These processes were modeled

in articles such as Cao et al. (2011), Fazl et al. (2009), Foley

et al. (2012), Gancarz and Grossberg (1999), Grossberg and Huang

(2009), Grossberg et al. (1997, 2012, 2014), Huang and Grossberg

(2010), Silver et al. (2011), and Srihasam et al. (2009).

These abilities are combined in a more comprehensive neural

network model of how our brains solve theWhere’s Waldo problem;

namely, how perceptual, cognitive, and emotional brain processes

cooperate during learning to categorize and find desired objects in

a cluttered scene. These processes were modeled in the study by

Chang et al. (2014).

These abilities are possible because our brains can consciously

see, hear, feel, and know things about the world that they

experience, and use their conscious states to plan and act to realize

valued goals. The discovery of how, where in our brains, and

why, from a deep computational perspective, humans experience

conscious states arose from a sustained analysis over many years

of how humans learn quickly without experiencing catastrophic

forgetting; that is, how we solve the stability-plasticity dilemma.

Adaptive resonance theory, or ART, has explained this in a series

of articles starting with Grossberg (1976a,b, 1978a, 1980) and

culminating in articles and books such as Grossberg (2017, 2018,

2019b, 2021a,b, 2025).

ART is the most advanced cognitive and neural theory that

explains how humans learn to attend, recognize, and predict objects

and events in a changing world that is filled with unexpected

events. ART explained and simulated data from hundreds of

psychological and neurobiological experiments, and also made

confirmed predictions.

ART is trustworthy (because it is explainable) and reliable

(because it self-stabilizes learned memories). To achieve these

properties, ART incrementally learns via its adaptive weights, or

long-term memory (LTM) traces, in its bottom-up adaptive filters

and top-down expectations (Figure 1). Expectations are matched

against input feature patterns. Expectations focus attention upon

the patterns of critical features that are causal and control predictive

success. A good enough match between bottom-up feature patterns

and top-down expectations triggers an adaptive resonance that

incorporates new information into previously existing recognition

categories, or creates new recognition categories if inputs are too

novel to be represented by established categories.

Apart from its explanatory success, why should a doubtful

reader believe that ART is special? One reason is that I derived

ART from a thought experiment in an oft-cited 1980 Psychological

Review article (Grossberg, 1980). A thought experiment is the

gold standard in providing a conceptually secure foundation for

a scientific theory. Perhaps the most famous thought experiments

in science were the ones that Albert Einstein used to derive

both Special Relativity Theory and General Relativity Theory. My

thought experiment asks how any system can autonomously learn

to correct predictive errors in a changing world.

This thought experiment derives ART as the unique class of

models that can do this from a few familiar facts of life that do not

mention the mind or brain. ART is thus a universal solution to the

problem of autonomous error correction in a changing world.

ART has been successfully used in large-scale applications

in engineering, technology, and AI, where it beat other models

in benchmark studies. Fielded applications include engineering

design retrieval systems that include millions of parts defined by

high-dimensional feature vectors, and that were used to design the

Boeing 777 (Caudell et al., 1990, 1991, 1994; Escobedo et al., 1993).

This Boeing team created the first dedicated ART optoelectronic

hardware implementation (Caudell, 1992; Wunsch et al., 1993).

Other applications include classification and prediction of sonar

and radar signals, of medical, satellite, face imagery, and social

media data, and of musical scores; control of mobile robots

and nuclear power plants, air quality monitoring, remote sensing

mapping, medical database prediction, strength prediction for

concrete mixes, signature verification, tool failure monitoring,

chemical analysis fromultraviolent and infrared spectra, frequency-

selective surface design for electromagnetic system devices, and

power transmission line fault diagnosis [see Grossberg (2021b),

http://techlab.bu.edu/resources/articles/C5, and Da Silva et al.

(2019) and Da Silva et al. (2020)].

These models, on which ChatSOME is built, exemplify neural-

symbolic computing. As noted by Wang et al. (2024) “Neural-

symbolic computing (NeSy), which pursues the integration of

the symbolic and statistical paradigms of cognition, has been

an active research area of Artificial Intelligence (AI) for many

years. As NeSy shows promise of reconciling the advantages

of reasoning and interpretability of symbolic representation

and robust learning in neural networks, it may serve as a
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FIGURE 1

A two-level neural network of distributed feature patterns and learned categories as it experiences an adaptive resonance that is supported by signals

in bottom-up adaptive filters and top-down learned expectations. The attended features (in light green) are the critical feature pattern. STM = cell

activations or short-term memory (STM) traces. LTM = adaptive weights or long-term memory (LTM) traces. A feature-category resonance occurs

when a good enough match exists between an active feature pattern and its recognition category. Such a resonance triggers fast learning in the LTM

traces as well as conscious recognition of the object coded by the active feature pattern.

catalyst for the next generation of AI.” ChatSOME embodies

neural-symbolic computing by synthesizing ART and related

models (Carpenter and Grossberg, 1994; Grossberg, 1976b, 1980,

1987, 1988). Indeed, even within the simplest category-learning

versions of ART, each learned category is a symbol, and all the

learned categories, taken together, provide a representation of the

recent statistics of the model’s object and event learning in a

changing world.

Colelough and Regli (2025) also provide a review of neuro-

symbolic AI. They noted in their Abstract that “there is a notable

gap in research focused on explainability and trustworthiness,
which is critical for the deployment of reliable AI systems.” As

I noted above, ART has been explainable and trustworthy since
I introduced it in 1976. Those interested in the even earlier

neural network history might like to know that I introduced the
biological neural network paradigm in 1957 when I was a Freshman

at Dartmouth College taking introductory psychology, and my
short-term memory (STM), medium-term memory (MTM), and
long-term memory (LTM) laws are still used to explain data

about how brains make minds. That is why colleagues call
me the Father of AI (see https://en.wikipedia.org/wiki/Stephen_

Grossberg).

Another example of neural-symbolic computing, and one
that uses a form of attention, is the Transformer model

(Vaswani et al., 2017). Transformers are feedforward, and their

attention mechanism differs from the ART Matching Rule,

which characterizes attention in ART. The ART Matching

Rule is embodied by a top-down, modulatory on-center, off-

surround network, a prediction confirmed anatomically and

neurophysiologically in multiple species (Grossberg, 2021a).

Attention in ART stabilizes learned memories while focusing on

learned critical feature patterns.

To the present time, six different adaptive resonances in
different parts of our brains carrying out different psychological

functions have been characterized and used to explain
psychological and neurobiological data: Surface-shroud resonances

support conscious seeing of visual objects and scenes; Feature-
category resonances support conscious recognition of visual objects
and scenes; Stream-shroud resonances support conscious hearing of

auditory objects and scenes; Spectral-pitch-and-timbre resonances

support conscious recognition of sources in auditory streams;
Item-list resonances support conscious recognition of speech and
language; and cognitive-emotional resonances support conscious

feelings and recognition of their sources.

With these abilities in hand, an observer can learn to associate

large numbers of learned language utterances with their scenic and

emotional meanings with the help of a teacher, in the same way as

in the study by Grossberg (2023). The main difference is that the

observer has experienced a huge repertoire of visual scenes to which

language descriptors can be attached. As a result, the observer’s brain

can learn large language models and associate them with their many

scenic and emotional meanings.
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FIGURE 2

(a) When a rehearsal wave R (blue disk) turns on, the item that is stored in working memory can be rehearsed while it self-inhibits its working memory

representation. Relative activity amplitudes are represented by the sizes of vertical blue rectangles. Triangular cells are polyvalent. (b) Filled diamond

summarizes key stages in choosing items to be rehearsed and associating them with a bottom-up adaptive filter and learned top-down expectations.

(c) Recursive read-out, under volitional control, from the hierarchy of processing stages that represents the lyrics of a song. Green represents

excitatory connections. Red represents inhibitory connections. Blue disks represent volitional gain control signals. [Reprinted with permission from

Grossberg (2022)].

We then need to explain.

Storage and retrieval of large language
models

How are large language models stored in an efficiently

retrievable way in our brains? A learner’s experiences in real time

provide a scaffold for doing this. In particular, I will describe how

individual language utterances can be sequentially organized in

the order that a learner views different parts of a scene under a

teacher’s guidance.

This can be done in either of two ways:

First, a visual representation of each view can be associated with

a sentence that describes this view, as in the study by Grossberg

(2023).

Second, each sentence that is generated as a sequence of

views is perceived and can be temporarily stored in cognitive

working memory within the prefrontal cortex. The distributed

representation of the sentence can then be compressed, or chunked,

by learning at the next processing level into a recognition category,

or list chunk, that responds selectively to the stored sentence

with which it is associated. Multiple, sequentially activated list

chunks can, in turn, be sequentially stored in a working memory,

then chunked, at higher cortical levels (Bradski et al., 1992, 1994;

Grossberg, 1978a,b, 2017, 2018, 2022, 2023; Grossberg and Pearson,

2008; Kazerounian and Grossberg, 2014; Silver et al., 2011).

In this hierarchical network, the nodes, or cell populations, in

each workingmemory are list chunks of sequences that are stored in

working memory at the previous level: the nodes at the second level

of the hierarchy can represent list chunks of sentences at the first

level, and the nodes at the third level of the hierarchy can represent

ordered sentences as part of a story. Figure 2 shows how this can

work during storage and learning of the lyrics of a song, starting at

the level of acoustic features, as explained by Grossberg (2022).

Later in life, spontaneous visual exploration of a scene

(Browning et al., 2009; Chang et al., 2014; Elder et al., 2009;

Grossberg et al., 2012; Srihasam et al., 2009) enables previously,

or newly, learned language descriptors of scenic views to

be sequentially activated, stored, learned, and remembered as

organized stories about the new scene, which can later be replayed

at will, either subvocally in the learner’s mind, or vocally to

nearby listeners.

Representing the places where, and the
times when, events occur

The above processes help to explain how the place and the time

that an event occurs are represented in the brain. Details about the
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place are explicitly included in these processes by recalling visual

memories about the scene in which the event occurred. Details

about time are implicitly included because, when a child asks you

“When did mommy throw the ball?,” you can at least partially

infer how long ago she threw the ball by recalling visual memories

about how mommy was dressed and the objects in the scene and

their arrangement. Visual representations of mommy moving in

space occur within brain regions such as the visual, temporal,

and prefrontal cortices. The next section, about contextually cued

visual search, will review in greater detail how space and time are

represented in this sense.

Episodic learning and memory: neural
relativity during entorhinal–hippocampal
interactions

Episodic learning and memory provide another type of

representation of the time when, and the place where, an event

occurred (Baddeley, 2001; Baddeley et al., 2002; Burgess et al., 2002;

Eichenbaum, 2017; Ezzyat and Davachi, 2011; Fletcher et al., 1997;

Moscovitch et al., 2016; Schacter and Madore, 2016; Squire and

Zola, 1998; Sugar and Moser, 2019; Tulving, 1983, 1993, 2002;

Tulving and Thomson, 1973). As described by Google: “Episodic

learning and memory involve encoding, storing, and retrieving

specific, personal experiences, including details about time and

place, and are distinct from semantic memory, which focuses on

factual knowledge.”

Neurobiological experiments have suggested that interactions

within and between the entorhinal cortex and the hippocampal

cortex, among other brain regions, contribute to episodic learning

and memory. I and several PhD students and postdocs have

developed neural network models of the brain mechanisms within

the lateral entorhinal–hippocampal system that learn adaptively

time actions triggered by currently valued objects in a scene.

We have also modeled the brain mechanisms within the dorsal

entorhinal–hippocampal system that learn to navigate the space in

which these valued objects occur.

One might immediately wonder: how did evolution discover

computational machinery for representing space and time in

this way? The GridPlaceMap neural model of entorhinal–

hippocampal interactions proposes how these dorsal and ventral

representations of space and time emerge from variations

of the same circuit mechanisms. I like to call this exciting

homology neural relativity to emphasize its unification of concepts

about space and time (Gorchetchnikov and Grossberg, 2007;

Grossberg, 2021b; Grossberg and Pilly, 2012, 2014). Remarkably,

the GridPlaceMap model also proposes how both entorhinal grid

cells and hippocampal place cells are learned during development

as spatial categories in a hierarchy of self-organizing maps (SOMs),

where SOMs are a basic building block of many kinds of brain

processes, including perceptual, cognitive, and emotional processes

(Figure 3). Moreover, grid cells and place cells can use the same

SOM equations to learn their strikingly different receptive fields, the

difference being due entirely to the different positions of these cells

in the entorhinal–hippocampal hierarchy. In addition, both grid

and place cells develop by detecting, learning, and remembering the

FIGURE 3

The entorhinal–hippocampal system has properties of an ART

spatial category learning system, with hippocampal place cells as

the spatial categories. [Reprinted with permission from Grossberg

(2021b)].

most frequent and energetic co-occurrences of their different input

patterns. Historical and comparative reviews of several influential

cognitive and neural network models for learning, categorization,

and decision-making, including SOMs, are provided in Grossberg

(1984c, 1986, 1987, 1988). The top-down feedback pathway in

Figure 3 dynamically stabilizes grid cell and place cell learning. The

entire neural circuit is an ART system for learning spatial categories

for navigation. Primordial ART mechanisms operate even during

non-neural processes such as gastrulation in sea urchins, and

illustrate a universal developmental code shared by all cellular

organisms (Grossberg, 1978c, 2021b).

Once learned, these temporal and spatial representations within

the ventral and dorsal entorhinal–hippocampal streams can be

associated with representations of concurrently occurring visual

scenes to form episodic memories, even while sentences that

describe these scenes are associated with them. I will not use

episodic memories in the remainder of this article. Two articles that

use ART to model episodic memory in applications are Hu et al.

(2022) and Wang et al. (2012).

I can now review the main additional process that is used in the

extended ChatSOME model, followed by a brief review of several

of the processes used in the original ChatSOME model. The reader

who wants a more complete explanation of all the processes used in

the original ChatSOMEmodel can find it in the study by Grossberg

(2023).

This additional ChatSOME process concerns how humans

can learn to consciously perceive, attend, search, and understand

large numbers of natural and man-made visual scenes throughout

life. Language utterances can then be associated through

learning with attended views of these scenes. Because the scenes

include all our visual experiences, they provide a substrate

for learning large language models and their perceptual and

affective meanings.
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Learning to understand a scene during
contextually cued visual search

Eye movements and visual search: from gist
to scene understanding

Humans make thousands of eye movements every day. Some

eye movements explore scenes without any goals in mind. Other

eye movements search for valued persons or objects that are

expected to be found in a scene, such as finding a friend with

whom you are having lunch in a restaurant, or locating your

reserved seat in an auditorium before a play or concert starts. To

search efficiently, our visual attention uses knowledge of what to

expect and where to look for it (Neider and Zelinsky, 2006). Such

knowledge comes either from external, or exogenous, cues, such

as visual or verbal information about a target, or from internal, or

endogenous, memories of spatial or object placements in a scene

(Chun, 2000).

The gist, or first glance, of a scene provides a rapid, but coarse,

initial representation of a scene, such as whether the scene is of a

mountain range, beach, or city street. Gist helps human observers

realize what kind of scene is being viewed before searching it

with eye movements. Gist illustrates the fact that human observers

process visual information in a global-to-local and coarse-to-fine

manner (Navon, 1977; Schyns and Oliva, 1994). After the first

glance of a novel image in ∼200–300ms, people can recognize the

basic-level scene identity (Potter, 1975; Tversky and Hemenway,

1983) and surface properties (Oliva and Schyns, 2000; Rousselet

et al., 2005), spatial structures (Biederman et al., 1974; Sanocki,

2003), and meanings (Potter, 1975; Potter et al., 2004) without yet

attending individual objects in the scene. The gist of a scene hereby

provides contextual guidance for where in the scene a search target

may be located (Torralba et al., 2006).

The first-order approximation to scene understanding that

gist provides is often followed by evidence accumulation about

the scene to achieve a more detailed perceptual and cognitive

understanding (Gold and Shadlen, 2007; Grossberg and Pilly, 2008;

Heekeren et al., 2008; Irwin, 1991; Jonides et al., 1982). Neural

models that I have developed with several collaborators clarify

how successive spatial attention shifts and eye movements enable

us to learn progressively more detailed understanding of scenes

(Grossberg and Huang, 2009; Huang and Grossberg, 2010) and the

objects within them (Fazl et al., 2009; Foley et al., 2012; Grossberg

andWilliamson, 1999). In particular, the neural model of Grossberg

and Pilly (2008) provides a more powerful explanatory framework

for perceptual decision-making than models based on Bayesian

Inference (e.g., Gold and Shadlen, 2001, 2007; Knill and Pouget,

2004; Pouget et al., 2003), while also overcoming conceptual and

explanatory weaknesses of the Bayes approach.

Since visual attention can be guided by cognitive and emotional

control to objects or regions of interest, over and beyond scenic

statistics or contexts, gaze locations and eye scanning paths also

reflect task-dependent goals and internal drives (Ballard and

Hayhoe, 2009; Hayhoe and Ballard, 2005; Rothkopf et al., 2007).

For example, when geologists first walk into a desert, their attention

may be attracted to the mineral deposits that they made the trip to

analyze. However, if they are very thirsty when they arrive, their

attention and actions may shift toward palm trees in an oasis where

they can sate their thirst. Yarbus (1967) has provided a classic

example of such goal-dependent scene search by recording eye

movements for the same picture under different task instructions.

Due to how sequences of visual attention shifts are shaped

by contextual constraints when viewing a scene, memories of the

scene are not like a photograph, but rather emphasize attentionally

salient scenic textures or objects (Kensinger et al., 2007). Bottom-

up perceptual factors, top-down cognitive factors (Chen and

Zelinsky, 2006; Leber and Egeth, 2006), and emotional factors

(Armony andDolan, 2002; Öhman et al., 2001) conjointly influence

scene understanding.

A comprehensive neural model of how our brains achieve

visual scene understanding must thus explain how exogenous and

endogenous attention combine to organize scene perception and

memory, and how evidence accumulation incrementally deepens

awareness and knowledge of a scene during spatial attention shifts

and scanning eye movements.

ARTSCENE model

The ARTSCENE model (Grossberg and Huang, 2009) explains

and simulates how spatial attention can regulate category learning

and recognition of scenic textures, starting with global textures such

as the gist of a scene, and then including increasing small spatial

scales to refine identification of smaller textured regions over time.

Scenic categories were learned in ARTSCENE using the

ARTMAP model, which is capable of both unsupervised and

supervised attention, fast learning without catastrophic forgetting,

categorization, and prediction of non-stationary data and

environments (Carpenter et al., 1991, 1992). After learning to

categorize a scene’s gist, scene identity was refined by assuming

that the eyes randomly scan the scene, thereby landing in the

largest textured region with the highest probability. An attentional

spotlight at the position where the eyes land triggers a surface-

shroud resonance that spreads spatial attention and conscious

visual awareness across the attended region (Fazl et al., 2009),

thereby enabling a texture category of that region to be learned.

Then, the process is repeated, enabling ever-finer texture categories

to be learned, until all the regions are classified (Figure 4).

After learning was complete, recognition performance was

determined by letting all the learned texture categories vote for the

best scenic label (Figure 5). At the time ARTSCENE was published,

it reduced the error rate of alternative scene classification models

by 16.15%, even though these models were based on more complex

and biologically implausible processes.

ARTSCENE Search models scene
understanding: object and spatial contexts
influence search

After the ARTSCENE model was complete, Tren Huang and

I frontally attacked the scene understanding problem by modeling

the followingmore challenging competence: how scenic objects and
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FIGURE 4

Classification of scenic properties as texture categories by the ARTSCENE model [Reprinted with permission from Grossberg (2021b)].

FIGURE 5

Voting in the ARTSCENE model achieves even better predictions of scene type. [Reprinted with permission from Grossberg (2021b)].

their positions are learned and used to guide an efficient context-

sensitive search for other objects in familiar types of scenes to learn

the scene incrementally. For example, humans can learn that a

certain combination of objects, such as a refrigerator and a stove,

may define a context for a kitchen and use that knowledge to trigger

an efficient search for another typical kitchen object, such as a sink,

until the entire kitchen scene is learned.

The ARTSCENE Search model (Huang and Grossberg, 2010)

was developed to understand the neural mechanisms of such

memory-based context learning and guidance, and to explain
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FIGURE 6

Macrocircuit of the ARTSCENE Search neural model for learning to search for desired objects by using the sequences of already experienced objects

and their locations to predict what and where the desired object is. V1, First visual area or primary visual cortex; V2, Second visual area; V4, Fourth

visual area; PPC, Posterior parietal cortex; ITp, Posterior inferotemporal cortex; ITa, Anterior inferotemporal cortex; MTL, Medial temporal lobe; PHC,

Parahippocampal cortex; PRC, Perirhinal cortex; PFC, Prefrontal cortex; DLPFC, Dorsolateral PFC; VPFC, Ventral PFC; SC, Superior colliculus.

[Reprinted with permission from Grossberg (2021b)].

challenging behavioral data. As in the ARTSCENE model, the

ARTSCENE Search model simulates how a first glance of a scene

learns a gist category. In addition, ARTSCENE Search triggers

learning about both the object’s identity and its position, while also

matching learned top-down expectations against the object and

its position to determine whether it is a target (e.g., a sink) or a

non-target (e.g., a wall).

This hypothesis is then incrementally refined as a scene

is scanned with saccadic eye movements. Each eye movement

adds to the accumulated learned contextual evidence about object

and spatial sequential contexts that help to determine where to

look next to most efficiently find the target. Sequences of the

scene’s object and positional representations are learned in this

way through time. The model hereby simulates the interactive

dynamics of object and spatial contextual cueing and attention

in the cortical What and Where streams, starting from early

visual areas through the medial temporal lobe to prefrontal

cortex (Figure 6).

Perirhinal and parahippocampal cortices
store object and spatial contexts

Multiple brain regions cooperate to carry out these contextual

processes (Figure 6). Sequences of fixated objects and their spatial

positions are stored in object and spatial working memories within

the model ventrolateral prefrontal cortex (VLPFC) and dorsolateral

hippocampal cortex (DLPFC), respectively. Sequences of fixated

objects and their positions are also stored in the model perirhinal

cortex (PRC) and parahippocampal cortex (PHC), respectively.

Stored PRC and PHC sequences define object and spatial contexts

that interact with the VLPFC and DLPFC working memories

via bottom-up adaptive filters. The proposed role of PRC and

related cortical areas in defining object contexts, and of PHC and

related cortical areas in defining spatial contexts, is supported by

neuroimaging data in humans (Aminoff et al., 2007; Diana et al.,

2007; Libby et al., 2014).

Associative learning occurs in the ARTSCENE Search model,

from a stored object or position in PRC or PHC to a stored object

or position in VLPFC or DLPFC, respectively. This learning is

modulated by a dopamine burst from the model basal ganglia

(Figure 7) when a target is foveated and reinforced. In this way,

predictively successful associations between PRC and VLPFC, and

between PHC andDLPFC, can amplify the stored workingmemory

items and list chunks that led to predictive success. The spatial

attentional focus can be broadened or narrowed in a task-specific

way to determine what objects or positions will influence the

winning prediction.

By modeling these processes, ARTSCENE Search quantitatively

simulated psychophysical data from experiments in the literature

on contextual cueing, including spatial and object cueing, positive

and negative spatial cueing, and local and distant cueing effects

(e.g., Brockmole et al., 2006; Brockmole and Henderson, 2006;
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FIGURE 7

The basal ganglia gate neural processing in many parts of the brain. The feedback loop through the lateral orbitofrontal cortex (blue arrow) is the one

that MOTIVATOR models (see Figure 9 for what MOTIVATOR is). [Reprinted with permission from Grossberg (2021b)].

Chun, 2000; Chun and Jiang, 1998; Jiang and Wagner, 2004; Lleras

and von Mühlenen, 2004; Olson and Chun, 2002).

After scene learning, the model’s dorsolateral prefrontal

cortex (area 46) primes possible object positions in the posterior

parietal cortex based on goal-modulated percepts of spatial

context that are represented in parahippocampal cortex. At the

same time, the ventral prefrontal cortex (area 47/12) primes

possible object identities in inferior temporal cortex based on

the history of viewed objects represented in perirhinal cortex.

Remarkably, the parahippocampal cortex and perirhinal cortex play

computationally complementary roles (Grossberg, 2000) in spatial

and object contextual processing. Grossberg (2021b) provides a

more detailed summary of this scene learning process, including

the functional roles of all the anatomical regions depicted in

Figure 6.

Organizing learned language utterances
about a scene into a story

Once scene understanding is available, sentences that describe

specific visual views of a scene can be associated with them

using bidirectional associative learning; that is, learning from

the sentence to the scene, as well as learning from the scene

to the sentence. Sequential visual recall of scenic views can

then enable the sentences to be recalled in the order in which

the scene was scanned. As this happens, the sentences can be

organized into stories using the multi-level network depicted

in Figure 1. Either visual exploration or imagined visual recall

of the scene can activate and recall brain representations of

the associated sentences in the correct order. Alternatively,

the learned linguistic story can be recalled from memory and

thereby activate recall of the sequences of scenic views that the

story describes.

This completes my heuristic summary of how a large language

model can be learned and associatively linked to its perceptual

meanings. How feelings are aroused uses the same brain processes

that I described in the study by Grossberg (2023).

For completeness, I include an overview in the following

sections of the review of the additional brain processes that were

described in greater detail in Grossberg (2023) and that are needed

to learn language utterances and associate them with the percepts

and feelings that they describe.

Several learning processes link
language to perception and emotion

Visual and auditory circular reactions
enable a child to look where mommy is
looking

How does a baby know where to look? Before a child can learn

from an adult, the child must be able to pay attention to and learn

to recognize the adult’s face from multiple viewpoints when he or

she speaks.

One early process that is needed to do this is a visual circular

reaction. During a visual circular reaction, babies endogenously

babble, or spontaneously generate, hand/arm movements to

multiple positions around their bodies. Babbled movements

endogenously sample the workspace within which a baby can reach.

As their hands move in front of them, their eyes reactively look at

their hands. While the baby’s eyes look at its hands, an associative

map is learned from its hand positions to the corresponding eye

positions, and from its eye positions to hand positions. The learned
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FIGURE 8

Macrocircuit of the main brain regions, and connections between

them, that are modeled in the unified predictive adaptive resonance

theory (pART) of cognitive-emotional and working memory

dynamics. Abbreviations in red denote brain regions used in

cognitive-emotional dynamics. Abbreviations in green denote brain

regions used in working memory dynamics. Black abbreviations

denote brain regions that carry out visual perception, learning and

recognition of visual object categories, and motion perception,

spatial representation, and target tracking. Arrows denote

non-adaptive excitatory synapses. Hemidiscs denote adaptive

excitatory synapses. Many adaptive synapses are bidirectional,

thereby supporting synchronous resonant dynamics among

multiple cortical regions. The output signals from the basal ganglia

that regulate reinforcement learning and gating of multiple cortical

areas are not shown. Moreover, not shown are output signals from

cortical areas to motor responses. V1, striate, or primary, visual

cortex; V2 and V4, areas of prestriate visual cortex; MT, middle

temporal cortex; MST, medial superior temporal area; ITp, posterior

inferotemporal cortex; ITa, anterior inferotemporal cortex; PPC,

posterior parietal cortex; LIP, lateral intraparietal area; VPA, ventral

prearcuate gyrus; FEF, frontal eye fields; PHC, parahippocampal

cortex; DLPFC, dorsolateral hippocampal cortex; HIPPO,

hippocampus; LH, lateral hypothalamus; BG, basal ganglia; AMGY,

amygdala; OFC, orbitofrontal cortex; PRC, perirhinal cortex; VPS,

ventral bank of the principal sulcus; VLPFC, ventrolateral prefrontal

cortex. [Reprinted with permission from Grossberg (2021b)].

maps between eye and hand in both directions are the “circular”

reaction. After map learning occurs, when a person looks at a

target position with their eyes, this eye position can use the learned

associative map to prime the activation of a movement command

to reach the target position in space. A volitional GO signal from

the basal ganglia activates the reach.

An auditory circular reaction occurs during its own babbling

phase. During an auditory circular reaction, babies endogenously

babble simple sounds that sample the workspace of sounds that

they can create. The babies also hear the sounds that they create.

When the motor commands that caused the sounds and the

auditory representations of the heard sounds are simultaneously

active in the baby’s brain, a map is learned between these auditory

representations and the motor commands that produced them.

After enough map learning occurs, a child can use the map to

approximately imitate sounds from adult speakers. It can then

incrementally learn how to speak using increasingly complicated

speech and language utterances, again under volitional control.

These processes enable babies to learn to imitate simple

sentences that adult caregivers say, such as “Mommy walk,”

“Mommy throw ball,” and so on.

Learned capabilities, such as being able to look at objects in

space, talk about them, and act upon them, provide a scaffold

for learning about these objects. Grossberg (2021b, 2023) describe

these processes in detail.

Learning to recognize an object such as mommy’s face

from many viewpoints means that the child learns an invariant

recognition category of her face. View-specific categories of her face

must also be learned which are activated when specific views of her

face are seen, as mommy looks at something. These invariant and

view-specific representations reciprocally interact with each other

via learned associations, so that the child can invariantly recognize

mommy’s face and a view of it that predicts where she is currently

looking. Then, the child learns to look where mommy is looking.

These invariant and view-specific categories are learned within

the child’s inferotemporal cortex, with view-specific learning in the

posterior inferotemporal cortex (ITp) and invariant learning in the

anterior inferotemporal cortex (ITa; Cao et al., 2011; Fazl et al.,

2009). Figure 8 shows ITp and ITa within the more comprehensive

neural architecture that I call predictive ART, or pART, which I

describe below.

Cognitive-emotional interactions focus
motivated attention upon mommy’s face

Why does the baby want to look at mommy’s face at all? A

baby typically learns its mommy’s face while mommy carries out

actions that reward the baby, such as feeding it with her breast

or a bottle. The milk, comfort, warmth, etc., that are experienced

during feeding are positively rewarding. As an invariant category

of mommy’s face is learned, it is bidirectionally associated

with positive emotional centers, also called drive representations

or value categories, that are activated in the baby’s brain by

mommy’s rewarding activities. These drive representations are in

the amygdala/hypothalamic system.

A neural model of cognitive-emotional resonances, called

the Cognitive-Emotional-Motor, or CogEM, model, and its

MOTIVATOR model generalization (Figure 9) that includes the

basal ganglia, has been incrementally developed to achieve an

ever broadening interdisciplinary explanatory range (e.g., Chang

et al., 2014; Dranias et al., 2008; Fiala et al., 1996; Grossberg, 1971,

1972a,b, 1974, 1975, 1978d, 1982, 1984a,b, 2018, 2019a; Grossberg

et al., 2008; Grossberg and Levine, 1987; Grossberg and Schmajuk,

1987, 1989). A cognitive-emotional resonance links attended

valued objects to conscious feelings about them. In particular, the

model includes a positive feedback loop that associates an invariant

object category with an active drive representation. When it is

activated for a sufficiently long duration, this positive feedback loop

generates conscious feelings about the object while maintaining

motivated attention on it and reading out commands for actions

that can realize currently valued goals to acquire or otherwise

manipulate the object.

The positive feedback during a cognitive-emotional resonance

amplifies the activity of both the attended invariant object
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FIGURE 9

(a) The MOTIVATOR neural model generalizes CogEM by also including the basal ganglia. It can hereby explain and simulate complementary

functions of the amygdala and basal ganglia (SNc) during conditioning and learned performance. The basal ganglia generate Now Print signals in

response to unexpected rewards. These signals modulate the learning of new associations in many brain regions. The amygdala supports motivated

attention to trigger actions that are expected to occur in response to conditioned or unconditioned stimuli. Object categories represent visual or

gustatory inputs in the anterior inferotemporal (ITA) and the rhinal (RHIN) cortices, respectively. Value categories represent the value of anticipated

outcomes on the basis of hunger and satiety inputs, in amygdala (AMYG) and lateral hypothalamus (LH). Object-Value Categories resolve the value of

competing perceptual stimuli in medial (MORB) and lateral (ORB) orbitofrontal cortex. The Reward Expectation Filter detects the omission or delivery

of rewards using a circuit that spans ventral striatum (VS), ventral pallidum (VP), striosomal delay (SD) cells in the ventral striatum, the

pedunculopontine nucleus (PPTN), and midbrain dopaminergic neurons of the substantia nigra pars compacta/ventral tegmental area (SNc/VTA).

The circuit that processes CS-related visual information (ITA, AMYG, and ORB) operates in parallel with a circuit that processes US-related visual and

gustatory information (RHIN, AMYG, and MORB). (b) Reciprocal adaptive connections between the lateral hypothalamus and amygdala enable

amygdala cells to become learned value categories. The bottom region represents hypothalamic cells, which receive converging taste and

metabolite inputs, whereby they become taste-driven cells. Bottom-up signals from activity patterns across these cells activate competing value

categories, or US Value Representations, in the amygdala. A winning value category learns to respond selectively to specific combinations of

taste-drive activity patterns and sends adaptive top-down priming signals back to the taste-drive cells that activated it. CS-activated conditioned

reinforcer signals are also associatively linked to value categories. Adaptive connections end in (approximate) hemidiscs. [Reprinted with permission

from Grossberg (2021b)].

category and its view-specific categories. These amplified category

representations can draw spatial attention to their position in space.

As a result, when the baby and its mommy are in different spatial

locations, the baby’s attention can be drawn to attend to mommy’s

face. The interaction from an invariant category to its position in

space has been modeled by the ARTSCAN Search model (Chang

et al., 2014), among other properties.

The foundations of CogEM and MOTIVATOR for modeling

our brain’s cognitive-emotional dynamics, including reinforcement

learning, were laid in Grossberg (1971, 1972a,b, 1974, 1975). My

colleagues and I began to publish mathematical explanations and

quantitative simulations of reinforcement learning data as soon as

sufficiently powerful computers became available (e.g., Grossberg

and Gutowski, 1987; Grossberg and Levine, 1987; Grossberg and

Merrill, 1992, 1996; Grossberg and Schmajuk, 1987, 1989).

This explanatory range is not possible using the Temporal-

Difference Learning model of Sutton and Barto (1987, 1998), which

has been used primarily in applications.

Comparing Nobel and Turing Prizes: Barto,
Sutton, Hinton, Hopfield, Kahneman, and
Tversky

The work of Sutton and Barto on reinforcement learning

calls attention to Turing and Nobel Prizes for contributions that

overlap with themodels I developed, usually earlier than the award-

winning work.

Andrew Barto and Richard Sutton won the Turing Award

in 2025 for their work on reinforcement learning, which started

in 1981. I listed above neural network models of reinforcement

learning that I published between 1971 and 1975, despite the fact

that the New York Times claimed on 5 March 2025 that “They are

the undisputed pioneers of reinforcement learning” (https://lnkd.

in/eiFc9HgD).

Geoffrey Hinton won the Turing Award in 2018 and the

Nobel Prize in 2024 for his work on back propagation and

deep learning. His 2024 Nobel Prize was for “foundational
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discoveries and inventions that enable machine learning with

artificial neural networks.” Deep learning uses back propagation as

its learning algorithm.

Back propagation was discovered by Amari (1972), Werbos

(1974, 1994), and Parker (1982, 1985, 1986, 1987), reaching its

modern form and being successfully simulated in applications by

Werbos (1974). The algorithm was then popularized in 1986 in an

article by David Rumelhart, Geoffrey Hinton, and Ronald Williams

(Rumelhart et al., 1986).

As I noted above, in 1988 (Grossberg, 1988), I listed 17

fundamental computational problems that back propagation, and

thus deep learning, have and that Adaptive Resonance Theory

never had since its inception in 1976 [see also the review in

the study by Grossberg (2020)]. These problems can be traced

to the fact that back propagation is a feedforward adaptive

filter, including that it is untrustworthy (because it is not

explainable) and unreliable (because it can experience catastrophic

forgetting at any stage of the hundreds or thousands of slow

learning trials that are needed to complete its learning). It

should thus never be used in life-or-death applications such

as financial or medical applications. Back propagation also

uses a non-biological, non-local weight transport to learn its

adaptive weights, thereby excluding it as a plausible model of

brain learning.

John Hopfield shared the 2024 Nobel Prize with Hinton. I

published articles in 1967–1972 in the Proceedings of the National

Academy of Sciences, which introduced the Additive Model that

Hopfield (1984) used. My articles proved global theorems about

the limits and oscillations of Generalized Additive Models, e.g.,

Grossberg (1967, 1968, 1971). These theorems provided a rigorous

function for my research program to discover and develop

biological neural networks that explain lots of psychological and

neurobiological data. I proved more global theorems in the study

by Grossberg (1978c,e). In the study by Grossberg (1978e), I also

introduced a Lyapunov functional to help prove that sustained

oscillations persist.

This mathematical foundation led Michael Cohen and me to

discover in 1980, and finally manage to publish in 1982 and 1983

(e.g., Cohen and Grossberg, 1983), a Liapunov function that works

for both the Additive Model and the Shunting Model. We used this

Liapunov function to prove global convergence of our Liapunov

function. Hopfield (1984) used a special case of our Liapunov

function and did not prove global convergence. I was told that

Hopfield knew our results before he published, but did not cite us

[see Carpenter et al. (1987)].

Amos Tversky and Daniel Kahneman developed Prospect

Theory tomodel how humansmake irrational decisions when faced

with risky probabilistic alternatives (Kahneman and Tversky, 1979),

for which they won the Nobel Prize in 2002. Prospect Theory

uses formal algebraic rules to fit human decision-making data.

William Gutowski and I explained and simulated their data with

Affective Balance Theory (Grossberg and Gutowski, 1987), which

uses the brain’s cognitive-emotional interactions that I published

between 1971 and 1975. In this sense, my CogEM model predicted

their data. We also explained data about preference reversals that

Prospect Theory cannot.

Our model also answers the question: if evolution selects

adaptive behaviors for survival during Natural Selection,

then why are so many decisions irrational and even self-

defeating? Our model shows how adaptive mechanisms for

cognitive-emotional interactions can break down when risky

probabilistic alternatives exist. They work most, but not all, of

the time.

Joint attention: how viewing a valued face
triggers learned orienting to an attended
object

How does a baby learn to associate an attended view of

mommy’s face with the position in space where she is looking

or pointing? As mommy points her arm and hand to an object

for the baby to attend, spatial attention in the baby’s brain can

flow from mommy’s attended face representation along her arm

to her hand. Such a flow of spatial attention is an example

of long-range apparent motion. I have called this flow a G-

wave, or Gauss-wave (Figures 10A–C), because it describes how

attention flows as a bump of Gaussianly shaped activity from

its initial position to its final position (Francis and Grossberg,

1996; Grossberg, 2014; Grossberg and Rudd, 1989, 1992). In the

current example, spatial attention flows from mommy’s face to her

moving hand.

Learning to associate a view of mommy’s
face with the position of her hand in space

As noted above, a G-wave can travel from mommy’s face to

her hand as she points at an object of interest. An association can

then be learned from the view-specific category of mommy’s face

to the attended final position of her hand in space. This view-

specific category can then activate the learned association to predict

where mommy is looking, so the baby can look in the direction that

mommy is looking.

TheMOtion DEcision, orMODE,model of Grossberg and Pilly

(2008) explains how the direction of mommy’s motion is converted

into saccadic eye movements that maintain fixation where mommy

is looking (Figure 11).

Learning to associate mommy’s face with
her name builds on an auditory circular
reaction

As mommy’s invariant face category is learned, the baby

can also learn to associate it with an auditory production of

mommy’s name. This ability builds on the auditory circular

reaction. If mommy responds positively to hearing her

name, the child’s resultant cognitive-emotional interactions

strengthen the learned association between seeing mommy and

saying mommy.
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FIGURE 10

Long-range apparent motion: the sum of the waning Gaussian activity profile due to the first flash (at mommy’s face) and the waxing Gaussian

activity profile due to the second flash (at mommy’s hand) has a maximum that moves like a traveling wave from the first to the second flash. In

greater detail: (A) As a flash waxes and wanes through time, so too do the activities of the cells in its Gaussian receptive field. Because the maximum

of each Gaussian occurs at the same position, nothing is perceived to move. (B) If two flashes occur in succession, then the cell activation that is

caused by the first one can be waning while the activation due to the second one is waxing. (C) The sum of the waning Gaussian activity profile due

to the first flash and the waxing Gaussian activity profile due to the second flash has a maximum that moves like a traveling wave from the first to the

second flash. [Reprinted with permission from Grossberg (2021b)].
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FIGURE 11

The MODE model uses motion preprocessing stages, collectively called the Motion BCS [green letters], as its front end, followed by a saccadic target

selection circuit in the model LIP region [red letters] that converts motion directions into movement directions. These movement choices are also

under basal ganglia (BG) control. MT, Middle Temporal area; MSTv, ventral Middle Superior Temporal area; LIP, Lateral Intra-Parietal area. [Reprinted

with permission from Grossberg (2021b)].

Learning to recognize mommy’s
movements

Before a child can learn short sentences such as “mommy

points” or “mommy walks,” the child must first learn to recognize

her movements and learn names for them. Multiple perceptual

processes in both the form and the motion cortical streams

cooperate to enable this to happen. They are described in greater

detail in Grossberg (2021b) and Grossberg (2023). Here, I briefly

summarize why a lot of the visual cortex is needed to do this kind

of computation.

A series of changing positions of a moving form, such as

mommy, is computed in the What cortical stream. Perceiving

a series of an object’s changing positions is not, however, the

same thing as perceiving its motion. Object motion is computed

in the Where cortical stream. Form and motion are computed

in separate cortical streams because object form is sensitive to

the orientation of an object’s boundaries, whereas object motion

is sensitive to an object’s direction of motion. Computation of

motion direction pools directional estimates from all the different

orientations of an object’s boundaries that move in the same

direction. A computation of motion direction hereby eliminates

the information that computes object orientation. I have shown

elsewhere that these parallel computations of object form and

object motion are computationally complementary (Grossberg,

1991).

TheWhere stream needs a complete visual representation of an

object’s form to successfully track it. A representation of object form

in theWhat stream is topographically mapped into a representation

of its motion in the Where cortical stream, whose dynamics can

track it through time. The 3D FORMOTION model simulates how

this happens (Berzhanskaya et al., 2007).

Moreover, when a complex object such as mommy walks or

points, different parts of her body move in different directions

and speeds. Our brains compute the motion direction of mommy’s

body, and the motions of her legs and arms relative to her body,

as she walks. This can be done using vector decomposition by a

recurrent on-center off-surround network that occurs throughout

our brains (Grossberg et al., 2011).

As mommy walks, her leg that is further from the child is

partly occluded by the closer leg. A complete perception of the

partially occluded leg is accomplished by the process of 3D figure-

ground separation, whereby all objects in a scene are separated in

depth. The 3D FORMOTION model explains how this happens

(Berzhanskaya et al., 2007). Mommy’s completed representations

can then be recognized by the child’s brain as it computes their

motion directions and speeds.

Nouns and verbs: learning to say “mommy
walks left” while observing her move

How does a child’s brain learn both a perceptual category and a

language category for “walk” and “walking”?Where in the brain are

the perceptual and linguistic representations of the verb “walk(s)”

in “mommy walk(s)” represented?
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First, consider the perceptual representation. Here, a view, or

succession of views, of mommy standing up with her legs on the

ground in a characteristic walking pose is classified. Large receptive

fields average across these details to extract mommy’s overall shape

and silhouette.

Multiple oriented scales, or filter sizes, from fine through

coarse, initially process all incoming visual information.

Higher-order processing stages select the scales that are most

informative in different situations by associating them with

their predictive consequences. Only informative scales will learn

strong associations. Finer scales will learn to categorize mommy’s

facial views, while coarser scales learn to categorize actions such

as walking.

Suppose that the co-occurrence of two perceptual categories—

of mommy’s face and her walk pose—together triggers learning of a

category that selectively fires whenmommywalks. This conjunctive

category can be associated via learning with the heard utterance

“mommy walks” or “mommy is walking” via a bi-directional

associative map.

A single pose of walking is often enough to recognize walking,

just as a single pose of standing is enough to recognize that posture.

Recognition of movements that cannot be effectively categorized

using a single pose requires the Where cortical stream.

FIGURE 12

A long-range directional filter (oriented green ellipse) pools all

possible contrast-sensitive sources of information, including

oriented contrast changes at edges, that are moving in that

direction. This estimate pools motion signals across all orientations

and with all contrast polarities that move in the same direction

through time. [Reprinted with permission from Grossberg (2021b)].

Learning to recognize and track mommy’s
movement direction

As I noted above, interacting brain regions control eye

movements that maintain foveation on mommy as she moves.

Suppose that the linear motion of mommy’s body activates a

long-range directional filter. Such a filter has an elongated shape

that adds inputs from an object’s motion signals over time that

move in its preferred direction when they cross its receptive

field (Figure 12). Arrays of such filters that are tuned to different

preferred directions occur in the Where cortical stream (Albright,

1984; Rodman and Albright, 1987), where they compete across

direction at each position to choose the filter that is most activated

by the mommy’s movement (Chey et al., 1997, 1998).

When a directional filter is activated for a sufficiently long time,

its output signals trigger learning of a directional motion category

in theWhere stream (Farivar, 2009), which can learn an association

with a descriptive word or phrase in theWhat stream, such as “left.”

After all the perceptual categories for recognizing “mommy,”

“walks,” and “left” are learned, they can be associated with

a linguistic phrase such as “mommy walks left” that is

spoken by an adult speaker. Mechanistic details of how

the ordered sequence of these words stored and learned are

described below.

Learning to say “mommy throws the ball”
while observing her do so

How does a baby or child learn to say “Mommy throws ball”

while observing mommy doing that? The first part of the sentence,

“Mommy throws,” can be understood in much the same way as

“Mommy walks.” In addition, when the child sees mommy pull

her arm back before thrusting it forward, extreme arm position

may be sufficient to learn a category for “throw” in the What

stream, while the motion of the throw can be categorized in the

Where stream.

As mommy completes the throw, the ball leaves her hand and

continues moving in the same direction. Attention can then flow

via a G-wave from mommy’s face to her arm, and then to the

ball. Perceptual categories that correspond to the events mommy,

throws, and ball are activated and stored in a perceptual working

memory in their correct temporal order, leading to learning of

a perceptual sequence category, or list chunk. A heard sentence

category of “mommy throws ball” can simultaneously be stored

in a linguistic working memory, and trigger learning of its own

list chunk. The linguistic list chunk learns an association with the

perceptual list chunk, and conversely. The list chunks also send

learned top-down signals to the workingmemory patterns that they

categorize, which can then be performed from working memory in

the correct order when a volitional GO signal from the basal ganglia

turns on. After learning, seeing this event sequence can elicit a

descriptive sentence.
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Where are nouns and verbs stored in the
brain? Semantics and syntactics

What parts of the brain are used to store and understand

a sentence such as “Watch mommy throw the ball”? The verbs

“watch” and “throw” have cortical representations in the Where

cortical stream. Nouns such as “mommy” and “ball” have cortical

representations in the What cortical stream. Both noun and verb

word representations are stored in the temporal and prefrontal

cortices individually or in sequences.

Thus, understanding the meaning of a sentence such as “Watch

mommy throw the ball” requires switching between the noun and

verb representations in the What and Where cortical streams,

respectively. Words such as the article “the” that help to structure

sentences are part of syntactics, whereas the branch of linguistics

that is concerned with meaning is called semantics. Traditional

semantic studies do not link language utterances to their perceptual

and affective meanings, e.g., Jackendoff (2006).

How are item sequences stored in working
memory and learned as list chunks?

All the sentences about mommy that are described above,

indeed all the sentences in a language, are first stored in a working

memory before they are learned. Before individual items in a

sequence are stored, they are learned as item chunks that respond

selectively when the distributed features that the item represents

are presented. Phonemes and musical notes are examples of

item chunks.

Sufficiently short sequences of item chunks can be temporarily

stored in working memory. If such a sequence, say a short

sentence, is stored frequently enough, it can be learned as a

unitized, or compressed, list chunk. A list chunk selectively

responds to prescribed sequences of item chunks that are stored

in working memory. These processes occur in brain regions

such as the ventrolateral prefrontal cortex (VLPFC) and the

dorsolateral prefrontal cortex (DLPFC). The list chunks in these

brain regions interact with other brain regions, including perirhinal

cortex (PRC), parahippocampal cortex (PHC), amygdala (AMYG),

lateral hypothalamus (LH), hippocampus (HIPPO), and the basal

ganglia (BG). These interactions can choose predictions and

actions that are most likely to succeed based on the sequential

context of previously rewarded experiences. Figure 8 summarizes

a macrocircuit of the predictive adaptive resonance theory, or

pART, model of the cognitive and cognitive-emotional dynamics

that model how these interactions work (Grossberg, 2018). pART

includes neural models of seven prefrontal regions that interact to

store, learn, and plan event sequences. These regions are colored

green in Figure 8.

Item and Order and Item-Order-Rank
working memories

I introduced a universal model of working memory in 1978 and

incrementally developed it with my collaborators to the present

time (e.g., Bradski et al., 1994; Grossberg, 1978a,b, 2018, 2022;

Grossberg and Pearson, 2008; Silver et al., 2011). I call it a

“universal” model of working memory because it can be derived

from a couple of simple hypotheses, and the same canonical circuit

design, suitably specialized, can store auditory, linguistic, spatial,

or motor sequences in multiple working memories that operate in

parallel in the prefrontal cortex.

The simplest model is called the Item-and-Order working

memory because a sequence of inputs that occur one at a time is

stored as an evolving spatial pattern of activation of item chunks

that code the cell populations of the working memory (Figure 13).

Individual cell populations thus represent list items and their

temporal order of occurrence is stored by their relative activities

within an activity gradient across the populations.

An Item-and-Order working memory cannot store a sequence

in which some items are repeated, such as repeated letters in the

sequence “ABACBD,” or repeated words in the lyric “my true love

is true.” A generalization of this model, called the Item-Order-

Rank, or IOR, model, can store sequences with repeats. Other

IOR working memories can store the turns and distances traveled

during navigation to a goal, the arm movements made during a

dance, or the notes played in a musical melody.

Why are IOR working memories unique?
LTM Invariance Principle and stable
chunking

Two kinds of evidence support the existence of IOR working

memories in our brains (Grossberg, 2021b, 2022). First, they

provide unified and principled explanations of many psychological

and neurobiological data about working memory and list chunk

dynamics. Second, they explain why and how sequences of items

and events that are stored in working memory are learned and

stably remembered through time as list chunks. In fact, Item-

and-Order working memories can be derived from two simple

postulates that enable their list chunks to be learned and stably

remembered: the LTM Invariance Principle and the Normalization

Rule. These postulates were used to derive mathematical equations

for Item-and-Order working memories when I introduced them in

Grossberg (1978a,b).

The LTM Invariance Principle prevents storage of longer lists

of events in working memory (such as MYSELF) from causing

catastrophic forgetting of previously learned list chunks of its

shorter sublists (such as MY, SELF, and ELF). It guarantees that,

if bottom-up inputs store a word in working memory and learn its

list chunk, say for the word MY, then also storing the word SELF to

complete storage and learning of the novel word MYSELF will not

cause forgetting of the learned weights that activated the list chunk

of MY.

The Normalization Rule just says that the maximum total

activity that is stored across a working memory is independent

of the number of activated cells. This rule follows from the

fact that the cells in an Item-and-Order working memory

compete among themselves via a recurrent shunting on-center

off-surround network. Such networks occur ubiquitously in

our brains because they solve what I call the noise-saturation
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FIGURE 13

Item-and-Order working memory model. Item-and-Order working memory models explain data about free recall, during which subjects repeat list

items that they have heard once in the order that they come to mind, as well as many other psychological and neurobiological data. Such a working

memory model simulates how temporal series of events are stored as evolving spatial patterns of activity at content-addressible item categories. The

categories with the largest activities are rehearsed first and self-inhibit their activity as they do so to prevent them from being rehearsed repeatedly or

perseveratively. The laws whereby sequences of items are temporarily stored in working memory obey simple hypotheses concerning how list

categories, or chunks, of sequences of stored items can be learned and stably remembered. [Reprinted with permission from Grossberg (2021b)].

dilemma (Grossberg, 1973, 2021b), which is solved by all

cellular networks because it enables cells to store the relative

sizes, and thus importance, of inputs in their activities without

flattening the pattern of activity by saturating when inputs are

too large, or distorting them in cellular noise when inputs are

too small.

The LTM Invariance Principle and Normalization Rule imply

that only short lists can be stored in working memory in a way that

enables their performance in the correct temporal order. That is

because a sufficiently short list can be stored as a primacy gradient of

activity whose items can be recalled in the correct temporal order.

In a primacy gradient, the first sequence item is stored with the

most activity, the second item is stored with the next largest activity,

and so on, until all items are stored (Figure 13). For example, the

primacy gradient that stores the sequence “A-B-C” of items stores

“A” with the highest activity, “B” with the second highest activity,

and “C” with the least activity.

A stored spatial pattern in working memory is recalled as a

temporal sequence of items when a rehearsal wave, or GO signal,

from the basal ganglia uniformly activates all the working memory

cells (Figure 13). The cell population with the highest activity is

read out fastest because it exceeds its output threshold fastest. As

it is read out, it self-inhibits its working memory activity via a

recurrent inhibitory interneuron (Figure 13), a process that is often

called the inhibition-of-return (Posner et al., 1985). Then, the cell

population with the next largest activity can be read out, and so

on, until the entire sequence is performed. Just three interacting

processing levels are sufficient to store, learn, and perform long

sequences of items or events that include repeats, such as in the

lyric “our true love was true.” Grossberg (2022) illustrates how these

circuits enable the learning and performance of musical lyrics and

melodies (Figure 2).

Our brains do not need, nor do they have, many processing

levels to store, learn, and perform sequential behaviors, in contrast

to deep learning models that may need more than one hundred

networks in a hierarchy, each with similar connectivity (Srivastava

et al., 2015).

Learning to use definite and indefinite
articles in sentences

English language meanings cannot be fully understood without

the indefinite and definite articles. The following quote from

Study.com explains this distinction:

“An article is a word used to modify a noun, which is a person,

place, object, or idea. Technically, an article is an adjective, which

is any word that modifies a noun. Usually adjectives modify nouns

through description, but articles are used instead to point out or

refer to nouns. There are two different types of articles that we use

in writing and conversation to point out or refer to a noun or group

of nouns: definite and indefinite articles.”
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“The definite article (the) is used before a noun to indicate that

the identity of the noun is known to the reader. The indefinite

article (a, an) is used before a noun that is general or when its

identity is not known. There are certain situations in which a noun

takes no article.”

For example, consider the meanings of the indefinite article “a”

and the definite article “the” in the phrases “a ball” and “the ball.”

The sentence “It is a ball” can refer to any ball, whereas the sentence

“Watch the ball” refers to a particular ball.

Combining definite and indefinite articles
with nouns and verbs

Consider the sentences: “It is the ball” or “That is the ball” vs.

“It is a ball” or “That is a ball.” Or the sentences “Watch the ball” vs.

“Watch a ball.” The word “is” can precede a noun (object word) or

a verb (action word). For example, the phrase “is a” disambiguates

“is” to precede a noun, whereas “is throwing” illustrates how “is”

can precede a verb.

An observer can say that “Mommy is throwing the ball” or

“Mommy is throwing a ball” depending on whether a particular

ball is intended. How does a baby learn the different meanings of

“Mommy throws a ball” and “Mommy is throwing a ball”? Or of

“Mommy throws the ball” and “Mommy is throwing the ball”? Both

kinds of sentences refer to the same action, but replacing “throws”

with “is throwing” emphasizes that the action is occurring and can

be learned from a teacher while witnessing the throw as it happens.

The choice of articles “a” or “the” in such sequences also

depends on whether they are in response to heard speech that is

uttered by someone else, as in a sentence such as “Watch mommy

throw the ball,” or self-generated speech in response to an externally

viewed, or internally remembered, perceptual experience such as

“Mommy threw a ball.” Since children learn their first languages by

listening to teachers who know the language, the choice of article

will depend on the perceptual experiences to which the teachers’

utterances correspond.

Attentional blocking and unblocking: how
children learn to separate articles from
nouns

Phrases such as ”a ball” or “the ball” can initially be learned as

list chunks, or unitized representations, as a child listens tomommy

speak about a perceptual event that involves a ball. How are these

articles dissociated from the particular nouns with which they co-

occur, so that the child can learn separate linguistic categories for

articles and nouns, and thereby link the linguistic categories of

nouns, such as “ball,” to a perceptual category of a/the ball.

Processes such as attentional blocking and unblocking clarify

how this happens (Grossberg, 1975, 2018; Grossberg and Levine,

1987; Grossberg and Merrill, 1992, 1996; Grossberg and Schmajuk,

1989; Kamin, 1968, 1969; Pavlov, 1927). Attentional blocking of

a word or perceptual object can occur when it is predictively

irrelevant. It is then suppressed and not attended. Unblocking of a

suppressed word or object can occur when it becomes predictively

relevant again.

Since the word “ball” is always associated with the perceptual

experience of a ball, it predictively occurs in phrases such as “a ball”

and “the ball.” However, the articles “a” and “the” are not, because

they can co-occur with many other words and are chosen via a

one-to-many mapping from each article to the many words with

which it co-occurs in sentences. When the articles are suppressed

by blocking, the primacy gradient that stores the word “ball” in

working memory can trigger learning of a linguistic category of the

word that can be associated with visual categories of the perceptual

experiences of seeing a/the ball.

An article can remain predictively irrelevant and blocked until

a predictive perceptual context, and thus a language meaning, is

associated with a phrase such as “a ball,” when an unfamiliar ball is

experienced, or “the ball” when the ball is a particular or familiar

one. In these situations, the phrases “a ball” and “the ball” in

working memory may trigger learning of their own list chunks.

Behavioral interactions between a teacher and a learner, like the

following ones, may help to understand how the meanings of these

phrases are learned: Suppose that a child says “Mommy throws

ball,” and mommy says in return “This is the ball daddy bought.”

If experiences like this happen enough, the child can learn that “the

ball” may refer to a particular or familiar ball and, as noted above,

the phrase “the ball” may be learned as a list chunk in response to its

recurring representation as a primacy gradient in workingmemory.

Definite and indefinite articles contribute to meaning by

interacting with both perceptual and cognitive processes: Choosing

which article “a” or “the” to store in working memory depends

on perceiving, or imagining, the object that the article modifies.

The article “the” may refer to a specific or familiar ball, as in the

sentence: “Mommy threw the ball.” The article “a” may refer to

any ball, including an unfamiliar one, as in the sentence: “Pick a

ball from the basket.” With this perceptual information available,

articles are inserted into phrases and sentences that are stored in a

linguistic working memory, along with the nouns that they modify.

The stored item sequence can then be performed in response to a

volitional GO signal.

Adjectives and adverbs can influence what is perceived when

constructing a sentence, or imagined when hearing the sentence,

e.g., “big ball,” “quickly running,” etc. Hearing adjective-noun and

adverb-verb phrases can also trigger perceptual memories of such

experiences. These words can be inserted in sentences in much the

same way as articles are.

Learning to associate visual objects with
auditory names

Where and how an article such as “a” or “the” is inserted in the

brain into a phrase or sentence is clarified by where visual events

like objects are unitized through learning into object categories

that are then associated with their learned auditory names in

working memory. The perceptual meaning of a noun’s name–e.g.,

“ball”-emerges from being associated through bi-directional visual-

auditory learning with a learned visual category of the ball. The

ability to recognize an object as a ball may not determine whether
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the name “ball” is modified by the article “a” (“That’s a ball”) or

“the” (“That’s the only ball that I own”). Using “the” could occur

when a combination of the ball’s features is familiar, such as its

size, markings, texture, or color, or because it is used in a definite

context, e.g., “Watch mommy throw the ball.”

Multiple brain processing stages are used in either case, starting

with conscious seeing of the ball. As noted above, the functional

units of 3D vision are perceptual boundaries and surfaces, which

are computed in the striate and prestriate visual cortices, including

cortical areas V1, V2, and V4, in the What, or ventral, cortical

stream (Gegenfurtner, 2003; Motter, 1993; Sereno et al., 1995).

After the processing of visual boundaries and surfaces is complete,

they are then learned as perceptual categories in the inferotemporal

cortex. As summarized above, a particular view of surface, such

as mommy’s face, can be learned and recognized by a category in

the posterior inferotemporal cortex, or ITp. An invariant category

that selectively responds to multiple views, positions, and sizes of

mommy’s face can be learned within the anterior inferotemporal

cortex, or ITa. Such an invariant category may reciprocally interact

via bi-directional adaptive connections with all the view categories

of mommy’s face in ITp. If the linguistic phrase “mommy’s face”

activates the invariant category that represents it in ITa, all the view-

specific categories in ITp can then also be primed by top-down

signals. As noted above, this interaction enables joint attention to

occur between where mommy is looking and when her child will

look as well.

These visual object recognition categories, in turn, activate

additional processes at higher cortical areas, such as those that

code familiarity about objects, including anterior temporal cortex,

anterior occipitotemporal sulcus, anterior fusiform gyrus, posterior

superior temporal sulcus, and the precentral gyrus over the frontal

cortex (Bar et al., 2001; Bonner and Price, 2013; Chao et al.,

1999; Haxby et al., 2001; Huth et al., 2012; Kovács, 2020; Ramon

and Gobbini, 2018; Rajimehr et al., 2009; Sugiura et al., 2011).

Auditory object name categories and facts about these objects may

be computed in the anterior temporal cortex, among other cortical

areas (Bemis and Pylkkänen, 2013; Hamberger et al., 2005).

Many-to-one and one-to-many associative
maps

Visual recognition categories and auditory name categories can

be linked through learning by an associative map. Figure 14 depicts

two kinds of associativemaps: many-to-onemaps and one-to-many

maps. In Figure 14, a many-to-one map maps visual images of

multiple different kinds of fruit into the same name “fruit.” The

one-to-many map in Figure 14 associates the image of a dog with

many different words to describe it, ranging from the general words

such as “animal” to the specific name of a particular dog “Rover.”

Figure 14 illustrates how learning of a many-to-one map uses

two stages of learning: first, multiple visual fonts of a letter A trigger

learning of multiple visual categories that selectively respond to

variations of each letter font. Multiple categories emerge because

the fonts are defined by different visual features. Next, these visual

categories are all associated with the same auditory name of the

letter via a Map Field (Figure 15).

Learning a many-to-one map can be done by quite a

few associative learning models. However, learning a one-to-

many map requires a model such as ARTMAP, for learning

binary mappings, or fuzzy ARTMAP for learning binary or

analog mappings (Asfour et al., 1993; Bradski and Grossberg,

1995; Carpenter, 1997, 2003; Carpenter et al., 1992, 1991;

Carpenter and Tan, 1995; Carpenter et al., 1997, 1998, 2005;

Carpenter and Ravindran, 2008; Granger et al., 2000; Grossberg

and Williamson, 1999). ARTMAP is needed because, after

learning, say, that a dog image is associated with “animal,”

when associating the dog image also with “Rover,” learning the

“Rover” association can erase the “animal” association in many

models, including back propagation and deep learning. ARTMAP

models dynamically buffer the memories of previous associations,

while also driving a memory search that will discover, focus

attention on, and learn a new category to represent, the particular

combination of critical visual features that distinguish “Rover” from

other dogs.

Map fields are working memories

The discussions above have clarified how observing mommy

throwing a ball can initiate storage of this sequence of events

in a linguistic working memory as a descriptive sequence

of words, as in the sentence “mommy throws the ball.”

Putting together the discussions of working memories and

Map Fields leads to the conclusion that a Map Field can

also serve as a working memory in which linguistic sequences

can be stored in response to sequential activation of their

visual categories through time. A variation of this design

is one wherein a Map Field topographically inputs to a

working memory, but the Map Field itself does not have the

recurrent interactions or volitional GO signal modulation of

working memory.

Adaptive resonance between bottom-up
adaptive filters and top-down learned
expectations

Figure 14 shows only bottom-up adaptive pathways between

the distributed feature pattern of each letter and its visual

category. In the brain, as well as in Adaptive Resonance Theory,

or ART, models of object category learning, there are both

bottom-up and top-down adaptive pathways, as in the ARTa

and ARTb models in the Fuzzy ARTMAP architecture of

Figure 15. The bottom-up pathways form an adaptive filter

whose pathways end with adaptive weights, or long-term

memory (LTM) traces, that are depicted by hemidisks in

Figure 15. These adaptive weights learn the critical feature

patterns that control ARTMAP predictions. The top-down

pathways embody expectations that learn critical feature

patterns and focus attention on them. Critical feature patterns

include only the feature combinations that past learning has

shown to control learning and correct predictions. Outlier
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FIGURE 14

Many-to-one and one-to-many maps. Humans and other terrestrial animals, no less than autonomous adaptive intelligent agents, need to be able to

learn both many-to-one and one-to-many maps. See the text for details. [Reprinted with permission from Grossberg (2021b)].

FIGURE 15

A system such as Fuzzy ARTMAP can learn to associate learned categories in one ART network (ARTa) with learned categories in a second ART

network (ARTb) via a Map Field. Because both bottom-up and top-down interactions occur in both networks, a bottom-up input pattern to ARTa can

learn to generate a top-down output pattern from ARTb, and thereby learn a prediction from one type of information (e.g., visually experienced

printed and written fonts of a given letter of the alphabet) to another type of information (e.g., the auditory name of the letter), or from a prescribed

combination of medical symptoms, tests, and treatments to a prediction of the length of stay in the hospital of the treated patient. [Reprinted with

permission from Grossberg (2021b)].
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features are suppressed during learning because they are

predictively irrelevant.

When both bottom-up and top-down pathways are

simultaneously active, the activity patterns that they select

synchronize, amplify, and focus attention on the critical

feature pattern that reliably codes the correct category. It is

the synchronous and sufficiently sustained resonance between

features and categories that triggers fast learning within the

bottom-up and top-down adaptive weights that lead to and from

the currently active category. That is why I call the resonance an

adaptive resonance. During such a resonance, top-down matching

by a learned expectation protects the learned adaptive weights from

being destabilized by catastrophic forgetting, thereby solving the

stability-plasticity dilemma: they support fast learning (plasticity)

while dynamically buffering the learned weights from experiencing

catastrophic forgetting [stability; see Grossberg (2021b) for

further details].

Learning of adaptive resonances takes place within what I

have called the attentional system (Figure 1). When input patterns

do not match currently active learned top-down expectations

well enough, this mismatch is too novel, or surprising, to be

incorporated into those categories. This mismatch activates a

computationally complementary orienting system, which triggers

directed search, or hypothesis testing, in the attentional system,

leading either to discovery of an already learned category that

provides an adequate match, or activation of uncommitted

category cells to learn the novel category. The free-energy principle

of Friston (2010) also incorporates a role for surprise in its

learning process.

Concluding remarks: human and
machine learning of large language
models with meaning

This article advances the analysis by Grossberg (2023) of how

children and other students can learn small numbers of language

utterances that have perceptual and affective meanings. The article

makes this advance by explaining how humans, and neural

network models of their brain dynamics, learn to consciously

perceive and recognize an unlimited number of visual scenes.

Then, bi-directional associative links can also be learned and

stably remembered between any number of scenes and descriptive

language utterances of them, as well as the emotions that these

scenes evoke. Adaptive Resonance Theory circuits control the

learning and the self-stabilizing memories of these processes.

The article also surveys many of the neural models that are

needed to carry out this goal, and compares them with models of

other authors. Taken together, these models provide a blueprint

for realizing Autonomous Adaptive Intelligence and Artificial

General Intelligence.

I ended the exposition in Grossberg (2023) by quoting Ludwig

Wittgenstein from his classic Tractatus Logigo-Philosophicus

(Wittgenstein, 1922) in which Wittgenstein noted that “the

limits of my language mean the limits of my world.” The

current article greatly expands the language utterances and their

perceptual and affective meanings with which to come closer

to “the limits of my language.” As I noted in the study by

Grossberg (2023), it will require many scientists working for

many years to model all the language utterances and their

meanings that we can express about our expanding experiences

in the world throughout our lives. If the resources of Google

DeepMind that have funded applications of Deep Learning and

LLMs could also be directed to this goal, its realization will be

greatly accelerated.
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