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Background: Shift work sleep disorder (SWSD) in nurses is highly prevalent and 
is increasingly recognized for its profound impact on human health. However, 
the brain functional network topology, which provides a comprehensive map 
of the brain’s information processing architecture, remains partially understood 
in nurses with SWSD.

Methods: 45 nurses with SWSD and 45 healthy controls (HCs) underwent a 
resting-state functional magnetic resonance imaging (rs-fMRI) scan. Graph 
theoretical analysis was used to investigate alterations in brain functional 
network topology. Functional network connectivity was further examined in 
nurses with SWSD relative to HCs. Correlations between network metrics and 
clinical sleep scores were also examined.

Results: Compared to HCs, the SWSD group exhibited significantly lower global 
network metrics. Additionally, at the regional level, the SWSD group showed 
reduced nodal efficiency in specific regions, particularly within the visual 
processing areas and the caudate nucleus. Functional network connectivity 
analysis revealed a predominant pattern of weakened connectivity within 
the limbic network (LN), visual network (VN), default mode network (DMN), 
subcortical network (SN) and between the LN and SN in the SWSD group, 
although some inter-network connections were strengthened, predominantly 
the VN-ventral attention network (VAN), frontoparietal network (FPN)-VN, 
somatomotor network-VAN, and VN-DMN. Furthermore, poorer sleep quality 
correlated with reduced local efficiency in the visual cortex and insomnia 
severity was associated with weakened frontal connectivity.

Conclusions: This study reveals significant alterations in brain functional 
network topology and predominantly weakened functional connectivity across 
multiple brain networks, despite some strengthened inter-network links. These 
neuroimaging changes correlated with clinical measures of sleep disturbance. 
Our findings highlight compromised brain network organization in SWSD, 
offering insights into its neural mechanisms and potential biomarkers.
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Introduction

Shift work, prevalent among healthcare workers like nurses, 
significantly disrupts the endogenous circadian rhythm and acts as a 
major risk factor for sleep disorders (Bostock and Mortimore, 2024; 
Abate et al., 2023). Shift work sleep disorder (SWSD) is particularly 
prevalent in this group, with reported rates reaching up to 48.5% (Li 
et al., 2021). This chronic circadian dysregulation leads to a state of 
persistent sleep deprivation, which may extend beyond workdays 
(Qayyum et al., 2024; Potter et al., 2016). This results in impaired 
daytime functioning, including significant cognitive deficits in 
attention and executive function, and an increased susceptibility to 
mood disorders such as anxiety and depression (Li et  al., 2021; 
Kalmbach et  al., 2015; Britten et  al., 2021). These impairments 
consequently jeopardize the nurse well-being, the quality of patient 
care, and overall patient safety (Li et  al., 2019; Lin et  al., 2024). 
Although progress has been made in understanding the mechanisms 
underlying SWSD, key aspects remain unclear, limiting the 
development of effective early interventions.

With rapid advancements in neuroimaging technology, recent 
studies have indicated that SWSD in nurses is closely associated with 
alterations in brain function, such as abnormal activity in the default 
mode network (DMN) and attention-related circuits (Wu et al., 2021; 
Dong et al., 2024; Zhao et al., 2024; Belcher et al., 2015). Resting-state 
functional magnetic resonance imaging (rs-fMRI) is a key 
non-invasive technique used to investigate intrinsic brain dynamics 
by measuring blood-oxygen-level-dependent (BOLD) signals, thereby 
assessing spontaneous neural activity across brain regions at rest 
(Zhang et al., 2021; Yu et al., 2025). Functional connectivity (FC), 
which assesses the temporal correlation of neural signals between 
brain regions, is widely used to investigate intrinsic brain network 
interactions (Puvogel et al., 2022; Zhao et al., 2020). Previous rs-fMRI 
studies have identified local functional abnormalities and altered FC 
in specific brain regions in individuals with SWSD, and these 
alterations correlate with measures of sleep quality, cognitive function, 
anxiety, depression, and occupational burnout (Wu et al., 2021; Dong 
et al., 2024; Ye et al., 2022; Dong et al., 2024). However, these studies 
have often focused on isolated brain regions or limited functional 
connections, thus failing to elucidate the overall neural mechanisms 
of SWSD from a large-scale network perspective. Functional 
connectomics has recently emerged as a prominent field in 
neuroscience research (Patel and Bullmore, 2016). Integrating graph 
theoretical analysis with rs-fMRI data, this methodology maps large-
scale brain functional networks, systematically quantifies FC patterns, 
and reveals their inherent topological attributes (Agziyart et al., 2024; 
Lv et  al., 2024). SWSD is increasingly conceptualized as a brain 
network disorder, potentially arising from disruptions across 
widespread neural systems rather than from isolated deficits (Zhao 
et al., 2024). Understanding the brain’s functional connectome and its 
topological properties is crucial for elucidating the neurobiological 
mechanisms underlying SWSD.

To address this knowledge gap, we employed graph theory analysis 
of resting-state fMRI data to conduct a systematic investigation into 
the brain functional network topology of female nurses with 
SWSD. Our study was guided by three primary hypotheses: (1) that 
female nurses with SWSD would exhibit disrupted brain network 
organization, manifesting as reduced global and local efficiency 
compared to HCs; (2) that SWSD would be associated with altered 
functional connectivity, especially weakened connections within and 

between key networks like the DMN, visual network (VN), and limbic 
network (LN); and (3) that these neuroimaging-derived network 
metrics would correlate with clinical measures of sleep disturbance. By 
elucidating the neurobiological underpinnings of SWSD, this study 
aimed to advance our understanding of its pathophysiology and 
inform the development of novel strategies for prevention and 
intervention. A flowchart detailing the research process is presented in 
Supplementary Figure S1.

Methods

Participants

This study recruited female nurses from the Yancheng School of 
Clinical Medicine, Nanjing Medical University from May to July 2024. 
To minimize the acute effects of recent shift work and to capture the 
chronic neurobiological alterations associated with SWSD, all 
participants were scanned on a scheduled day off between 6:00 PM 
and 9:00 PM. Prior to the scan, participants were instructed to lie still 
in a supine position with their eyes closed, remain awake, and avoid 
systematic thinking, allowing their minds to wander freely. Foam 
padding was used to minimize head motion. The resting-state scan 
was part of a broader imaging protocol, and the scanning conditions 
were kept consistent for all participants. Inclusion criteria for the 
SWSD group (Buysse et al., 1989) were as follows: (1) female, aged 
20–40 years (This specific age range was chosen to create a 
homogenous sample, minimizing confounding effects related to 
sex-based differences in brain function, as well as age-related 
neurodevelopmental or neurodegenerative changes); (2) engaged in 
continuous shift work for one year or more and currently maintaining 
this schedule; (3) right-handed; (4) Pittsburgh Sleep Quality Index 
(PSQI) score ≥ 5. Inclusion criteria for the HCs were as follows: (1) 
female, aged 20–40 years; (2) day-time working nurse; (3) right-
handed; (4) PSQI score < 5. Exclusion criteria for all participants were 
as follows: (1) presence of endocrine, neurological, or psychiatric 
disorders or other primary diseases; (2) pregnancy or lactation; (3) 
history of drug dependence, current smoking, or alcohol abuse/
dependence; (4) adverse reactions during scanning leading to 
termination of the experiment or contraindications to MRI scanning; 
(5) data collection failure during scanning or unclear images; (6) MRI 
images showing organic brain lesions; and (7) other serious physical 
illnesses. Based on these inclusion and exclusion criteria, 90 
participants were ultimately selected and assigned to either the SWSD 
group (n = 45) or the HCs (n = 45). The two groups were matched for 
age and years of education. This study strictly adhered to the ethical 
principles of the Declaration of Helsinki, received approval from the 
Ethics Committee of the Yancheng School of Clinical Medicine of 
Nanjing Medical University (Approval No. 2024-82), and obtained 
informed consent from all participants.

The required sample size was determined by an a priori power 
analysis conducted in G*Power (version 3.1). The independent 
two-sample t test was used to determine the sample size of two groups. 
The parameters for the power analysis were set as follows: the effect 
size d = 0.8, α error probability = 0.05, power (1−β error 
probability) = 0.90. Thirty-four participants per group (SWSD group 
and HCs group) would be  required to detect the hypothesized 
neuroimaging differences with sufficient statistical power. Our final 
sample size (n = 45 per group) comfortably exceeds this requirement.
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Prior to MRI scanning, general demographic information and 
clinical data were collected, including age, years of education, Beck 
Anxiety Inventory (BAI) scores, Beck Depression Inventory-II 
(BDI-II) scores, PSQI scores, and Insomnia Severity Index (ISI) scores.

MRI data acquisition

Rs-fMRI and structural 3D T1-weighted images were acquired 
using a 3.0 Tesla MRI scanner equipped with a 24-channel head coil 
(Discovery 750w, GE, United  States) at the Yancheng School of 
Clinical Medicine of Nanjing Medical University (Imaging parameters 
are provided in the Supplementary materials).

Rs-fMRI preprocessing

Resting-state fMRI preprocessing: The rs-fMRI data were 
preprocessed using SPM12 and Data Processing and Analysis for 
Brain Imaging (DPABI) implemented in MATLAB (R2018b) (Yan 
et  al., 2016) (Preprocessing steps are provided in the 
Supplementary materials).

Graph theory analyses

Graph theoretical analysis of brain network characteristics was 
performed using the GRETNA software (Wang et al., 2015). The entire 
brain was segmented into 90 network nodes using the AAL atlas. The 
AAL-90 atlas was selected for its wide application in brain network 
studies (Lv et al., 2024; Sun et al., 2023; Wang et al., 2014; Bernhardt 
et al., 2011), thus enhancing the comparability of our findings with 
existing literature. Subsequently, this matrix was converted into an 
undirected binarized form through sparsity thresholding applied over 
a range of network densities (5% ≤ sparsity ≤ 50%, in 0.01 intervals). 
The minimum sparsity was set to ensure that there were no isolated 
nodes in the network. The maximum sparsity was set to ensure that 
the small-world index was greater than 1.1 for all participants, 
balancing network inclusion and spurious connection avoidance. 
Global measures, including the clustering coefficient (Cp), local 
efficiency (Eloc), characteristic path length (Lp), global efficiency (Eglob), 
small-worldness (σ), normalized clustering coefficient (γ), and the 
normalized characteristic path length (λ), were computed alongside 
nodal measures, such as the nodal clustering coefficient (NCP), nodal 
efficiency (NE), nodal local efficiency (NLE), nodal degree centrality 
(DC), and nodal betweenness centrality (BC). For each network 
metric, the area under the curve (AUC) across the defined sparsity 
range was calculated for subsequent statistical comparisons, providing 
a summary measure independent of single threshold selection.

Functional connectivity network analysis

FC networks were constructed using the graph theoretical 
network analysis toolbox (GRETNA) (Wang et al., 2015). First, the 
brain was parcellated into 90 regions using the Anatomical Automatic 
Labeling (AAL) atlas. Then, the mean time series was extracted for 
each of these 90 regions. Subsequently, a Pearson correlation 

coefficient matrix was generated by calculating the Pearson 
correlations between the average time series of all pairs of these 90 
regions. Finally, Fisher’s Z transform was performed. In this way, a 
symmetric 90 × 90 network matrix was constructed for each subject 
from which a functional network was derived.

Differences in FC between brain regions were analyzed using the 
connection module of the GRETNA software. Group differences in 
functional connections were identified using a two-sample t-test, with 
false discovery rate (FDR) correction applied for multiple 
comparisons. Significant results were visualized using BrainNet 
Viewer (Xia et al., 2013).

Statistical analysis

SPSS 27.0 software was used for statistical analysis. First, normality 
tests were conducted for age, years of education, PSQI scores, ISI 
scores, TIV, BAI scores, and BDI-II scores. For normally distributed 
measurement data, independent sample t-tests were used, while 
non-parametric tests were applied for skewed distribution data. A 
p-value < 0.05 was considered to indicate statistically significant 
between-group differences in demographic and clinical characteristics.

Two-sample t-tests were utilized to evaluate group differences in 
the seven global network metrics (p < 0.05) and the five regional nodal 
metrics (p < 0.05, FDR corrected), with age, years of education, TIV, 
BAI scores, and BDI-II scores considered as covariates. Subsequently, 
partial correlation analyses were conducted to explore associations 
between topological properties that showed significant group 
differences and clinical scale scores in nurses with SWSD, while 
controlling for age, years of education, TIV, BAI scores, and BDI-II 
scores. Statistical significance was set at p < 0.05.

Results

Demographic characteristics

Demographic and clinical characteristics of the HCs (n = 45) and 
the SWSD group (n = 45) are presented in Table 1. There were no 
significant differences between the groups in age (median [IQR]: 31.00 
[22.50, 36.00] vs. 33.00 [29.50, 36.00], p = 0.116), sex (all female), 
years of education (median [IQR]: 16.00 [16.00, 16.00] vs. 16.00 
[16.00, 16.00], p = 0.297), handedness (all right-handed), or TIV 
(mean ± SD: 1446.57 ± 110.60 vs. 1418.30 ± 124.60, p = 0.102). 
Compared to the HCs, the SWSD group exhibited significantly higher 
scores on the PSQI (median [IQR]: 8.00 [5.00, 11.00] vs. 5.00 [4.00, 
8.00], p = 0.003), ISI (median [IQR]: 8.00 [5.00, 11.00] vs. 5.00 [4.00, 
8.00], p = 0.019), BAI (median [IQR]: 24.00 [21.00, 27.00] vs. 24.00 
[21.00, 27.00], p = 0.002), and BDI-II (median [IQR]: 9.00 [4.50, 
17.00] vs. 5.00 [1.00, 8.00], p < 0.001).

Global network metrics

Global network metrics for the SWSD group and HCs were 
calculated and compared, utilizing the AUC for each global property 
(Table 2). The results showed that, compared to HCs, the SWSD group 
exhibited significantly lower Eloc (0.329 ± 0.006 vs. 0.334 ± 0.007, 
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Z = −3.418, p < 0.001), Eglob (0.266 ± 0.032 vs. 0.265 [0.261, 0.266], 
Z = −2.641, p = 0.0081), Cp (0.237 ± 0.135 vs. 0.247 ± 0.013, 
Z = −2.923, p = 0.003), Lp (0.811 ± 0.020 vs. 0.819 [0.808, 0.844], 
Z = −2.914, p = 0.004), γ (1.004 ± 0.041 vs. 1.049 ± 0.059, Z = −3.765, 
p < 0.001), λ (0.478 ± 0.074 vs. 0.483 [0.478, 0.492], Z = −3.165, 
p = 0.002), and σ (0.918 ± 0.034 vs. 0.944 [0.908, 0.979], Z = −2.587, 
p = 0.010) (all p < 0.05, FDR corrected; Figure 1).

Nodal network metrics

Compared with the HCs, the NCP of the bilateral calcarine cortex, 
bilateral lingual gyrus, right cuneus and left superior occipital gyrus 
was significantly decreased in the SWSD group (all p < 0.05, FDR 
corrected) (Figure 2). Similarly, NLE values were also significantly 
reduced in the SWSD group, specifically within the bilateral calcarine 
cortex, bilateral lingual gyrus, right cuneus, and right caudate nucleus 
(all p < 0.05, FDR corrected) (Figure 3).

Altered functional network connectivity

Compared to HCs, the SWSD group showed significantly 
altered FC (all p < 0.05, FDR corrected). A predominant pattern 

of reduced FC was observed across 13 connections involving 18 
distinct brain regions. These reductions were evident within 
several key networks: the limbic network (LN) (between the right 
superior orbitofrontal gyrus and left rectus gyrus; between 
bilateral rectus gyrus), the visual network (VN) (between right 
calcarine cortex and left lingual gyrus; right cuneus and bilateral 
lingual gyrus; right cuneus and left superior occipital gyrus; 
bilateral superior occipital gyrus; right superior occipital gyrus 
and left middle occipital gyrus; left middle occipital gyrus and 
right fusiform gyrus), the default mode network (DMN) (between 
right angular gyrus and left precuneus; left medial superior frontal 
gyrus and left inferior temporal gyrus), and the subcortical 
network (SN) (between bilateral caudate nucleus). Reduced FC 
was also observed between the LN (left olfactory cortex) and SN 
(right caudate nucleus). In contrast, 4 connections involving 6 
distinct brain regions exhibited significantly increased FC. These 
were primarily inter-network connections, including those 
between the frontoparietal network (FPN; right middle frontal 
gyrus) and VN (right cuneus), the somatomotor network (SMN; 
right precentral gyrus) and ventral attention network (VAN; right 
inferior parietal lobule), the VN (left fusiform gyrus) and VAN 
(right inferior parietal lobule), and the VN (right cuneus) and 
DMN (right angular gyrus) (p < 0.05, FDR corrected) (Table 3; 
Figure 4).

TABLE 1 Demographic and clinical features of all participants.

Characteristics HCs (n = 45) SWSD (n = 45) Statistic p value

SWSD vs. HCs

Age 31.00 (22.50, 36.00) 33.00 (29.50, 36.00) Z = −1.570 0.116

Sex (M/F) 0/45 0/45 Z = 0.00 1.00

Education (years) 16.00 (16.00, 16.00) 16.00 (16.00, 16.00) Z = −1.042 0.297

Handedness (R/L) 45/0 45/0 Z = 0.00 1.00

TIV 1446.57 ± 110.60 1418.30 ± 124.60 Z = −1.634 0.102

PSQI 5.0 (4.00, 8.00) 8.00 (5.00, 11.00) Z = −3.015 0.003

ISI 5.0 (4.00, 8.00) 8.00 (5.00, 11.00) Z = −2.341 0.019

BAI 24.00 (21.00, 27.00) 24.00 (21.00, 27.00) Z = −3.143 0.002

BDI 5.00 (1.00, 8.00) 9.00 (4.50, 17.00) Z = −3.307 <0.001

BAI, Beck Anxiety Inventory; BDI, Beck Depression Inventory; FC, functional connectivity; F, female; HCs, healthy controls; ISI, Insomnia Severity Index; L, left; M, male; PSQI, Pittsburgh 
Sleep Quality Index; R, right; SWSD, shift work sleep disorder; TIV, total intracranial volume. Bold values indicate statistical significance (p < 0.05).

TABLE 2 Group comparisons of AUC values of global network properties.

Metrics HCs (n = 45) SWSD (n = 45) Statistic p value

SWSD vs. HCs

Eglob 0.265 (0.261, 0.266) 0.266 ± 0.032 Z = −2.641 0.0081

Eloc 0.334 ± 0.007 0.329 ± 0.006 Z = −3.418 <0.001

Cp 0.247 ± 0.013 0.237 ± 0.135 Z = −2.923 0.003

Lp 0.819 (0.808, 0.844) 0.811 ± 0.020 Z = −2.914 0.004

σ 0.944 (0.908, 0.979) 0.918 ± 0.034 Z = −2.587 0.010

λ 0.483 (0.478, 0.492) 0.478 ± 0.074 Z = −3.165 0.002

γ 1.049 ± 0.059 1.004 ± 0.041 Z = −3.765 <0.001

AUC, area under the curve; Cp, clustering coefficient; Eglob, global efficiency; Eloc, local efficiency; HCs, healthy controls; Lp, characteristic path length; SWSD, shift work sleep disorder; σ, small 
worldness; λ, normalized characteristic path length; γ, normalized clustering coefficient. Bold values indicate statistical significance (p < 0.05).
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Correlation analysis

As illustrated in Figure 5A, PSQI scores were negatively correlated 
with NLE in the right cuneus (r = −0.366, p = 0.020). ISI scores were 
negatively correlated with FC between the right superior orbital 
frontal gyrus and the left gyrus rectus (r = −0.313, p = 0.049, 
Figure 5B).

Discussion

Using graph theoretical analysis, this study investigated 
alterations in brain functional network topology and subnetwork 

connectivity in nurses with SWSD relative to HCs. These network 
alterations were subsequently correlated with clinical sleep 
variables, specifically the PSQI and ISI. The principal findings 
were as follows: (1) global network metrics, including Eloc, Eglob, 
Cp, Lp, λ, γ, and σ, were significantly reduced in the SWSD group 
compared to HCs; (2) at the nodal level, significant decreases were 
observed in the SWSD group compared to HCs for NCP, 
specifically in the bilateral calcarine cortex, bilateral lingual gyrus, 
right cuneus, and left superior occipital gyrus, and for NLE, 
particularly within the bilateral calcarine cortex, bilateral lingual 
gyrus, right cuneus, and right caudate nucleus; (3) the functional 
network connectivity analysis revealed that the SWSD group 
exhibited significantly reduced FC both between and within 
multiple brain networks, mainly involving the VN, LN, DMN, and 

FIGURE 1

Alterations in global network metrics. Compared with HCs, the Cp (A), λ (B), Lp (C), Eglob (D), σ (E), Eloc (F), and γ (G) were significantly decreased in nurses 
with SWSD. SWSD, shift work sleep disorder; HCs, healthy controls; AUC, area under the curve; Eglob, global efficiency; Eloc, local efficiency; Cp, 
clustering coefficient; Lp, characteristic path length; σ, small worldness; λ, normalized characteristic path length; γ, normalized clustering coefficient 
(*p < 0.05).
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SN, alongside significantly increased FC predominantly in inter-
network connections, namely VN-VAN, FPN-VN, SMN-VAN, 
and VN-DMN; and (4) PSQI scores showed a negative correlation 

with NLE in the right cuneus, and ISI scores were negatively 
correlated with FC between the right orbital superior frontal gyrus 
and the left gyrus rectus.

FIGURE 2

Nodes showing significant differences in NCP between nurses with SWSD and HCs. The blue circles represent a higher NCP in HCs than in nurses with 
SWSD (all p < 0.05, FDR corrected). NCP, nodal clustering coefficient; HCs, healthy controls; SWSD, shift work sleep disorder; CAL, calcarine cortex; 
LING, lingual gyrus; CUN, cuneus; SOG, superior occipital gyrus, FDR, false discovery rate; L, left; R, right.

FIGURE 3

Nodes showing significant differences in NLE between nurses with SWSD and HCs. The blue circles represent a higher NLE in HCs than in nurses with 
SWSD (all p < 0.05, FDR corrected). NLE, nodal local efficiency; HCs, healthy controls; SWSD, shift work sleep disorder; CAL, calcarine cortex; LING, 
lingual gyrus; CUN, cuneus; CAU, caudate nucleus; FDR, false discovery rate; L, left; R, right.
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Altered brain functional network topology 
in SWSD

The intricate structural and functional organization of the brain 
arises from the topological configurations of neuronal clusters (Wang 
et  al., 2010; Zhu et  al., 2018), which can be  represented as 
interconnected nodes and edges using advanced imaging techniques 
and graph theory, thereby unveiling extensive dynamic interactions 
within the brain (Sporns et al., 2005). The significant reductions in 
global network metrics (Eloc, Eglob, Cp, Lp, λ, γ, and σ) observed in the 
SWSD group compared to HCs indicate a fundamental shift in the 
brain’s topological organization. This pattern of network inefficiency 
resonates with findings from studies on sleep deprivation and 
potentially interacts with underlying circadian influences on network 
topology (Qi et al., 2021; Farahani et al., 2019; Ning et al., 2022). 
However, such findings are nuanced by normal diurnal variations. For 
instance, Farahani et al. found that resting-state functional networks 
showed increased σ, assortativity, and synchronization in the evening 
versus the morning, suggesting more efficient network organization 
later in the wake period, possibly as morning sleep inertia effects are 
overcome (Farahani et al., 2021). This contrasts with our finding of 
reduced σ in nurses with SWSD, suggesting that the chronic circadian 
disruption inherent in this condition may override or pathologically 
alter normal diurnal network fluctuations, leading to a persistently less 
efficient network state. Although direct comparison is complex, the 
consistent theme across sleep deprivation, chronic insomnia disorders, 
poor sleep quality, and circadian studies is the vulnerability of the 

brain’s efficient topological organization to disruptions in sleep–wake 
regulation (Li et al., 2018; Chee and Zhou, 2019; Yang and Park, 2023).

Previous extensive research indicates that various sleep disorders 
exhibit alterations in global brain network topology, including 
obstructive sleep apnea (OSA) (Tang et al., 2024; Chen et al., 2018), 
idiopathic rapid eye movement sleep behavior disorder (Sun et al., 2025), 
sleep deprivation (Ning et al., 2022; Tian et al., 2024), and poor sleep 
quality (Ding et al., 2025), characterized by reduced Eglob, and often 
altered Lp, σ, and Cp. Collectively, these alterations from optimal network 
organization suggest impaired information processing efficiency and 
reduced robustness of brain function (Tang et al., 2024; Park et al., 2019). 
Specifically, the concurrent reductions in Eglob and Eloc suggest a decline 
in the brain network’s efficiency for both long-range parallel information 
transfer and local information processing (Zhu et al., 2020). Furthermore, 
the decrease in Cp indicates a weakening of network functional 
modularity or segregation, while the reduction in Lp, in the context of 
decreased Eglob and σ, more likely reflects a shift towards a less optimized, 
more random-like network structure rather than a simple enhancement 
of global integration (Sporns, 2018). Crucially, a significant decrease in 
σ, as observed in our SWSD group and often in other sleep-disrupted 
states, signifies a deviation of the brain network from the optimal small-
world balance that concurrently supports both functional segregation 
and integration (Zhang et al., 2025). Brain network-level topological 
changes, stemming from shift work-induced sleep deprivation and 
circadian misalignment, can disrupt synaptic homeostasis, 
neuroplasticity, and neural signaling, potentially contributing to 
associated with cognitive and affective symptoms experienced by 
individuals with sleep disorders (Ning et al., 2022; Cheong et al., 2023).

Regarding nodal network metrics, our analysis revealed a significant 
decrease in NCP in the bilateral calcarine cortex, the bilateral lingual 
gyrus, and the left superior occipital gyrus compared to HCs. 
Concurrently, NLE was also significantly reduced in this group, 
specifically in the bilateral calcarine cortex, bilateral lingual gyrus, right 
cuneus, and right caudate nucleus. These aforementioned visual network 
regions (bilateral calcarine cortex, bilateral lingual gyrus, left superior 
occipital gyrus, and right cuneus) are key components of the visual 
system (Yeo et  al., 2011). Their physiological functions range from 
primary visual perception to higher-order visual cognitive integration, 
playing an essential role in maintaining vigilance and accurate 
environmental perception (Dong et al., 2024). The observed reduction 
in NCP within these visual regions suggests a diminished capacity for 
these regions to act as connector hubs integrating information from 
different functional modules (Rubinov and Sporns, 2010). This, in turn, 
could potentially impair the efficiency of integrating visual information 
with other cognitive networks, such as the attention and executive 
control networks (Petersen and Posner, 2012; Seeley et al., 2007; Menon, 
2011). Similarly, the significant reduction in NLE within these visual 
regions indicates impaired information transfer efficiency among their 
internal neuronal clusters (Achard and Bullmore, 2007), potentially 
affecting the precision and speed of visual feature extraction (Wang 
et  al., 2010). Furthermore, a significant reduction in NLE was also 
observed in the right caudate nucleus. As a key component of the basal 
ganglia, the caudate nucleus plays a pivotal role in cognitive control, 
learning and memory, reward mechanisms, and motivation regulation 
(Barrett et  al., 2024; Jiang et  al., 2023). Impairment of the caudate 
nucleus may be  linked to the impact of sleep deprivation on 
neuromodulatory systems, such as the dopaminergic system, 
consequently contributing to the impairments in executive function, 

TABLE 3 Altered functional network connectivity.

Regions 1 Regions 2 p t

ORBsup.R (LN) REC.L (LN) <0.01 −4.33

REC.L (LN) REC.R (LN) <0.01 −4.10

MFG.R (FPN) CUN.R (VN) <0.01 4.59

CAL.R (VN) LING.L (VN) <0.01 −4.67

CUN.R (VN) LING.L (VN) <0.01 −7.20

CUN.R (VN) LING.R (VN) <0.01 −5.60

CUN.R (VN) SOG.L (VN) <0.01 −5.68

SOG.L (VN) SOG.R (VN) <0.01 −4.27

SOG.R (VN) MOG.L (VN) <0.01 −4.48

MOG.L (VN) FFG.R (VN) <0.01 −3.88

PreCG.R (SMN) IPL.R (VAN) <0.01 4.18

FFG.L (VN) IPL.R (VAN) <0.01 4.63

CUN.R (VN) ANG.R (DMN) <0.01 4.07

ANG.R (DMN) PCUN.L (DMN) <0.01 −4.03

OLF.L (LN) CAU.R (SN) <0.01 −4.45

CAU.L (SN) CAU.R (SN) <0.01 −4.20

SFGmed.L (DMN) ITG.L (DMN) <0.01 −3.9

ANG, angular gyrus; CAL, calcarine cortex; CAU, caudate nucleus; CUN, cuneus; DMN, 
default mode network; FFG, fusiform gyrus; FPN, frontoparietal network; IPL, inferior 
parietal lobule; ITG, inferior temporal gyrus; LN, limbic network; LING, lingual gyrus; 
MFG, middle frontal gyrus; MOG, middle occipital gyrus; OLF, olfactory cortex; ORBsup, 
superior orbitofrontal gyrus; PCUN, precuneus; PreCG, precentral gyrus; REC, rectus gyrus; 
SFGmed, superior frontal gyrus, medial part; SMN, somatomotor network; SN, subcortical 
network; SOG, superior occipital gyrus; VN, visual network; VAN, ventral attention 
network.
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FIGURE 4

Alterations in brain functional network connectivity between nurses with SWSD and HCs. Nodes represent specific brain regions grouped by functional 
networks, including SMN, DMN, VN, VAN, FPN, SN, and LN. Edges indicate significant changes in functional connectivity between nurses with SWSD 
and HCs, with edge colors reflecting the direction and magnitude of t-values (all p < 0.05, FDR corrected) SWSD, shift work sleep disorder; CAL, 
calcarine cortex; CAU, caudate nucleus; LING, lingual gyrus; CUN, cuneus; SOG, superior occipital gyrus, FDR, false discovery rate; FC, functional 
connectivity; ANG, angular gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus; OLF, olfactory cortex; REC, rectus gyrus; ORBsup, superior 
orbital frontal gyrus; FFG, fusiform gyrus; ITG, inferior temporal gyrus; SFGmed, medial superior frontal gyrus; PreCG, precentral gyrus; SMN, 
somatomotor network; DMN, default mode network; VN, visual network; VAN, ventral attention network; FPN, frontoparietal network; SN, subcortical 
network; LN, limbic network; L, left; R, right.

FIGURE 5

Correlation analysis. (A) PSQI scores were negatively correlated with NLE in the CUN.R. (B) ISI scores were negatively correlated with FC between the 
ORBsup.R and the Rectus.L. PSQI, Pittsburgh Sleep Quality Index; ISI, Insomnia Severity Index; FC, functional connectivity; ORBsup, superior 
orbitofrontal gyrus; CUN, cuneus; L, left; R, right.
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decision-making, and motivation maintenance observed in patients 
with SWSD (Volkow et  al., 2012; Gujar et  al., 2010; Kreitzer and 
Malenka, 2008).

Altered functional network connectivity in 
SWSD

Beyond alterations in topological properties, this study also 
revealed a complex subnetwork of altered FC within and between 
large-scale brain networks (SMN, SN, VN, LN, FPN, DMN), 
characterized by both abnormally strong and weak connections. In 
SWSD, abnormally strong connections may reflect the brain’s 
compensatory efforts to counteract inefficiencies or a dysregulated 
hyperconnective state, while weakened connections likely indicate 
reduced information transfer efficiency or impaired integration 
between regions (Li et al., 2020; Shao et al., 2013). Notably, such 
compensatory mechanisms are not confined to the brain; similar 
adaptive responses have been observed at the behavioral level 
(Bufano et  al., 2023), where sleep-deprived individuals exert 
increased cognitive effort to maintain performance, and in peripheral 
physiological responses (Cesari et al., 2021), suggesting a system-
wide adaptation to the stress of circadian disruption. The VN plays 
a critical role in processing visual information (particularly light and 
motion) and sensory modulation (Noseda et al., 2019). A growing 
body of evidence demonstrates that sleep disorders are associated 
with significant alterations within key brain networks. Notably, 
intra-network FC within the VN is consistently disrupted in sleep 
disorders (Roura et al., 2025). Specific occipital regions, including 
the precuneus and lingual gyrus, as well as thalamo-cortical visual 
pathways, show abnormal FC patterns, which have been closely 
linked to clinical symptoms observed in sleep conditions (Zhang 
et al., 2013; Wang et al., 2024; Gan et al., 2021). Similarly, the FPN 
exhibits functional dysregulation characterized by altered 
internetwork connectivity and activity, which undermines its 
capacity to support cognitive control processes (Li et al., 2018; Yao 
et al., 2023). Within the DMN, extensive functional and structural 
abnormalities are reported across various sleep disorders such as 
insomnia, obstructive sleep apnea, and sleep deprivation (Zheng 
et al., 2023; Chang et al., 2020; Wang et al., 2023; Wang et al., 2015). 
These include aberrant within-network FC, cortical thinning, and 
regional dysfunction of core DMN nodes (Yu et al., 2018; Marques 
et al., 2018), coupled with reductions in nodal centrality and local 
efficiency (Chen et al., 2018; Suh et al., 2016), reflecting diminished 
information integration and processing within the DMN. Given the 
DMN’s fundamental role in intrinsic cognition, emotional 
regulation, and self-referential processing, such intra-network 
disturbances likely underpin the cognitive deficits and emotional 
disturbances frequently observed in sleep disorder populations 
(Huang et  al., 2024; McKinnon et  al., 2018; Hehr et  al., 2023). 
Furthermore, the limbic system, deeply implicated in emotion 
regulation and stress response, also shows altered connectivity 
patterns, with chronic insomnia patients exhibiting abnormal FC 
between the limbic structures (e.g., hippocampus, amygdala) and 
reward-related networks (Zhang et al., 2025; Park and Kim, 2023; 
Gong et al., 2021).

Beyond these intra-network disruptions, sleep disorders also 
profoundly affect FC between distinct brain networks. These 
disorders disrupt VN interactions with the DMN (Zhao et  al., 

2024; Di et al., 2024), and subcortical regions such as the thalamus, 
where connectivity with the visual cortex is compromised 
particularly during sleep deprivation (Mai et al., 2022). Functional 
dysregulation extends to inter-network coupling involving the 
FPN, which shows altered functional integration with the DMN 
and VN, thereby weakening executive and attentional control 
mechanisms (Li et al., 2018; Yao et al., 2023). Additionally, broader 
network reorganizations involve the VAN and SMN, which display 
abnormal intra- and inter-network connectivity patterns associated 
with cognitive-attentional impairments and dysregulation of 
motor and arousal functions (Ning et al., 2022; Hou et al., 2022; 
Zhang et  al., 2025; Ma et  al., 2024). These inter-network 
connectivity disturbances, combined with the intra-network 
dysfunctions, provide a comprehensive neural framework for 
understanding the multifaceted clinical manifestations of 
sleep disorders.

Clinical correlates of altered network 
topology and functional network 
connectivity

The clinical relevance of these network alterations is 
underscored by our correlation analyses. First, a negative 
correlation was observed between PSQI scores and NLE in the 
right cuneus. The cuneus, a core region of the occipital visual 
cortex, is involved in primary visual information processing, 
visuospatial processing, and visual attention (McMains and 
Kastner, 2011; Vanni et  al., 2001). The significant negative 
correlation we  observed between PSQI scores and NLE in the 
right cuneus therefore implies that poorer sleep quality is 
associated with lower local information processing efficiency in 
this region. Previous research has established that sleep 
deprivation impairs visual attention and visual working memory 
(Hudson et al., 2020; Abdolalizadeh and Nabavi, 2022). Second, a 
significant negative correlation was found between ISI scores and 
FC between the right superior orbital frontal gyrus and the left 
gyrus rectus. Both regions are key subregions of the orbitofrontal 
cortex (OFC), a hub for emotion regulation, reward valuation, 
decision-making, and cognitive flexibility (Rolls et al., 2020). This 
finding implies that greater insomnia severity in SWSD is 
accompanied by weaker information exchange within the 
OFC. Similar patterns of OFC hyper- or hypoconnectivity, which 
scale with ISI scores, have been reported in primary insomnia 
cohorts (Li et al., 2017). Given that OFC dysfunction is frequently 
linked to emotional disorders (e.g., anxiety and depression) and 
executive function deficits (Rolls et al., 2020; Drevets, 2007), this 
aberrant FC may relate to the difficulties experienced by patients 
with SWSD in sleep regulation, emotional control, and cognitive 
inhibition (Bryden and Roesch, 2015). Our findings further 
suggest that a decline in the local network function of this core 
visual processing area may represent a neural basis for such 
cognitive deficits in SWSD.

Limitations

Although this study provided valuable insights into the neural 
underpinnings of SWSD in nurses, there are several limitations 
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that should be considered. First, our study did not incorporate 
subjective measures to assess daytime sleepiness (e.g., the Epworth 
sleepiness scale) or circadian chronotype (e.g., the morningness–
eveningness questionnaire). These clinical scales would have 
allowed us to directly correlate behavioral and circadian 
phenotypes with the observed alterations in brain networks, 
thereby enhancing the clinical relevance of our findings. Future 
studies should incorporate these assessments to build a more 
comprehensive brain-behavior model of SWSD. Second, the cross-
sectional design of our study limits causal inference. It remains 
unclear whether the observed brain changes are a cause or a 
consequence of SWSD. A longitudinal study would be invaluable, 
not only to elucidate the direction of causality but also to map the 
temporal dynamics of these network alterations. Such a design 
would enable us to determine, for instance, whether these changes 
are exacerbated by continued shift work, fluctuate with schedule 
modifications, or can be ameliorated through intervention. Third, 
the study focused exclusively on female nurses aged 20–40 years, 
which may limit the generalizability of the findings to other 
populations, such as male nurses or nurses in different age groups. 
Importantly, this precludes the exploration of how SWSD-related 
brain changes may vary across the lifespan. Future studies should 
include more diverse samples, particularly across a wider age range 
and in other populations (e.g., male shift workers), to assess the 
generalizability of these findings. Fourth, the assessment of sleep 
disorders and psychological status relied on self-report 
questionnaires (PSQI, ISI, BAI, and BDI-II), which are subject to 
recall bias and subjective interpretation, although these are 
standard instruments in the field. Objective measures of sleep, such 
as actigraphy or polysomnography, could provide more robust data 
in future research. Fifth, the focus of the present study is on the 
topological properties and functional network connectivity in 
nurses with SWSD. However, this approach cannot resolve the 
directionality of influence between brain regions. To address this 
limitation, future investigations should employ methods designed 
to assess effective connectivity, such as Multivariate granger 
causality. By utilizing a larger sample and multivariate Granger 
causality analysis, such studies could elucidate the dynamics of 
directed functional influence and information flow within and 
between networks, providing a more comprehensive understanding 
of how SWSD reconfigures the brain’s communication architecture. 
Sixth, a further limitation is our inability to perform a stratified 
analysis by shift work duration. Although we collected these data, 
the resulting subgroups (e.g., 1–5 years, n = 10; 6–10 years, n = 9; 
>10 years, n = 26) were insufficiently powered for a robust 
statistical comparison. Future research with larger sample sizes is 
warranted to elucidate the chronic effects of shift work and, in turn, 
to better understand the associated neuroplastic changes. Seventh, 
A significant limitation of this study is the lack of pre-registration 
prior to data collection. This oversight may have compromised the 
transparency of the research process. To address this and uphold 
research integrity, we are committed to rigorously pre-registering 
all future studies to maximize their rigor and transparency. Finally, 
our analysis was based on the AAL-90 atlas, which excludes the 
cerebellum. Recent evidence suggests that the cerebellum is also 
affected by shift work (Choi et al., 2025). Future studies should 
incorporate atlases that include the cerebellum to provide a more 
complete picture of the neural alterations in SWSD.

Conclusion

In conclusion, this study demonstrates that SWSD in female 
nurses is characterized by significant alterations in brain functional 
network topology. Key among these are widespread reductions in both 
global and nodal network efficiency, particularly within visual 
processing regions and the caudate nucleus, alongside a complex 
pattern of disrupted (primarily weakened) FC across multiple brain 
networks. Crucially, these neuroimaging changes correlated 
significantly with clinical measures of insomnia severity and sleep 
quality. Identifying these topological and FC alterations advances our 
understanding of the pathophysiological mechanisms underlying 
SWSD and provides novel insights for potential prevention and 
intervention strategies.
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