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band power and heart rate
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Introduction: The mechanisms by which conscious breathing influences brain-
body signaling remain largely unexplored. Understanding how controlled
breathing modulates neural and autonomic activity can offer insights into
self-regulation and adaptive physiological control. This study investigates how
conscious breathing affects cortical-autonomic communication by analyzing
bidirectional interactions between EEG band power time series (BPts), heart rate
variability (HRV), and breathing signals.
Methods: Data were collected from fifteen healthy subjects during three
experimental conditions: a spontaneous breathing state (Rest) and two
controlled breathing tasks (CBT 1 and CBT 2). EEG recordings were analyzed
to compute BPts across the δ, θ , α, β, and γ frequency bands, while HRV
and breathing signals were derived from ECG data. Cross-spectrum analysis
and Granger causality tests were performed between HRV and BPts. To
further investigate directional interactions, Granger-causal relationships were
explored between components of the BPts extracted using empirical mode
decomposition and the HRV and breathing signals.
Results: Bidirectional Granger-causal relationships were found between
neural and autonomic systems, emphasizing the dynamic interaction between
the brain and body. Specific BPts components mediated neural-autonomic
communication, with one component consistently aligning with the frequency
of conscious breathing (∼0.05 Hz) during the CBTs. Cross-spectral peaks at
this frequency and its harmonics highlight the role of respiratory entrainment in
optimizing neuro-autonomic synchronization. Frequency-specific mechanisms
observed in both fast and slow components reflect the complex regulation of
autonomic functions through cortical modulation. The most prominent causal
effects were observed in the γ band, suggesting its pivotal role in dynamic
autonomic regulation, potentially acting as a communication pathway between
the brain and body.
Discussion: Our results demonstrate that conscious breathing enhances
bidirectional cortical-autonomic modulation through frequency-specific
dynamic neural mechanisms. These findings support a closed-loop model of
physiological regulation driven by neural-respiratory entrainment and suggest
that respiration can serve as a top-down mechanism for autonomic control.
By clarifying how conscious breathing shapes brain-body dynamics, this work
lays the foundation for research on neural self-regulation and supports the
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development of non-pharmacological interventions for improving mental and
physiological health.

KEYWORDS

neuromodulation, autonomic regulation, entrainment, heart rate variability (HRV), EEG-
band power time series, breathing, Granger-causal relationship

1 Introduction

Extensive electroencephalography (EEG) research has
highlighted that the brain operates with a hierarchical organization,
where slower oscillations modulate the amplitude of faster ones,
thereby facilitating communication between distant brain areas
and enhancing cognitive flexibility in response to internal or
external demands (Klimesch, 2013, 2018; Lakatos et al., 2005;
Siegel et al., 2012). This modulation supports the redistribution of
oscillatory activity across frequency bands, maintaining functional
equilibrium and optimizing information processing.

More recently, the concept of neuronal entrainment i.e., the
synchronization of brain oscillations with rhythmic inputs
has emerged as a key factor in influencing the temporal
dynamics of cortical activity. Entrainment enhances interregional
communication, optimizes information flow, and supports
adaptive responses to environmental changes (Lakatos et al., 2019).
Studies in animal models (Tort et al., 2018; Zhong et al., 2017)
and humans with epilepsy (Herrero et al., 2018; Zelano et al.,
2016) using intracranial recordings have shown that respiratory
activity can phase-lock with neural oscillations and modulate the
amplitude of higher-frequency rhythms. Furthermore, coupling
between breathing and neural rhythms has been shown to
promote parasympathetic dominance, improving information
processing while reducing stress (Benson et al., 1974; Noble
and Hochman, 2019). This dynamic interplay between neural
activity and the autonomic system suggests that consciously
modulating breathing could enhance both neural communication
and autonomic regulation.

The autonomic nervous system (ANS) plays a crucial role in
maintaining bodily regulation, balancing excitation and inhibition
of involuntary signals throughout the body and brain (Saper,
2002). A key measure of ANS activity, heart rate variability
(HRV), reflects its capacity to adapt to changing internal and
external conditions, with increased variability indicating more
robust autonomic control. HRV has been linked to cognitive and
emotional performance, and has proven valuable in exploring the
dynamics of autonomic regulation (Faes et al., 2017; Klimesch,
2018; Noble and Hochman, 2019; Pardo-Rodriguez et al., 2021a;
Zaccaro et al., 2018).

Breathing directly influences HRV, with specific respiratory
patterns shaping autonomic responses and overall physiological
balance (Critchley et al., 2015). HRV is associated with respiratory
sinus arrhythmia (RSA), a phenomenon where heart rate
reflects the phases of breathing, further demonstrating the
interconnectedness of autonomic processes (Klimesch, 2018;
Porges, 2007). Conscious control of breathing such as slow, deep,
or rhythmic patterns can enhance parasympathetic activation,
reduce stress, and increase HRV, promoting relaxation and
improving psychophysiological states (Ashhad et al., 2022;

Benson et al., 1974; Noble and Hochman, 2019; Weng et al., 2021).
Notably, breathing at 0.1 Hz (six breaths per minute) induces
resonance between respiratory and cardiovascular rhythms,
optimizing autonomic function by reinforcing these physiological
signals (Ashhad et al., 2022; Mather and Thayer, 2018; Noble
and Hochman, 2019; Zaccaro et al., 2018). This process is
increasingly understood to involve the brain-heart axis, a complex
network of neural, mechanical, and biochemical pathways linking
central and autonomic functions (Valenza et al., 2025). This
resonance enhances synchronization between the cardiovascular
and respiratory systems, promoting autonomic control (Ashhad
et al., 2022; Carnevali et al., 2013; Noble and Hochman, 2019).

Despite the growing popularity of breath-focused interventions
in clinical and wellness contexts, the mechanisms by which specific
breathing patterns could influence both neural and autonomic
systems remain poorly understood. Recent studies have begun
exploring how conscious breathing, combined with interoceptive
attention, may influence brain oscillations and support autonomic
regulation (Critchley and Garfinkel, 2015; Herrero et al., 2018;
Pardo-Rodriguez et al., 2021a; Porges, 2007). The present study
seeks to address this gap by examining how conscious modulation
of breathing influences EEG oscillations and autonomic regulation.

Building on the concept of neuronal entrainment proposed by
Lakatos et al. (2019), we suggest the brain uses breathing rhythms
as pacing signals to modulate its oscillatory activity. Voluntary
changes in breathing may influence vagal afferents by coupling
respiration, baroreceptor inputs and O2 and CO2 exchange,
inducing phase shifts that align both EEG activity and HRV with
the breathing cycle. This modulation could recruit cortical rhythms
at multiple frequencies, harmonically aligned with breathing,
thereby influencing cortical temporal dynamics. In line with
Lakatos et al. (2005) hierarchical oscillation theory, we propose
that low-frequency respiratory rhythms modulate the amplitude
of higher-frequency neural oscillations, enhancing interregional
cortical communication and supporting cognitive flexibility. We
thus hypothesize that conscious modulation of breathing enhances
brain-body communication, improving neural synchronization
and autonomic regulation compared to spontaneous breathing.

2 Materials and methods

2.1 Data

Data were collected from fifteen healthy subjects (seven
female), aged 24 ± 3 years. Inclusion criteria were: normal body-
mass index, no regular practice of an aerobic exercise, non-
smoker, non-medicated, no known neuropathies or cardiovascular
conditions, and no consumption of coffee or stimulating beverages
two hours before the recordings. Subjects participated voluntarily

Frontiers in Systems Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1650475
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Pardo-Rodriguez et al. 10.3389/fnsys.2025.1650475

FIGURE 1

Experimental paradigm and processing pipeline. (A) Overview of the experimental paradigm, which includes three stages (conditions): Rest, CBT 1
(controlled breathing task 1), and CBT 2. (B) Experimental setup and signal processing pipeline for each condition. Sixteen EEG channels were
recorded to compute band power time series (BPtsx), which were then decomposed using empirical mode decomposition (EMD) into four intrinsic
mode functions (IMFs) per band and per channel. R-peaks were detected from the ECG signal and used to interpolate the HRV and breathing signals.
Granger causality tests were performed on the resulting signals (see Methods for details). (C) Results of the Granger causality tests between the HRV
and breathing signals for each condition. Across all 15 subjects, HRV G-caused breathing (first row, second column) and vice versa (second row,
first column).

after providing informed consent and received no monetary
compensation. The experimental protocol followed the Declaration
of Helsinki and had the approval of the University’s Ethics
Committee under record number 221. Recordings were scheduled
between 10h 00 to 12h 00 to minimize any circadian influences on
autonomic functions, as HRV can fluctuate throughout the day.
Stimulus presentation and recording synchronization were done
using BCI2000 software (Schalk et al., 2004). Signals were recorded
using a g.USBamp (g.tec, Austria) amplifier at 1,200 samples per
second, with a 60 Hz notch filter activated and the g.SCARABEO
(g.tec, Austria) active electrode system. EEG signals were recorded
from 16 channels placed according to the standard 10-20 system:
Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, T7, T8, P3, Pz, P4, O1, O2, and
Oz. The reference used was A1 and ground at Fpz. ECG signals
were recorded by placing a pair of electrodes on the chest just below
the left and right clavicles, and ground over the manubrium of the
sternum (Figure 1B). Although this setup is not a clinical standard
for ECG recordings, it was sufficient for detecting R-peaks, which
are necessary for HRV estimation. Subjects were comfortably seated
in a recliner armchair with head support from the moment they
entered the recording area. Electrode setup took approximately
20 min, allowing for the transient phase of adaptation to pass
and ensuring that participants’ autonomic tone was at a relatively
stable baseline before recordings began. These experiments were
conducted at the Center for Well-Being (CBU, Centro del Bienestar
Universitario) of Universidad Iberoamericana Ciudad de Mexico.

Although our sample size (n = 15) is relatively small,
the consistency of directional interactions across nearly all

participants suggests robust effects. Comparable studies in brain-
heart dynamics have reported similar results with similar sample
sizes (De la Cruz-Armienta et al., 2017; Faes et al., 2017; Pardo-
Rodriguez et al., 2019; Umeno et al., 2002; Valenza et al., 2016).
Nonetheless, expanding the participant pool in future research is
essential to capture a broader variability in physiological responses
and to better identify potential outliers. This would strengthen the
generalizability of the observed effects and support more robust
statistical inference.

2.2 Experimental design

The experimental protocol consisted of three conditions,
depicted on Figure 1A, which were applied uniformly across
all subjects. This design allowed us to compare spontaneous
and consciously regulated breathing states to investigate whether
specific breathing patterns enhance neuralautonomic coupling, as
hypothesized. During all conditions, subjects remained in the same
seated position with their eyes closed.

• Resting condition (Rest): Subjects were instructed to listen to
an audio recording of “The Origin of Evil” by Leon Tolstoi,
which lasted 6 min and 53 s (audio available at: The Origin
of Evil). No instructions regarding breath control were given,
therefore subjects engaged in spontaneous breathing during
this phase.
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• CBT training 1: Subjects were instructed and demonstrated
how to perform a controlled breathing task (CBT), guided
by an auditory cue (audios available at: CBTs training). The
task was performed exclusively using nasal breathing. The
cue indicated inhalation with an increasing frequency tone,
maintenance by keeping a constant tone, and exhalation with
a decreasing frequency tone. Data was recorded during this
phase, but was not included in the analysis. For this training,
subjects practiced a short, two-minute version of the CBT
described below.

• Controlled breathing task 1 (CBT 1): Once subjects were able
to synchronize their breathing with the auditory cue, they were
instructed to perform CBT 1. This task consisted of breathing
cycles with 4 seconds of inhalation, 7 s of breath-holding, and 8
s of exhalation. The task lasted 10 min, during which 32 cycles
were performed.

• CBT training 2: The second controlled breathing training
session was conducted in the same manner as described
above for the subsequent and final condition. The task
was performed exclusively using nasal breathing. Data was
recorded during this phase, but was not included in the
analysis. Once again, subjects practiced a short, two-minute
version of the new CBT described below.

• Controlled breathing task 2 (CBT 2): CBT 2 consisted of
breathing cycles with 5 s of inhalation, 8 s of exhalation, and
5 s of breath-holding. This task also lasted 10 min, with 34
cycles performed.

These breathing protocols were selected to approximate a
lower harmonic of the well-studied 0.1 Hz resonance frequency
(i.e., ∼0.05 Hz), which has been associated with enhanced
parasympathetic activation and autonomic regulation (Russo et al.,
2017; Zaccaro et al., 2018). The 4-7-8 pattern is a well-established
pranayama-based technique with documented effects on HRV,
blood pressure, and stress reduction (Vierra et al., 2022). The
5-8-5 pattern, while less common in clinical studies, was designed
to maintain a comparable cycle duration while modifying the
phase distribution, consistent with slow-breathing principles used
in respiratory training (Bhargava et al., 1988).

Although no direct respiratory signal (e.g., nasal thermistor)
was recorded, participants were instructed to breathe exclusively
through the nose. This was continuously monitored by the
experimenter throughout the sessions. While slow, rhythmic
breathing can be achieved via either the mouth or nose, nasal
airflow has distinct neural effects that oral breathing lacks.
Specifically, it has been shown to entrain cortical and limbic
oscillations, via olfactory pathways, linked to the modulation of
emotional states (Herrero et al., 2018; Pfurtscheller et al., 2025; Tort
et al., 2025; Zelano et al., 2016).

2.3 Signal processing

Figure 1B shows the experimental setup and the processing
pipeline applied to each condition. Figure 2 provides
an example of the signals recorded from one trial. All
signals were filtered using a digital band-pass filter with
cutoffs at 0.01 Hz and 100 Hz, consisting of a fourth-order

Butterworth high-pass filter and an eighth-order Chebyshev II
low-pass filter.

ECG signals were differentially obtained from the chest
electrodes, and R-peaks of the QRS complex were identified using
Hamilton’s algorithm (Hamilton, 2002). HRV was determined from
the time differences between these peaks and interpolated to a
standard sampling rate of 10 samples per second using cubic
interpolation. The breathing signal, derived from the amplitude of
the R-peaks, was also interpolated to the same sampling rate using
cubic interpolation.

Relative band power time series (BPts) for the five classical
frequency bands (δ (1-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30
Hz), and γ (30-100 Hz)) were estimated for all EEG channels using
a sliding window of two seconds with 95% overlap, resulting in a
sampling rate of 10 samples per second. The Welch periodogram
method was applied to each window, with internal parameters
configured to assess a resolution of 0.5 Hz using a half-size
window and 95% overlap. Relative power estimates were calculated
by integrating the power spectral density (PSD) within each
frequency band and normalizing by the total power (Figure 2C).
This methodology has been previously described in the work of
Pardo-Rodriguez et al. (2021a,b,c). All signals (BPts, HRV and
breathing) were resampled for synchronization over the same
temporal axis.

2.4 Analyses

2.4.1 Band power analysis
To assess whether significant changes in band power occurred

during the CBTs, between Rest vs CBT1 and Rest vs CBT2,
Shapiro-Walk normality tests were conducted on the data from
all subjects, for each band and channel. For each pair of
groups (different condition, same band and channel) with normal
distributions, a parametric two-tailed t-test was performed. If
normality was rejected for one of the groups, a Wilcoxon signed-
rank test was used instead. The significance level for all statistical
tests was set at 0.025, following a Bonferroni correction to account
for multiple comparisons across the different conditions.

2.4.2 Cross-spectrum analysis
Subsequently, the cross-spectrum between the normalized BPts

and HRV signals was computed, yielding a spectral resolution of
0.01 Hz. For each frequency band and EEG channel, the amplitude
at 0.05 Hz was compared between CBT 1 and Rest, and the
amplitude at 0.06 Hz was compared between CBT 2 and Rest.
These frequencies were chosen as they were the closest estimated
frequencies to the breathing rate of each CBT. For each condition,
band, and channel, normality was assessed using the Shapiro-Walk
test. Depending on the outcome, either a paired t-test or a Wilcoxon
signed-rank test was applied. Effect sizes were then calculated using
Cohens d, based on all data from each CBT compared to Rest,
along with the corresponding confidence intervals (CIs) and p-
values. Values of Cohens d around 0.2 are generally considered
small, around 0.5 medium, and 0.8 or higher large, indicating
the strength of observed differences between mean cross-spectrum
values across conditions.

Frontiers in Systems Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1650475
https://bit.ly/3YqTAhy
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Pardo-Rodriguez et al. 10.3389/fnsys.2025.1650475

FIGURE 2

Example of signals recorded during CBT 1. All panels show data from the same time window of one trial. (A) Controlled breathing task (CBT 1, purple)
that participants were instructed to follow, along with the breathing signal (light orange) recorded from one subject. The Pearson correlation
coefficient between these two signals was 0.86. (B) Breathing signal (light orange) and HRV signal (red) from the same subject. (C) The signals from
(B), along with the band power time series BPtsα (blue) and BPtsγ (green) from the Cz channel. (D) Breathing signal (light orange), IMF 1 (light blue),
and IMF 3 (dark blue) of BPtsα from (C). The Pearson correlation coefficient between the breathing signal and IMF 3 was 0.21.

2.4.3 Empirical mode decomposition (EMD)
Following this, to analyze changes in terms of specific spectral

components, four intrinsic mode functions (IMFs) were extracted
from the BPts for each channel and frequency band using
empirical mode decomposition (EMD) (Figure 2D). The EMD
method (Huang Norden et al., 1998) was chosen for analyzing
the BPts because it is particularly suited for non-stationary and
non-linear processes, like BPts. The Python EMD package was
used to compute the decomposition, specifically employing the
emd.sift.sift function with default parameters (Quinn et al., 2021).
Unlike traditional methods such as the STFT (short-time Fourier
transform) or filter banks, which assume stationarity, EMD adapts
to the data, extracting IMFs that reflect dynamic, time-varying
oscillations without predefined frequency limits. This makes EMD
ideal for capturing the complex temporal characteristics of the BPts.

Although EMD can introduce artifacts such as mode mixing,
we ensured the reliability of the IMFs chosen by assessing the power
spectral density (PSD) of each IMF and verifying the consistency of
their bandwidths across subjects. The dominant frequency content
of each IMF, identified as the peak frequency and the range
exceeding 90% of peak power was calculated across all subjects,
channels and bands, separately for each condition. The resulting
frequencies were highly stable across tasks, with averaged values
as follows: IMF 1 peaked at 0.262 Hz (range: 0.246–0.277 Hz),
IMF 2 at 0.136 Hz (0.130–0.142 Hz), IMF 3 at 0.059 Hz (0.057–
0.062 Hz), and IMF 4 at 0.026 Hz (0.025–0.027 Hz). Notably, the
dominant frequency peaks for each IMF were distinct and showed
no overlap.

2.4.4 Causal analysis
Granger causality tests were first performed between each

BPts (per channel) and the HRV signal to capture directional
dependencies that may reflect neural-autonomic coupling. Granger
causality is a statistical method used to determine whether past
values of one time series can help predict future values of
another time series (Granger, 1969). The test compares models
that predict a signal using its own past values against models that
include past values of another signal. If incorporating the second
signal improves prediction accuracy significantly (p < 0.01), the
first signal is said to G-cause the second. However, this causal
relationship does not imply a direct physical connection between
the signals, just a predictive dependency that underscores some
form of functional connectivity. Effect sizes were then calculated
using the Odds Ratio (OR), based on all data from each CBT
compared to Rest, along with the corresponding CIs and p-values.
OR values above 1 indicate increased likelihood of positive G-causal
relationships during the CBTs compared to Rest, whereas values
below 1 suggest a decreased likelihood.

Finally, Granger causality tests were also performed
between each IMF (by band and channel) and the HRV and
breathing signals.

Recent studies have highlighted Partial Directed Coherence
(PDC) as a frequency-domain alternative for assessing directional
connectivity in EEG, particularly in relation to HRV and event-
related desynchronization (Al-Ezzi et al., 2024; Molloy et al., 2023).
While Granger causality operates in the time domain and is well-
suited for examining short, transient neural-autonomic dynamics,
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TABLE 1 Mean relative BPts differences between Rest and CBT 1 in arbitrary units.

Channel δ θ α β γ δ θ α β γ

Fp1 0.026 −0.005 −0.021 −0.000 0.004 Fp2 0.015 −0.009 −0.026 −0.002 0.028

F3 0.026 −0.013 −0.019 −0.000 0.012 F4 0.028 −0.012 −0.025 0.000 0.013

Fz 0.018 −0.010 −0.018 0.001 0.014 Cz 0.010 −0.017∗∗ −0.013 0.007 0.017∗

C3 0.022 −0.016∗∗ −0.019∗ 0.005 0.014 C4 0.028 −0.020∗∗ −0.019∗∗ 0.001 0.015

T7 0.000 −0.014∗∗ −0.019∗ 0.008 0.029∗∗ T8 0.026 −0.021∗∗ −0.031∗∗ 0.004 0.029

P3 0.016 −0.012∗∗ −0.030∗∗ 0.011∗ 0.018∗∗ P4 0.019 −0.015∗∗ −0.030∗∗ 0.009 0.020∗∗

Pz −0.003 −0.010 −0.020 0.015∗∗ 0.019∗∗ Oz 0.016 −0.014∗ −0.051∗∗ 0.004 0.051

O1 0.024 −0.017∗∗ −0.053∗∗ 0.004 0.048∗∗ O2 0.033 −0.017∗∗ −0.064∗∗ 0.004 0.050∗∗

Comparisons were made across the respective frequency band and channel for all subjects, between the two conditions (Rest and CBT 1) using either a two-tailed t-test or a Wilcoxon signed-
rank test, depending on the normality of the data. Significant differences are indicated by ∗ and ∗∗ next to each difference, where p < 0.025 and p < 0.01, respectively. Positive values indicate
an increase during CBT 1.

TABLE 2 Mean relative BPts differences between Rest and CBT 2 in arbitrary units.

Channel δ θ α β γ δ θ α β γ

Fp1 0.022 0.001 −0.022 −0.002 0.004 Fp2 0.006 0.006 −0.011 0.015 −0.016

F3 0.032 −0.005 −0.024 −0.002 0.003 F4 0.026 −0.002 −0.026 0.000 0.004

Fz 0.011 −0.000 −0.013 0.001 0.004 Cz 0.004 −0.008 −0.008 0.005 0.009

C3 0.019 −0.007 −0.018 0.003 0.004 C4 0.004 −0.006 −0.009 0.005 0.007

T7 0.020 −0.009∗∗ −0.019 −0.001 0.011 T8 0.008 −0.009 −0.030 0.007 0.029

P3 0.027 −0.004 −0.038∗ 0.005∗ 0.009 P4 0.015 −0.003 −0.030∗ 0.007 0.012

Pz −0.005 −0.001 −0.026 0.010∗ 0.012∗ Oz 0.032 −0.002 −0.051∗ 0.001 0.034

O1 0.036 −0.005 −0.060∗ 0.001 0.032 O2 0.039 −0.004 −0.068∗∗ 0.002 0.034

Comparisons were made across the respective frequency band and channel for all subjects, between the two conditions (Rest and CBT 2) using either a two-tailed t-test or a Wilcoxon signed-
rank test, depending on the normality of the data. Significant differences are indicated by ∗ and ∗∗ next to each difference, where p < 0.025 and p < 0.01, respectively. Positive values indicate
an increase during CBT 2.

future work could integrate PDC to explore band-specific or long-
range neural-autonomic interactions more precisely.

3 Results

3.1 Band power analysis

Mean BPts increased in the δ, β , and γ bands during both
CBTs across nearly all channels when compared to Rest, as shown
in Tables 1, 2. However, these differences were only significant for
BPtsβ at P3 and Pz for both CBTs; and for BPtsγ at Pz for both
CBTs, and at Cz, T7, P3, P4, O1 and O2, for CBT 1. In contrast, for
CBT 1, significant decreases in mean BPts were observed in the θ

and α bands from central through occipital channels, excluding Pz.
For CBT 2, significant decreases were found in BPtsθ at T7 and in
BPtsα at P3, P4, Oz, O1 and O2.

3.2 Cross-spectrum analysis

Figure 3 provides initial evidence of neural and autonomic
coupling driven by controlled breathing. The cross-spectrum
quantifies the degree to which two signals share spectral power at
specific frequencies, reflecting their frequency-domain coherence.
In Figures 3B, C, the dominant spectral peak is centered at
the respective CBT frequency, followed by progressively smaller
peaks at its harmonics indicating a cyclical interaction likely

entrained by the breathing pattern. These harmonics are consistent
with the periodic structure of the controlled breathing tasks
and suggest coherent phase-locking between neural activity and
cardiorespiratory rhythms. In contrast, Figure 3A shows that
during Rest, the cross-spectrum is more broadly distributed across
frequencies, with no prominent peaks, suggesting the absence of
such coupling.

Figure 4 shows that cross-spectrum values between HRV and
BPts during the CBTs, at the frequencies closest to the respective
breathing rates (i.e., 0.05 Hz for CBT 1 and 0.06 Hz for CBT
2), increased significantly across subjects compared to Rest. Effect
sizes measured through Cohen’s d were 1.37 (95% CI: [1.27, 1.47];
p < 0.001) for CBT 1 vs. Rest, and 1.45 (95% CI: [1.34, 1.55];
p < 0.001) for CBT 2 vs Rest. This means that controlled breathing
was strongly associated with enhanced frequency-specific coupling
between neural and autonomic signals.

3.3 Granger causality

3.3.1 BPts→HRV
Topographic maps in Figure 5 show an increase in G-causal

relationships from BPts→HRV across all frequency bands during
both CBTs compared to Rest. The γ band exhibited the highest
number of subjects with positive G-causality overall, while the
θ band showed the greatest increase relative to Rest. Effect
size analysis indicated that subjects were 4.74 times more likely
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FIGURE 3

Cross-Spectrum between HRV and BPtsγ at Cz. Each panel displays the mean power spectral density (PSD) of the HRV (red) and BPtsγ at Cz (blue), as
well as their cross-spectrum (yellow), averaged across subjects (bold lines). Individual subject traces are shown as fine lines. (A) Results for Rest. (B)
Results for CBT 1. Vertical lines mark the frequency of CBT 1 (19-second breathing cycles, i.e., 0.0526 Hz) and its following three harmonics. (C)
Results for CBT 2, with vertical lines marking the frequency of CBT 2 (18-second breathing cycles, i.e., 0.0555 Hz) and its following three harmonics.
In both (B, C), all signals show peak power at the respective fundamental frequency, followed by progressively smaller peaks at subsequent
harmonics.

FIGURE 4

Topographic cross-spectrum values between HRV and BPts. Each topographic map shows the mean cross-spectrum value [dB] between the
normalized HRV and corresponding BPts at each channel, averaged across subjects. The first row shows results for Rest at 0.05 Hz, the second for
CBT 1 at 0.05 Hz, and the third for CBT 2 at 0.06Hz. Statistical comparisons were performed between Rest and each CBT at the same frequency (i.e.,
0.05 Hz for CBT 1 and Rest, 0.06 Hz for CBT 2 and Rest), using either a two-tailed t-test or a Wilcoxon signed-rank test depending on normality.
Channels with significant differences (p < 0.001) are marked with a ∗.

to show positive G-causality during CBT 1 compared to Rest
(OR = 4.74; 95% CI: [3.89, 5.79]; p < 0.001), and 5.13 times
more likely during CBT 2 (OR = 5.13; 95% CI: [4.20, 6.27];
p < 0.001).

3.3.2 HRV→BPts
Topographic maps in Figure 6 show a higher total number

of G-causal relationships from HRV→BPts during both CBTs,
with increases observed across all frequency bands compared
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FIGURE 5

Topographic BPts→HRV Granger causality tests. Each topographic map shows the number of subjects (maximum 15) exhibiting positive G-causal
relationships from each BPts per channel to the HRV signal. The first row shows results for Rest, the second for CBT 1, and the third for CBT 2.
Compared to Rest, the number of subjects with positive G-causal relationships increased across all frequency bands during both CBT 1 and CBT 2.

to Rest. Again, the γ band showed the highest number of
subjects with positive G-causality overall, while the θ band showed
the greatest relative increase. However, unlike the BPts→HRV
direction, HRV→BPts already exhibited a higher baseline level of
G-causality during Rest. As a result, the observed increases during
the CBTs, though more numerous in absolute terms, were smaller
in relative magnitude. Effect size analysis showed that subjects were
1.93 times more likely to exhibit positive G-causality during CBT
1 compared to Rest (OR = 1.93; 95% CI: [1.58, 2.36]; p < 0.001),
and 2.10 times more likely during CBT 2 (OR = 2.10; 95% CI:
[1.71, 2.58]; p < 0.001).

To gain finer insight into the spectral components of the BPts
and their relationship with HRV and respiration, we next applied
Granger causality analyses to the BPts decomposed via EMD. For
this decomposition analysis, we adopt the terms brain→body and
body→brain to reflect the broader conceptual framing, where
“brain” refers to the IMFs of BPts, and “body” encompasses
both HRV and breathing signals. Figure 7 shows results for the
brain→body direction, while Figure 8 shows the results for the
body→brain direction.

3.3.3 Brain→body
Figure 7 shows that, for both CBTs, G-causal relationships

increased for IMF 3 and IMF 4 across all frequency bands compared
to Rest. The greatest increase was observed for brain→breathing
relationships on IMF 3, particularly in the δ, α and γ bands,
and on IMF 4 in the γ band. Additionally, brain→HRV
relationships increased for IMF 2 in δ, α and γ bands. In contrast,

G-causal relationships for IMF 1 decreased across most frequency
bands, except for γ during CBT 1, in the majority of channels.
Channel distribution shows that G-causal relationships increased
predominantly over central and frontal channels for brain→HRV
in the β and γ bands, and for brain→breathing in the γ band,
as well as for IMF3 across all bands except α, during both CBTs
compared to Rest.

3.3.4 Body→brain
Figure 8 shows that, for both CBTs, G-causal relationships

increased for IMFs 2 and 3 across all frequency bands compared
to Rest; with the greatest increase observed for breathing→brain
relationships on IMF 3. Additionally, breathing→brain
relationships increased on IMF 4 in the θ and γ bands; and,
in the majority of channels, for HRV→brain on IMF 4 in γ . In
contrast, HRV→brain relationships decreased on IMF 4 in the θ ,
α and β bands, and on IMF 1 in the δ band during CBT 1, and
the γ band during CBT 2. Breathing→brain relationships also
decreased for IMF 1 in the θ and β bands, as well as in δ band
during CBT 2 and the α band during CBT 1.

Interestingly, channel distribution shows that G-causal
relationships increased predominantly over central and frontal
channels for HRV→brain on IMF3 in the θ and γ bands, and
for breathing→brain in the δ and γ bands during both CBTs
compared to Rest. However, G-causal relationships increased over
temporal, parietal and occipital channels, for HRV→brain for
IMF3 in the δ and α bands, and for breathing→brain in the β and
α bands during both CBTs compared to Rest.
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FIGURE 6

Topographic HRV→BPts Granger causality tests. Each topographic map shows the number of subjects (maximum 15) exhibiting positive G-causal
relationships from the HRV signal to each BPts per channel. The first row shows results for Rest, the second for CBT 1, and the third for CBT 2.
Compared to Rest, the number of subjects with positive G-causal relationships increased across all frequency bands during both CBT 1 and CBT 2.

3.4 Spectral component analysis

Figure 9 presents the BPts spectral analysis results for CBT
1, Figure 10 for CBT 2 and Figure 11 for Rest. These figures
illustrate how, despite EMD being a non-linear decomposition
method, each IMF demonstrated a consistent frequency range and
content across subjects. Importantly, because EMD is a data-driven
method, it does not rely on predefined frequency bands or filtering
assumptions. This allows the extracted IMFs to reflect intrinsic
oscillatory dynamics rather than imposed spectral boundaries.
Furthermore, IMF 3 displayed a clear relationship with each CBT
(Figures 9, 10), exhibiting a peak in all frequency bands, except for
θ , centered at the respective CBT frequency.

For each IMF and frequency band from the Cz channel, a cross-
correlation analysis was performed with each subject’s breathing
signal. The respective IMF was adjusted to the optimal lag, and the
resulting Pearsons coefficient between the signals was calculated.
The highest average correlation across subjects was observed for
IMF 3 in the γ band during CBT 2, with a value of 0.307, indicating
a weak correlation, which suggests a less direct or potentially
artificial relationship with the physical phenomenon. Nonetheless,
both signals shared a similar dominant frequency, suggesting
that IMF 3 still captured oscillatory dynamics temporally aligned
with the breathing rhythm, thereby supporting the notion
of frequency-based coupling even in the absence of strong
amplitude correlation.

Notably, Figure 9F reveals a secondary peak in IMF 4 centered
at ∼0.15 Hz, which was observed only in the γ band during

CBT 1. According to Klimesch (2018) binary hierarchy model, this
frequency (∼0.16 Hz) represents one of three preferred breathing
rates linked to different affective and cognitive states (Klimesch,
2018; Pfurtscheller et al., 2025). While the dominant frequency in
CBT 1 corresponds to the instructed breathing rhythm (∼0.05 Hz),
the emergence of a peak near 0.15 Hz may reflect an endogenous
modulation mechanism operating within a harmonically related
frequency range, as predicted by the binary hierarchy model.

The PSD of the breathing signal reveals a distinct cyclical
phenomenon in both CBTs (Figures 9A, 10A), with the highest
peak centered around the respective CBT frequency, followed by
smaller peaks at subsequent harmonics. This pattern indicates
that the controlled breathing exercise was effectively performed
in both conditions. Furthermore, after adjusting each subject’s
breathing signal based on the optimal lag identified through
cross-correlation with the respective CBT, the average Pearsons
correlation coefficients across subjects were 0.82 for CBT 1 and 0.81
for CBT 2. In this context, a high correlation could indicate both
accurate performance of the CBT and adequate estimation of the
breathing signal.

Furthermore, the PSD of the breathing signal during the Rest
condition (Figure 11) showed spectral peaks centered around ∼0.1
Hz and ∼0.32 Hz. These spontaneous breathing rates align with
previously reported patterns observed in both healthy participants
and patients undergoing MRI sessions (Pfurtscheller et al., 2019,
2025; Zelano et al., 2016). The presence of a ∼0.32 Hz peak is
consistent with one of the preferred breathing frequencies proposed
by the binary hierarchy model (Klimesch, 2018), suggesting that

Frontiers in Systems Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1650475
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Pardo-Rodriguez et al. 10.3389/fnsys.2025.1650475

FIGURE 7

Brain→Body Granger causality tests. Each panel displays the number of subjects (maximum 15) with positive G-causal relationships from each
intrinsic mode function (IMF), per frequency band and channel, to either the HRV (top) or breathing (bottom) signal. In the first column, channels are
ordered from occipital to frontal along the left hemisphere; in the second column, from frontal to occipital along the right hemisphere; and in the
third column, from frontal to occipital along the midline. (A) Results for Rest. (B) Results for CBT 1. (C) Results for CBT 2. Compared to Rest, both
CBT 1 and CBT 2 showed increased G-causal relationships for IMFs 3 and 4 across all frequency bands.

even in resting conditions, participants may exhibit spontaneous
breathing rhythms with functional significance.

4 Discussion

The primary finding of this study is the observation of
bidirectional G-causal relationships between brain BPts and
autonomic events, specifically HRV and breathing, during CBTs.
The decomposition of BPts into IMFs reveals distinct spectral
components that are differentially modulated across conditions,
suggesting that each IMF reflects varying physiological mechanisms
underlying these interactions.

An important consideration when interpreting these results is
ensuring the observed G-causal relationships are not experimental
artifacts. One compelling argument against this is the consistent
positive G-causal relationships observed between HRV and
breathing signals across all subjects and conditions, as shown

in Figure 1C. HRV is tightly coupled with breathing via RSA,
where RR intervals decrease during inhalation and increase
during exhalation (Klimesch, 2018). The bidirectional positive
relationships in all subjects confirm their common origin.
Additionally, to support the notion that the observed relationships
are not artifactual, the low subject-level correlation values,
specifically for IMF 1 in Figure 7 and IMF 4 in Figure 8, suggest
that the brain↔body G-causal interactions are unlikely to reflect
muscular artifacts in the EEG. Moreover, the highest observed
cross-correlation between breathing and EEG components (IMF
3 in the γ band during CBT 2) was only 0.307, indicating
a weak amplitude coupling. This further supports the idea
that frequency alignment, rather than volume-conducted muscle
activity, underlies the observed effects.

Further, the decomposition of BPts into IMFs, in conjunction
with the observed G-causal relationships, suggests that
brain↔body communication occurs through distinct spectral
pathways. Each IMF appears to capture distinct aspects of
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FIGURE 8

Body→Brain Granger causality tests. Each panels displays the number of subjects (maximum 15) with positive G-causal relationships from either the
HRV (top) or breathing (bottom) signal to each intrinsic mode function (IMF) per frequency band and channel. In the first column, channels are
ordered from occipital to frontal along the left hemisphere; in the second column, from frontal to occipital along the right hemisphere; and in the
third column, from frontal to occipital along the midline. (A) Results for Rest. (B) Results for CBT 1. (C) Results for CBT 2. Compared to Rest, both
CBT 1 and CBT 2 showed increased G-causal relationships for IMFs 2 and 3 across all frequency bands.

the underlying physiological processes, with each spectral
feature potentially representing a unique component of the
communication between brain and body. This provides a more
comprehensive picture of how these systems interact, highlighting
the role of frequency-specific mechanisms in the bidirectional
transfer of information (Mitra et al., 2016).

Notably, IMF 3 showed frequency alignment with the
conscious breathing rate during both CBT 1 and CBT 2, but
not during Rest, suggesting entrainment of cortical activity
to the respiratory rhythm (Figures 2D, 9, 10) (Tort et al.,
2025). Cross-spectrum analyses further revealed increased spectral
power at the breathing frequency and its harmonics, indicating
frequency-specific coordination between neural and autonomic
signals (Figures 3, 4). These patterns were not present during
Rest, reinforcing the idea that conscious breathing provides a
temporal reference for brain and autonomic synchronization
(Klimesch, 2013, 2018; Mather and Thayer, 2018). Additionally,
we observed increased bidirectional statistical dependencies (via

Granger causality) between BPts and autonomic signals during
the CBTs, particularly for IMF 3. While these dependencies do
not imply direct physiological causation, they highlight dynamic,
task-related interactions between cortical and autonomic systems;
such dependencies may arise from shared influence by a third,
unknown common driver, a possibility that remains an open
question. The increase in the body→brain direction, particularly
in the HRV→brain relationships on IMF 2 (Figure 8), suggests
that faster BPts components may be modulated by autonomic
signals like HRV. In contrast, IMF 4 showed an increase in the
brain→body direction (Figure 7), suggesting that slower BPts
components may reflect a more delayed, regulatory interaction
between the brain and the heart. These findings align with
previous work showing that respiratory rhythms can entrain
brain activity in cortical and limbic regions (Zelano et al.,
2016; Herrero et al., 2018), and support the broader idea that
conscious breathing enhances communication between neural and
autonomic systems.
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FIGURE 9

Power spectral density–CBT 1. All panels display the mean power spectral density (PSD) averaged across subjects (bold lines), with individual subject
PSDs shown as finer lines. (A) PSD of the breathing signal (blue), where the highest peak occurs at the fundamental frequency, followed by smaller
peaks at subsequent harmonics. Vertical lines indicate the frequency of CBT 1 (19-second breathing cycles, i.e. 0.0526 Hz) and its half, second, third
and fourth harmonics. (B–F) Show the PSD of the band power time series (BPts) for each frequency band and intrinsic mode function (IMF 1 in
yellow, IMF 2 in red, IMF 3 in purple, IMF 4 in green). (B) PSD BPtsδ . (C) PSD BPtsθ . (D) PSD BPtsα . (E) PSD BPtsβ . (F) PSD BPtsγ . For all bands, IMF 4
centers around the half harmonic, while IMF 3 is centered at the fundamental frequency. Additionally, IMF 3 shows a prominent peak at the breathing
frequency in all bands except θ , while IMF 2 shows a smaller peak at the second harmonic exclusively in γ . Notably, IMF 4 in the γ band also exhibits
a secondary peak around ∼0.15 Hz.

These results are also consistent with earlier findings of our
group (Pardo-Rodriguez et al., 2021a), which applied EMD to HRV
signals to examine their interaction with BPts during controlled
breathing. That study showed that fast HRV components (like IMF
2) increased Granger causality in the HRV→brain direction, while
slow HRV components (like IMF 4) enhanced causality in the
brain→HRV direction. This differentiation between fast and slow
components observed in both studies may reflect distinct temporal
mechanisms underlying short-latency autonomic responses and
slower, integrative regulatory processes during conscious breathing.

One key aspect of these findings is the prominent role of the
γ band in the body↔brain interactions during CBTs. Significant
G-causal relationships in the γ band increased notably during
both CBTs, aligning with prior studies that highlight γ rhythms
as crucial for inter-regional brain communication, and extending
this role to interactions with peripheral systems. For instance,
Herrero et al. (2018) showed that during conscious breathing, γ

band coherence increases in regions such as the anterior cingulate
and premotor cortex, suggesting involvement in coordinating
neural processes during rhythmic activities like breathing. Animal
studies have found that respiration modulates the amplitude of γ

sub-bands in frontal areas, with respiratory activity phase-locking

to neural oscillations, potentially synchronizing brain regions and
linking γ rhythms to neural regulation during breathing tasks (Tort
et al., 2018, 2025; Zelano et al., 2016). Moreover, γ -band activity
has been shown to precede autonomic fluctuations such as heart
rate and blood pressure during mental tasks (Umeno et al., 2002),
suggesting an anticipatory role in modulating peripheral responses.
Pardo-Rodriguez et al. (2021a) also reported increased G-causal
relationships in the γ band during a CBT, underscoring the role
of high-frequency rhythms in coordinating cortical and autonomic
activity. Altogether, these findings suggest that γ oscillations may
mediate neuro-autonomic synchronization, potentially bridging
central and peripheral systems during conscious breathing. This
aligns with broader theories positioning γ band activity as a
fundamental mechanism in sensory, cognitive, and physiological
regulation (Başar, 2013; Herrmann et al., 2004).

The distribution of G-causal relationships across channels
provides valuable insight into the spatial dynamics of brain↔body
interactions during CBTs. During both CBTs, the brain→body
causal relationships were predominantly localized to frontal
channels, particularly in the γ band. This frontal predominance
suggests that higher-order cognitive and regulatory processes,
such as attention and executive control, may play a central role
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FIGURE 10

Power spectral density–CBT 2. All panels display the mean power spectral density (PSD) averaged across subjects (bold lines), with individual subject
PSDs shown as finer lines. (A) PSD of the breathing signal (blue), where the highest peak occurs at the fundamental frequency, followed by smaller
peaks at subsequent harmonics. Vertical lines indicate the frequency of CBT 2 (18-second breathing cycles, i.e. 0.0555 Hz) and its half, second, third
and fourth harmonics. (B–F) Show the PSD of the band power time series (BPts) for each frequency band and intrinsic mode function (IMF 1 in
yellow, IMF 2 in red, IMF 3 in purple, IMF 4 in green). (B) PSD BPtsδ . (C) PSD BPtsθ . (D) PSD BPtsα . (E) PSD BPtsβ . (F) PSD BPtsγ . For all bands, IMF 4
centers around the half harmonic, while IMF 3 is centered at the fundamental frequency. Additionally, IMF 3 shows a prominent peak at the breathing
frequency in all bands except θ .

in modulating autonomic responses during controlled breathing
(Herrero et al., 2018; Tort et al., 2018). The frontal cortex is
involved in regulating both emotional and physiological states, and
its engagement in brain↔body communication during CBTs likely
reflects an active closed-loop modulation of autonomic functions in
response to the breathing task. This finding resonates with studies
showing that prefrontal regions are involved in interoception
practices and conscious breathing techniques (Weng et al., 2021),
underscoring the role of frontal regions in maintaining control over
physiological processes.

Conversely, body→brain G-causal relationships shifted
toward occipital regions, particularly in the δ, β , and α bands. This
may reflect the influence of peripheral physiological signals, such as
breathing, on cortical regions involved in sensory processing and
integration. This finding mirrors our earlier observation (Pardo-
Rodriguez et al., 2021a), where shifts from frontal to occipital
regions were linked with changes in breathing patterns and
peripheral influences, emphasizing the dynamic and flexible nature
of brain↔body communication during CBTs. Additionally,
occipital engagement may relate to the neurophysiological
mechanisms underlying slow, deep breathing, which can entrain
central autonomic networks and optimize HRV through specific

respiratory patterns around 0.1 Hz (Mather and Thayer, 2018;
Noble and Hochman, 2019). These breathing-induced shifts may
promote coordination between respiratory and sensory processing
regions, facilitating the integration of autonomic feedback into
cortical areas involved in sensory input and motor coordination.

The widespread increase in BPts synchrony observed during
the CBTs, particularly in the γ band, but also across slower
frequencies, suggests that paced breathing may induce large-
scale coordination of cortical rhythms. This pattern aligns with
the supramodal entrainment framework (Lakatos et al., 2019),
which posits that rhythmic input can drive large-scale cortical
oscillatory dynamics beyond sensory-specific regions. CBTs
may act as a multisensory stimulus—integrating interoceptive
(breath), proprioceptive (chest movement), and auditory (cue)
inputs—thereby engaging broader sensorimotor and autonomic
networks. Supporting this, Tort et al. (2025) has shown that
respiration can synchronize neural activity across widespread brain
regions, modulating faster oscillations and shaping inter-regional
communication.

Interestingly, we observed prominent components at ∼0.025
Hz (IMF 4) and ∼0.05 Hz (IMF 3), consistent with infra-slow
oscillations (ISOs) reported in animal and human studies. Work
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FIGURE 11

Power spectral density–Rest. All panels display the mean power spectral density (PSD) averaged across subjects (bold lines), with individual subject
PSDs shown as finer lines. (A) PSD of the breathing signal during spontaneous breathing (blue). Two prominent peaks appear around ∼0.1 Hz and
∼0.32 Hz, consistent with spontaneous breathing rhythms. Vertical gray lines indicate the mean frequency between CBT 1 and CBT 2 (i.e. 0.054 Hz)
and its half, second, third and fourth harmonics. (B–F) Show the PSD of the band power time series (BPts) for each frequency band and intrinsic
mode function (IMF 1 in yellow, IMF 2 in red, IMF 3 in purple, IMF 4 in green). (B) PSD BPtsδ . (C) PSD BPtsθ . (D) PSD BPtsα . (E) PSD BPtsβ . (F) PSD BPtsγ .

in rodents has shown serotonin fluctuations at these frequencies
organize wake and sleep substate transitions (Cooper et al., 2025).
In humans, fMRI and ECoG studies have linked ISOs to dynamic
hippocampus-cortex communication during rest and sleep (Mitra
et al., 2016). Our findings suggest these slow rhythms may
also emerge during active, conscious breathing states such as
CBTs. This raises the possibility that slow, controlled breathing
could entrain or enhance endogenous ISOs, potentially supporting
corticalsubcortical interactions involved in emotional regulation
and memory-related processes (Tort et al., 2025).

Finally, EEG band power values may show mixed results across
resting states and various tasks in several studies. This study found
a decrease in BPtsα and BPtsθ at specific brain regions during
both CBTs compared to Rest. Zaccaro et al. (2018) systematic
review suggests slow controlled breathing causes decreased θ and
increased α power. These results support the notion that controlled
breathing can decrease θ activity.

While sex differences in HRV and EEG spectral power are
well-documented, the use of relative measures such as BPts and
IMFs inherently minimizes their potential influence. Moreover,
the controlled environment including a seated posture and
adaptation period was designed to reduce sources of variability
and ensure more consistent baseline intersubject measures. When
analyzing the data by sex, females showed fewer G-causal
relationships for brain↔breathing during Rest, but not during

CBTs, suggesting that conscious breathing elicits robust cortical-
autonomic interactions across sexes.

Future studies should examine pathological models that
isolate or alter brain↔heart communication pathways to better
understand their origin and rule out analysis-related artifacts.
Future analyses could include applying EMD to HRV signals to
disentangle sympathetic and parasympathetic contributions, as
well as assessing the time course of BPts synchronization to the
breathing rhythm during task onset.

Taken together, these findings reveal that conscious
breathing can modulate cortical-autonomic dynamics through
frequency-specific neural mechanisms. By showing that
neural oscillations particularly in the γ band dynamically
synchronize with autonomic rhythms aligned with the breathing
frequency, we provide strong support for the neural basis of
respiratory entrainment and highlight the brains active role
in flexibly regulating peripheral physiology through distinct
spectral pathways. These results contribute to a systems-level
perspective on brain-body integration, revealing a dynamic
closed-loop interaction essential for maintaining physiological
homeostasis and adaptive regulation. This study lays the
groundwork for developing breathing-based interventions aimed
at enhancing self-regulation, with potential applications in
biofeedback, stress management, and improving physiological and
mental well-being.
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