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Many animal species rely on chemical signals to extract ecologically important information from the environment. Yet in natural conditions 
chemical signals will frequently undergo concentration changes that produce differences in both level and pattern of activation of 
olfactory receptor neurons. Thus, a central problem in olfactory processing is how the system is able to recognize the same stimulus 
across different concentrations. To signal species identity for mate recognition, some insects use the ratio of two components in a binary 
chemical mixture to produce a code that is invariant to dilution. Here, using psychophysical methods, we show that rats also classify 
binary odor mixtures according to the molar ratios of their components, spontaneously generalizing over at least a tenfold concentration 
range. These results indicate that extracting chemical ratio information is not restricted to pheromone signaling and suggest a general 
solution for concentration-invariant odor recognition by the mammalian olfactory system.
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INTRODUCTION
Understanding the neural computations underlying object recogni-
tion is important for understanding the function of any sensory system. 
Generally speaking, each sensory system extracts specifi c features of the 
total impinging sensory information while ignoring others. One strategy 
for fi ltering sensory information is to use an encoding mechanism that is 
invariant to the irrelevant features. For example, the visual system uses 
spatial opponent circuits to create perceptual invariance to illumination, 
allowing the surface properties of visual objects to be identifi ed despite 
changes in incident lighting (Palmer, 1999).

Many vertebrate species use chemosensation as the chief means 
of extracting ecologically-signifi cant information from the environment, 
including the identity, age and health of conspecifi cs (Beauchamp and 
Yamazaki, 2003; Boehm and Zufall, 2006), the presence of predators 
(Takahashi et al., 2005), and the availability of energetic and nutritional 
resources (Hao et al., 2005; Reinhard et al., 2004). Like object recognition 
in the visual system, odor-based recognition is likely to involve computa-
tions that produce invariance to certain kinds of chemical information.

A fundamental form of perceptual invariance in chemosensation is con-
centration invariance, the ability of an organism to recognize the same odor 
at different concentrations. Changes in concentration result in a change in 
the number (and sometimes pattern) of olfactory glomeruli activated by 
an odor (Johnson and Leon, 2000; Ma and Shepherd, 2000; Malnic et al., 

1999; Rubin and Katz, 1999; Sachse and Galizia, 2003; Wachowiak and 
Cohen, 2001), raising the question of how such different patterns of glomer-
ular activation lead to similar olfactory percepts (Arctander, 1969; Cleland 
et al., 2007; Krone et al., 2001). Several physiological models have been 
proposed (Cleland et al., 2007; Hopfi eld, 1999), but there is little behavioral 
data on the perceptual phenomena these mechanisms need to explain. It 
is apparent that odors retain their perceptual character over some range of 
concentrations, with changes in perceptual character over concentration 
being an exception rather than a rule (Arctander, 1969). However, to our 
knowledge no psychophysical experiments have specifi cally characterized 
the phenomenon of concentration invariance.

We performed psychophysical experiments on rats with the aim of 
obtaining insight into underlying neural mechanisms of odor identifi cation. 
The subjects were trained on a binary odor mixture discrimination (Uchida 
and Mainen, 2003) and then tested with randomly-rewarded probe trials of 
different concentration. The results show that rats classify mixtures accord-
ing to the molar ratios of components and that this strategy allows them 
to achieve concentration invariance over at least a tenfold concentration 
range, even enabling them to generalize to concentrations that they have 
not been trained on. We propose a simple opponent-circuit model to account 
for these observations. We suggest that this mechanism might underlie 
concentration-invariant odor recognition not only for binary mixtures but 
also for monomolecular odorants and more complex mixture odors.

MATERIALS AND METHODS
All procedures were carried out in accordance with National Institute 
of Health standards as approved by the Cold Spring Harbor Laboratory 
Institutional Animal Care Use Committee. Eleven male Long-Evans 
hooded rats (around 200 g at the start of training) were tested in a two-
alternative odor discrimination task using water restriction for motiva-
tion. The experimental apparatus and training procedures were the same 
as those described previously (Uchida and Mainen, 2003) except where 
noted. Performance was monitored and delivery of odors and water rein-
forcement were controlled using computer data acquisition hardware 
(National Instruments, Austin, TX, USA) and custom software written in 
MATLAB (Mathworks, Natick, MA, USA).
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Odor delivery and defi nitions of odor concentrations
Odors were delivered using a custom-made olfactometer. Binary odor 
mixtures in various proportions at various absolute concentrations were 
delivered in pseudorandom order. The mixture ratios and absolute con-
centrations were produced by differential air fl ow dilution using a pair of 
mass fl ow controllers (Aalborg Instruments and Controls, Organgeburg, 
NY, USA). Saturated vapor was obtained by fl owing air at fl ow rates of 
0-100 ml/min through a liquid odorant loaded freshly on each session in a 
disposable syringe fi lter (glass microfi ber, 2.7 μm pore size, #6823-1327 
Whatman). The fl ow rate of each odor is represented by fA or fB which is 
normalized such that “100” corresponds to 60 ml/min. The odor streams 
were mixed with a clean air adjusted to produce a constant fi nal fl ow 
rate of 1,000 ml/min. The odorants used are caproic acid, 1-hexanol, 
S(+)-2-octanol and R(−)-2-octanol. Caproic acid was further diluted 1:10 
in mineral oil. These odors were chosen based on the previous imaging 
and behavioral studies (Uchida and Mainen, 2003; Uchida et al., 2000). 
Odor concentrations were chosen to roughly match perceived intensity in 
humans. These concentrations did not cause obvious biases in catego-
rization behavior for 50/50 binary odor mixtures in odor discrimination 
task. The linearity of concentration dilution was verifi ed using a gas chro-
matograph (Hewlett-Packard 6890) with fl ame ionization detector.

Odor discrimination task
Experiments were conducted in a box with three conical ports on one 
wall, the central one being used for odor sampling and the other two for 
response. Infrared emitter-detector pairs served to detect entry and exit 
of the snout from the port. Rats initiated trials by a nose entry into the 
odor sampling port, which triggered the delivery of an odor lasting up to 
1 s. Reward was available for correct choices for up to 2 s after the rat 
left the odor sampling port. A minimum interval of 4 s from the response 
to the start of the next valid trial was imposed.

Rats were initially shaped to sample an odor stimulus at the central 
odor port in order to obtain water reward at the left or right reward port 
(Uchida and Mainen, 2003). This shaping took about 5–6 days. Rats were 
then trained to discriminate pure odor pairs (denoted “A” and “B”; with 
fl ow rates fA = fB = k) where k is the sum of the fl ow rates for odor A and 
B. The total fl ow rate used during training is designated k = 100 and cor-
responds to 60 ml/min diluted by clean air to produce the fi nal fl ow rate 
of 1,000 ml/min, as described above. Following training to criterion (90% 
accuracy, in 1–4 sessions, ∼200 trials/session), binary odor mixtures in 
different proportions (k = 100; fA/fB = 95/5, 80/20, 68/32, 56/44, 44/56, 
32/68, 20/80, 5/95) were gradually introduced over several sessions (6–8 
sessions), and rats were rewarded for choosing the side associated with 
the dominant component. After reaching asymptotic performance, test-
ing began using interleaved probe stimuli with the same ratios but differ-
ent absolute concentrations (e.g., k = 50). Probe stimuli were diluted by 
reducing the air fl ow of the carrier stream (for twofold dilution) or by dilut-
ing the odorants in mineral oil (tenfold dilution). Probe trials comprised 
less than 20% of total trials and responses to probes were randomly 
rewarded (at a probability of 0.5) at both response ports. Each rat was 
tested in 6.7 ± 3.6 (mean ± SD) sessions containing a sum of 238 ± 126 
and 1216 ± 478 trials for probe and trained stimuli, respectively.

Data analysis
A maximum likelihood procedure was used to fi t performance as a func-
tion of the stimulus using a logistic function

ψ α β γ λ λ γ λ β α( ; , , , ) ( ) ( )x
x

= + − −
+ − −1

1

1 e  
(1)

where α corresponds to the bias (or indifference point), β is the slope, γ 
is the upper bound and λ is the lower bound (Wichmann and Hill, 2001). 
We tested which of several different independent variables (x) predicted 
rats’ performance the best: absolute concentration of one odor mixture 
component (x = fA; x = fB), the ratio of two components (x = fA/fB) and the 

 difference of two components (x = fA – fB). We fi rst fi t a logistic psycho-
metric function (Equation 1) to left/right choice behavior on training stimuli 
using one of the independent variables, and then calculated the likelihood 
of obtaining the performance for the probe stimuli given the fi tted logistic 
function based on a Bernoulli processes. For example, L(x = fA/fB) = P (data 
for probes|psychometric function fi tted for training stimuli using x = fA/fB 
as a predictor). Then pair-wise comparisons of the goodness of these fi ts 
were made using log likelihood ratios. For example, to compare x = fA/fB 
to x = fA we computed the log-likelihood ratio, log [L(x = fA/fB)/L(x = fA)]. 
The statistical signifi cance of log-likelihood ratios were estimated using 
a resampling (bootstrap) method whereby the probability of obtaining a 
negative log-likelihood by chance was estimated and compared to the 
actual calculated log-likelihood. Signifi cance was considered p < 0.05.

Error bars in performance functions (Figures 1B, C, 2B, C and 3B, C) show 
±1 SEM calculated using the binomial model, S.E.M. 1= ⋅ −p p n( ) .

Combinatorial ratio coding model
Following Hopfi eld (1999), consider receptor “coverage” defi ned by 
c bi i= ⋅A A[ ] for receptor i, [A] is the molar concentration of a ligand A, 
and biA is the binding constant of this receptor to A. When two odors, A 
and B, are present, coverage of this receptor can be approximated by the 
sum of the two coverages, b bi iA BA B⋅ + ⋅[ ] [ ]. Under this assumption the 
ratio of receptor coverages across receptors 1, 2, … n is

b b b b b bn n1 1 2 2A B A B A BA B A B A B[ ] [ ] : [ ] [ ] : : [ ] [ ]+( ) +( ) +( )� .

When total concentration is changed by the factor of c, without changing 
ratio of [A] and [B], the ratio of receptor coverages becomes
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Thus, the ratio of receptor coverages is invariant to dilution of odorants.

RESULTS
We performed psychophysical experiments on rats using a binary odor 
mixture discrimination task (Uchida and Mainen, 2003) (Figure 1). 
Subjects were fi rst trained on binary mixtures of two odorants (“A” and 
“B”) delivered in eight different ratios (Figure 1A) produced by independ-
ently varying the fl ow rates of odor streams fA and fB in a carrier stream 
of fi xed rate (see Materials and methods section). In the fi rst experiment, 
two alternative responses (left vs. right nose poke) were differentially 
rewarded according on which of the two mixture components had the 
higher concentration. These training procedures left open a variety 
of strategies for subjects to solve the problem. In particular, correct 
responses to the training stimuli could be obtained by ignoring one com-
ponent and responding according to whether the other component had 
a high or low concentration. Alternatively, responses could be based on 
both components.

To test what kind of chemical information subjects based their deci-
sions, subjects were tested by interleaving probe stimuli at 1/2 the train-
ing concentration (i.e., 50% of the fl ow rate; Figure 1A, red circles). Probe 
trials were randomly rewarded so that subjects received no feedback as 
to a “correct” strategy and comprised <20% of trials to discourage rats 
from learning the lower reward rate associated with these stimuli. We 
analyzed the data by plotting choice functions using different independ-
ent variables corresponding to different types of extracted information. 
When the ratio fA/fB was used as the independent variable, responses to 
the probe stimuli fell on the same line as the training stimuli (Figure 1B). 
That is, the fraction of left vs. right choices to a given probe could be 
accurately predicted by the performance with a training stimulus of 
the same component ratios. In contrast, when a single component was 
the independent variable, responses to the probe stimuli no longer match 
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the line fi tted to the training data ( fA, Figure 1C; fB not shown). This result 
supports the idea that when encountering mixture stimuli rats naturally 
tend to base their decisions on information extracted about the ratio of 
mixture components.

Across the population, a similar pattern was obtained, with left/right 
choices on probe trials being closely predicted by choices on training 
stimuli of the same mixture ratio. We quantifi ed these results by testing 
how well a sigmoid function fi t to the training stimuli predicted choices 
on the probe stimuli (see Materials and methods section). For 4 out of 4 
rats tested using 1-hexanol vs. caproic acid and 3 out of 4 rats tested 
with R(+)-2-octanol vs. S(−)-2-octanol, choices on probe stimuli (twofold 
diluted) were signifi cantly better fi t when the mixture ratio as opposed 
to either single component was used as the independent variable (crite-
rion p < 0.05 for each subject, bootstrap test). To examine whether these 
results would generalize to a wider concentration range, we tested an 
additional set of rats with more diluted probe stimuli (tenfold dilution in 
mineral oil, 1-hexanol vs. caproic acid) (Figure 1D). In this condition, rats 

continued to generalize according to mixture ratio (Figure 1E and F). 
Although choice functions were less exactly matched by the predictions 
based on the training set, possibly because the difference in intensity 
between probe and test stimuli was more salient, 3 out of 3 subjects 
tested showed a better fi t with a ratio-based function than a function of 
either component ( p < 0.05 for each subject, bootstrap test).

Concentration-invariant odor classifi cation based on extraction of ratio 
information could explain how rats could generalize from training stimuli to 
probe stimuli at concentrations they have not experienced. However, while 
training odors were delivered at a fi xed concentration in the odor stream, it 
is possible that subjects were inadvertently exposed to diluted concentra-
tions of the training stimuli outside the direct odor stream. Therefore, we 
ran additional subjects using probe stimuli with higher rather than lower 
concentration than the training stimuli (Figure 2A). Since subjects would 
have no way to experience concentrations higher than the source, gener-
alization in this case could not arise from inadvertent training with diluted 
odors. In this experiment, choices on higher-concentration probe stimuli 

Figure 1. Odor mixture discrimination by rats respects the ratio of mixture components. (A) Stimuli were binary mixtures of two odorants (A, caproic 
acid; B, 1-hexanol) whose magnitudes, fA and fB, were varied by air fl ow dilution (100 = 60 ml/min of saturated vapor diluted in 1,000 ml/min clean air, see 
Materials and methods section). Training stimuli (black fi lled circles) were rewarded according to the dominant component. The reward boundary is indicated by 
the magenta diamond. Note that training stimuli were chosen such that fA + fB = 100. Test stimuli (red circles) were randomly rewarded ( p = 0.5). Note that test 
stimuli were chosen to have fA + fB = 50. Note that training and test stimuli were chosen with the same component ratios (as indicated by the gray lines). The 
yellow line ( fA/fB = 1) represents stimulus classifi cation based on ratio of two mixture components. The green line ( fA = 50) represents a classifi cation boundary 
based on one component (A). Note that yellow and green lines both correctly classify the training stimuli but result in different classifi cations of the test stimuli. 
(B) Performance of one rat on training odors (black fi lled circles) and probes (red circles). The abscissa is the ratio of the odor mixture components, fA/fB and the 
ordinate is the fraction of choices for the port associated with odor A. A sigmoid function was fi tted to the choices of the rat on training stimuli (see Materials 
and methods section) using the odor mixture ratio as the independent variable. Error bars show ±1 SEM (see Materials and methods section). Some training 
data points are not visible because they are hidden behind the corresponding test data points. Note that the sigmoid also fi ts the test stimuli even they were not 
used in the fi tting procedure. (C) The same data as (B) plotted using the magnitude of odor A ( fA ) as the independent variable. The fi t is also performed using 
the magnitude of component A as the independent variable. Note that the fi tted function does not accurately predict the probe responses. (D) Experiment with 
1/10 dilution probe stimuli. Training stimuli (black fi lled circles) had fA + fB = 100. Test stimuli (red circles) were chosen such that fA + fB = 10. Note that in this 
experiment, dilution was achieved by liquid rather than air dilution. (E) Performance of one rat on training odors (black fi lled circles) and 1/10 dilution probes 
(red circles). The independent variable is the ratio fA/fB. (F) Choices of one rat on training and 1/10 dilution probe stimuli. The independent variable is the single 
component fA.



U c h i d a  a n d  M a i n e n

Frontiers in Systems Neuroscience  |  April 2008  |  Volume 1  |  Article 3

4

(1.5-fold) were also closely predicted using the ratios of components as 
the independent variable (Figure 2B) and not well using either single com-
ponent (Figure 2C). This difference was signifi cant in 3 out of 3 rats tested 
(criterion p < 0.05, bootstrap test). This result suggests that generalization 
across concentrations may be based on an intrinsic computation rather 
than requiring experience with different concentrations.

The preceding experiments show that the ratio of mixture compo-
nents is a good predictor of choice behavior. But could a similar choice 
 pattern also be obtained by a different computation such as the differ-
ence of mixture components? Choices based on the ratio of mixture 
components correspond to a discrimination boundary of fA/fB = r, indi-
cated by the yellow line in Figures 1A, D, 2A and 3A. When mixture 
components have equal intensity and the training category boundary is 
half way between the two components, the ratio discrimination bound-
ary, fA/fB = 1, is equivalent to one based on the difference of mixture 
components, fA − fB = 0 (yellow line in Figure 1A) and could therefore 
yield a similar pattern of behavior. However, this is a very special case. In 
general, if the mixture components have unequal intensity or the training 

category boundary is shifted toward one component, the boundaries 
diverge and the two discrimination strategies will yield very different 
choice patterns. Therefore, to better distinguish behavior based on ratios 
vs. differences of chemical components, in the next experiment, rats 
were trained with a shifted category boundary, i.e., fA/fB = 3 (Figure 3A), 
where the ratio boundary (yellow line) and difference boundary (blue line) 
were well separated. When tested in these conditions, subjects’ behavior 
was signifi cantly better predicted by a ratio computation, fA/fB, than the 
difference fA − fB (Figure 3B and C) (2 out of 2 rats at twofold dilution; 1 
out of 2 rats at tenfold dilution; criterion of p < 0.05, bootstrap test).

DISCUSSION
Ecologically important information is conveyed by the identities of chemi-
cal species present in the environment. Mammalian olfaction is based on 
a large array of different receptor types with relatively broad and partially 
overlapping chemical sensitivities. This allows a wide range of odorants 
to be encoded by activation of specifi c combinations of receptor types 
(Malnic et al., 1999). However, in such a combinatorial code, patterns of 

Figure 2. Odor mixture discrimination by component ratio generalizes to higher concentration probe stimuli. (A) Training stimuli (black fi lled circles) had 
fA + fB = 100. Test stimuli (red circles) were chosen such that fA + fB = 150. The training reward boundary is indicated by the magenta diamond. See Figure 1A 
for details. (B) Choices of one rat on training stimuli and test stimuli with higher concentration. The independent variable is the ratio fA/fB. Some training data 
points are not visible because they are hidden behind the corresponding test data points. (C) Choices of one rat on training and test stimuli. The independent 
variable is the single component fA.

Figure 3. Odor mixture discrimination boundary is not necessarily orthogonal to the training set. (A) Training stimuli ( fA + fB = 100; black fi lled circles) 
and lower concentration test stimuli ( fA + fB = 50; red circles). The training reward boundary is indicated by the magenta diamond. Note that the boundary 
shifted in this experiment to fA = 3·fB. The yellow line indicates the classifi cation boundary for a ratio computation ( fA/fB = 3) while the blue line indicates the 
classifi cation boundary orthogonal to the training stimulus set (y = fA − fB = c). See also Figure 1A for details of legend. (B) Performance of one rat on training 
and test stimuli with a shifted training reward boundary. The independent variable is the ratio of mixture components fA/fB. (C) The same data as in (B) but where 
the independent variable is the difference of mixture components, fA − fB.
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receptor activation will refl ect not only the identity of odorants present but 
also their concentrations (Johnson and Leon, 2000; Kajiya et al., 2001; Ma 
and Shepherd, 2000; Malnic et al., 1999; Rubin and Katz, 1999; Sachse 
and Galizia, 2003; Wachowiak and Cohen, 2001). While concentration can 
be important for guiding behavior, for the purpose of odor recognition, 
concentration is often irrelevant. By what means can the nervous sys-
tem deduce odorant identity independent of concentration when the two 
 variables are intertwined at the level of receptor activity?

A possible solution to concentration-invariant odor recognition is 
 suggested by the fact that the molar ratios of components in a chemi-
cal mixture remain constant even if the absolute concentration of the 
mixture is altered. If the nervous system could encode information about 
the relative ratios of chemical species rather than the intensities of indi-
vidual species, then it could naturally achieve odor recognition that was 
invariant to dilution through bulk fl ow and mixing due to air currents 
which could be expected to dominate in a typical terrestrial environment. 
In the present report, we tested this idea by training rats to perform a 
binary odor mixture categorization at a given concentration and probing 
to see how their behavior generalized to higher and lower concentra-
tions. We found that rats’ spontaneous (unreinforced) choices on the test 
stimuli precisely obeyed the ratio of mixture components in the training 
set, suggesting that they are in fact extracting such ratio information. 
Interestingly, recognition through chemical ratios also appears to char-
acterize pheromonal communication in moths (Baker et al., 1976; Lanier 
et al., 1980; Tóth et al., 1992) and beetles (Lanier et al., 1980), suggest-
ing that such a strategy may be a general one for chemical sensing.

What algorithms might the olfactory system use to encode chemical 
ratios? One plausible algorithm calls for logarithmic receptor encoding fol-
lowed by subtraction of signals from different receptors (Brody and Hopfi eld, 
2003). This algorithm yields an exact ratio code by the property that log 
(A/B) = log (A) − log (B). Although it is not clear whether receptor activation 
functions are well-approximated by a log function, a difference of power 
law concentration functions, AX − BY, where the exponents X and Y are <1, 
can also approximate a log ratio. Such power law concentration response 
functions are consistent with the nature of olfactory intensity scaling (e.g., 
Cain, 1969). It has also been proposed that a concentration invariant code 
could be obtained by subtraction and normalization, as in: (A − B)/(A + B) 
(Cleland et al., 2007). Although our experiments involved binary mixtures, 
the same algorithms could readily be generalized to monomolecular odors 
as long as a single chemical species activates multiple receptors, which 
is typically the case at all but near-threshold concentrations. Application 
to more complex natural odors comprising multiple chemical components 
is similarly straightforward. Comparisons across multiple pairs (or larger 
sets) of receptor types could create highly specifi c concentration-invariant 
representations (see Materials and methods section). We suggest the term 
“combinatorial ratio code” to describe such an odor coding strategy.

The subtractive operations required by ratio coding algorithms could 
be implemented by opponent interactions analogous to those prominent 
in visual processing (Shepherd, 1994). Such interactions occur at the 
level of olfactory bulb mitral cells both through inhibitory interneurons in 
the glomerular layer and at the granule cell layer. An alternative source for 
subtractive operations would be feedforward or feedback inhibition in the 
olfactory cortex. Studies in locust suggest that concentration- invariant 
odor identity information is embedded in population activity patterns in 
the antennal lobe projection neurons (considered equivalent to mitral/
tufted cells in vertebrates) (Stopfer et al., 2003). But whereas concentra-
tion response profi les of single neurons in the antennal lobe are relatively 
complex, single neurons in a downstream area, the mushroom body, 
respond in a more concentration-invariant manner. Electrophysiological 
recordings from neurons in the olfactory bulb and cortex during psy-
chophysical experiments similar to the ones described here will be use-
ful to understanding how concentration invariant representations are 
 constructed in the mammalian olfactory system.

Circuit-based mechanisms for concentration invariant odor identity 
coding depend on analog (rather than binary) receptor responses. The 

range of concentration-invariance for such mechanisms would be limited 
by the dynamic range of receptor concentration-response functions. It is 
important to note that the range of concentrations tested in the present 
experiments was limited to tenfold, while the dynamic range of identifi able 
odors can span a much larger range, sometimes over several orders of 
magnitude (Krone et al., 2001). Olfactory receptor neuron dynamic ranges 
are on average about tenfold (Rospars et al., 2003), but glomerular signals 
may have dynamic ranges up to 2–3 orders of magnitude (Meister and 
Bonhoeffer, 2001; Rubin and Katz, 1999; Wachowiak and Cohen, 2001; 
Wachowiak et al., 2002). Whereas odors are generally thought to retain 
their perceptual character over a range of concentrations (Arctander, 
1969), larger concentration changes (e.g., 100-fold) yield changes in per-
ceptual properties for some odors (Gross-Isseroff and Lancet, 1988; Laing 
et al., 2003) but not others (Krone et al., 2001). If invariant recognition was 
indeed based on circuit-based ratio coding, perceptual breakpoints for 
specifi c odors would be expected to vary depending on dynamic ranges of 
the receptor types involved in their transduction. This is a prediction that 
could be assayed using psychophysical testing.
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