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INTRODUCTION
The red fl our beetle Tribolium castaneum Herbst, 1797 (Bonneton, 
2008), which is a major pest of stored grains, grain products, 
and other dried food, is emerging as a further standard insect 
model beside Drosophila. It’s powerful reverse genetics (systemic 
RNA-interference; Bucher et al., 2002; Tomoyasu and Denell, 
2004; Tomoyasu et al., 2008), the recently published full genomic 
sequence (Richards et al., 2008) and the established transgenesis 
systems (Berghammer et al., 1999) transform Tribolium into a 
primary model system. Since recently, an insertional mutagen-
esis screen database provides mutants and enhancer trap lines 
for the growing Tribolium community (http://134.76.20.145/
Default.aspx). Meanwhile, Tribolium has become one of the most 
important models in the fi eld of evolution and development 
(“evo-devo”) because its development is more “insect typical”, 
compared to that of the classical system Drosophila (Klingler, 
2004). Currently, only little information on the brain or its 
embryonic and metamorphic development is available. With our 
pioneering study we provide for the fi rst time anatomical descrip-
tions for most of the brain areas of adult Tribolium including 
3D reconstructions and an average brain atlas for selected brain 
neuropils. With the latter, we present the fi rst standardization 
of a coleopteran brain.

Brains are typically organized in defi ned neuropils, which can 
usually be characterized by their spatial location, gross anatomy, 
and often by a certain function. For example, the olfactory bulbs 

of  vertebrates and the antennal lobes (ALs) of insects have been 
 attributed to be the fi rst processing centers for olfactory informa-
tion (for a review see Hildebrand and Shepherd, 1997). Compared 
to most vertebrate brains, insect brains are miniature versions 
being typically comprised of a lower number of neurons and 
neuropils. Owing to the lower complexity and certain technical 
advantages, insects have been widely used as models to study 
principal mechanisms of information processing and integra-
tion, in the context of defi ned sensory inputs but also complex 
behaviors including learning and memory formation (e.g. Menzel, 
2001; Heisenberg, 2003).

Brains of animals of the same or of evolutionary related species 
typically share the same principal organization. For example in 
neopteran insects, the central olfactory pathway seems to be well 
conserved (Strausfeld et al., 1998; Schachtner et al., 2005). However, 
even within the same species, no brain is identical with the next, 
differing in size and shape of certain brain neuropils. These indi-
vidual differences can result from a variety of parameters which are 
infl uencing brain organization during development but also during 
adulthood. In insects, such factors include brood temperature, sex, 
age, and experience (Groh et al., 2004; Technau, 2007; Molina and 
O’Donnell, 2008).

To study sexual brain dimorphism or the infl uence of defi ned 
parameters (ranging from single molecules to social experience) 
on brain development or adult plasticity, average or standardized 
brains or brain areas are needed to relate individual variations to 
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Mühlen GmbH, Hamburg, Germany) for egg laying. After 2 days 
in instant fl our, the beetles were separated again with the 710-µm 
sieve and the eggs fetched with a fi ne sieve (300-µm mesh size, 
Retsch, Haan, Germany). Instant fl our was used for collecting eggs, 
because it becomes less clotted und does thus not clog the sieves 
in contrast to the normal white fl our (Berghammer, et al., 1999). 
Eggs were then transferred into a separate box fi lled with fresh 
substrate. To optimize egg-laying performance, separated beetles 
were transferred back to substrate (Sokoloff, 1974). This separation 
technique was used to avoid the contamination of the substrate 
with secretions of the parents e.g. benzoquinones, because they can 
heavily infl uence the development of the larvae (Chapman, 1926; 
Happ, 1968; Sokoloff, 1974, 1977). The collected eggs were kept 
in substrate in smaller boxes (20 × 12 × 4 cm) in an incubator at 
30°C and constant darkness. After about 4 weeks, the fi rst beetles 
fi nished metamorphosis and freshly eclosed beetles (A0) could be 
collected. A0 beetles can be easily distinguished from older beetles 
by their white cuticle and their slow movement.

IMMUNOHISTOCHEMISTRY
For wholemount staining we adapted and refi ned the protocols 
described by Huetteroth and Schachtner (2005) and el Jundi et al. 
(2009). Whole brains were dissected in a drop of cold PBS (phos-
phate-buffered saline, 0.01 M, pH 7.4) and fi xed subsequently in 
4% formaldehyde (Roth, Karlsruhe, Germany) in 0.01-M PBS 
for 1–2 h at room temperature. The brains were then rinsed fi ve 
times for 10 min at room temperature in 0.01 M PBS followed by 
preincubation for 1–2 days at 4°C in 5% normal goat serum (NGS; 
Jackson ImmunoResearch, Westgrove, PA, USA) in 0.01 M PBS 
containing 0,3% Triton X-100 (PBST). The monoclonal primary 
antibody from mouse against a fusion protein consisting of a 
glutathione-S-transferase and the fi rst amino acids of the presy-
naptic vesicle protein synapsin I coded by its 5′-end (SYNORF1, 
Klagges et al., 1996) was used to selectively label neuropilar areas 
in the brain (3C11, #151101 (13.12.06), kindly provided by Dr. 
E. Buchner, Würzburg). Its specifi city in T. castaneum was shown 
with Western blot (Utz et al., 2008). The brains were incubated 
in a 1:100 dilution of the synapsin antibody in PBST containing 
2% NGS for 2–3 days at 4°C. Subsequently the brains were rinsed 
three times for 15 min with PBST before they were incubated with 
the secondary goat anti-mouse antibody conjugated to Cy5 (1:300, 
catalog code 115-175-146, lot 71608, Jackson ImmunoResearch, 
Westgrove, PA, USA) in PBST and 1% NGS for 2 days at 4 °C. 
Afterwards the brains were rinsed again with PBST fi ve times for 
10 min and subsequently dehydrated in an ascending ethanol 
series (50%, 70%, 90%, 95%, and two times 100%, for 2.5 min 
each) and then cleared in methyl salicylate (Merck, Gernsheim, 
Germany), until the tissue was transparent. At last the brains were 
mounted in Permount (Fisher Scientifi c, Pittsbourgh, PA, USA) 
between two coverslips using two reinforcing rings as spacers 
(Zweckform, Oberlaindern, Germany) to prevent compression 
of brains.

CLSM IMAGE ACQUISITION AND PROCESSING
The wholemount preparations for the standard brains were scanned 
with a confocal laser scanning microscope (CLSM, Leica TCS SP2) 
at 512 × 512 pixel resolution by using a 40× oil immersion objective 

each other. Advances in imaging techniques, 3D reconstruction 
software, and computer power led so far to 3D reconstructions 
and subsequent standardization of brain areas of four insect spe-
cies including Drosophila melanogaster (Rein et al., 2002; Jenett 
et al., 2006), the honeybee Apis mellifera (Brandt et al., 2005), the 
desert locust Schistocerca gregaria (Kurylas et al., 2008), and the 
sphinx moth Manduca sexta (el Jundi et al., 2009). To obtain such 
a standard insect brain, two methods have so far been established: 
The virtual insect brain (VIB) protocol and the iterative shape 
averaging (ISA) method. While the VIB protocol was mainly devel-
oped to compare wild type and genetically manipulated Drosophila 
(Rein et al., 2002; Jenett et al., 2006), the ISA method, fi rst used for 
the honeybee, was aimed to register single reconstructed neurons 
from various individuals into one standard brain (Rohlfi ng et al., 
2004; Brandt et al., 2005). Although the ISA method provides a far 
better representation of relative locations of brain areas, this high 
registration quality comes with the tradeoff of missing volumetric 
consistency for the neuropils. This means, a neuropil label of the 
standardized ISA brain does not represent the mean volume of all 
corresponding individual neuropil labels (Kuß et al., 2007; Kurylas 
et al., 2008). Thus, the VIB script remains advantageous for fast 
inter– and intraspecifi c comparisons of neuropils including sex-
specifi c differences, while preserving volumetric consistency.

In the current study, we reconstructed in three dimensions and 
subsequently standardized brain areas of both sexes of the red fl our 
beetle Tribolium castaneum using the VIB protocol. The aims of our 
study were to (1) compare adult brain neuropil volumes regarding 
sexual dimorphism (2) provide an adult female and male standard 
brain at A0 (freshly eclosed adults) as volume references for future 
genetical and behavioral studies, and (3) to compare the standard 
volumes of brain areas with previously published standard volumes 
of homologous brain areas of other neopteran insects. To obtain the 
desired datasets we labeled whole brains with an antiserum against 
the synaptic vesicle protein synapsin to visualize neuropil areas, 
analyzed the staining using confocal laser scanning microscopy, 
3D reconstructed the selected brain neuropils using the software 
AMIRA (Visage Imaging, Fürth, Germany), and subsequently 
registered and standardized the neuropils using the (VIB) proto-
col. A standardization using the ISA method can be computed on 
request. Comparing the standardized neuropil volumes between 
females and males revealed no obvious sexual dimorphism in A0 
Tribolium brains.

MATERIALS AND METHODS
ANIMALS
Wild type Tribolium castaneum (San Bernardino; Sokoloff, 1966) 
stock for egg laying was kept in plastic boxes (20 × 18 × 18 cm) in 
walk-in environmental chambers at 26°C under constant darkness. 
The boxes were half fi lled with substrate containing organic whole 
wheat fl our supplemented with 5% dried yeast powder. To prevent 
sporozoan infections we added 0.05% (w/w) Fumidil-B (J. Webster 
Laboratories Inc., Princeville, Kanada; Berghammer et al., 1999).

For egg collection, we used similar procedures as described 
in Berghammer et al. (1999). The beetles were kept for 2 days 
in substrate and then separated from the substrate with a stain-
less steel sieve (710-µm mesh size; Retsch, Haan, Germany) to be 
transferred into a box fi lled with instant fl our (type 405; Aurora 
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(HCX PL APO 40×/1.25–0.75 Oil CS (working distance: 0.1 mm); 
Leica, Bensheim, Germany). All brains were scanned with a voxel 
size of 0.73 × 0.73 × 0.5 µm, a speed of 200 Hz, a pinhole of 1 Airy 
unit and a line average of 2–4.

ALs were scanned at 1024 × 1024 pixel resolution with a 63× 
oil immersion objective (HCX PL APO 63×/1.32−0.60, Oil Ph3 
CS (working distance: 70 µm); Leica, Bensheim, Germany) or a 
40× oil immersion objective (HCX PL APO 40×/1.25−0.75 Oil CS 
(working distance: 0.1 mm); Leica, Bensheim, Germany) using a 
Leica TCS SP2 CLSM or with a 63× glycerol objective (HCX PL 
APO 63×/1.30 Glyc 21°C CS (working distance: 0.26 mm); Leica, 
Bensheim, Germany) using a Leica TCS SP5 CLSM. Depending on 
the zoom factor (1–4), the different CLSM and different objectives 
we scanned with varying voxel sizes 0.07–0.16 × 0.07–0.16 × 0.5–
1 µm. ALs were scanned with a speed of 200–400 Hz, a pinhole of 
1 Airy unit and a line average of 2–4.

IMAGE SEGMENTATION, RECONSTRUCTION, STANDARDIZATION 
AND VISUALIZATION
The selected 19 neuropils of the male and female brains were 
labeled with the segmentation editor in AMIRA 4.1 (Visage 
Imaging, Fürth, Germany). For the eight individual glomeruli of 
the right ALs we used AMIRA 5.2.1. For the segmentation and 
reconstruction details we refer to Kurylas et al. (2008). In short, 
semi-automatically created voxel-based label fi elds of eight paired 
and three unpaired neuropilar structures in 20 female and 20 
male T. castaneum brains provided the underlying matrix of all 
computation processes performed (i.e. polygonal surface mod-
els, morphometric analysis, and shape averaging). For orientation 
guidance, brain outlines were reconstructed separately. This label 
fi eld however was not standardized. The color code for neuropils of 
the standard brains is consistent with Brandt et al. (2005), Kurylas 
et al. (2008), and el Jundi et al. (2009). We offer the AMIRA label 
fi elds with color codes as online download (Supplement 1). The 
orientation of the brain structures is given with respect to the 
body axis.

The VIB protocol used for registration and standardization was 
described in detail by Jenett et al. (2006) and is available at http://
www.neurofl y.de. The functions of the VIB protocol are integrated 
features of the AMIRA graphical environment. The application 
of the VIB protocol requires a template brain which defi nes the 
position of individual neuropils in the visualized standard brain. 
To overcome a subjective bias, we selected the template brains 
according to optimal position and symmetry of the reconstructed 
neuropils. The selection contained three steps. First, according to 
Kurylas et al. (2008) and el Jundi et al. (2009) we calculated the 
distances of the centers of each of the reconstructed neuropils 
to the center of the respective brain. All distances for each brain 
were summed up, and the differences to the mean distance were 
calculated for all 20 brains of each sex respectively. In a second 
step, we calculated the symmetry of the brain areas by calculat-
ing the difference of the angles between the vectors connecting 
the centers of the neuropils. To obtain the angles, we calculated 
the vectors between the centers of the paired neuropils using the 
scalar product. In this way, we calculated angles between three 
neuropil pairs (AL–Me, AL–Ca, Ca–Me). The sum of the three 
angles served as the symmetry criterion. Both, the results of the 

distance and the angle calculations were normalized, with the 
worst brain set to one for each criterion. In the resulting com-
bined ranking, the normalized values of both criteria were added. 
The third criterion for the choice of the template brain was a 
visual inspection of the three best ranked brains for each sex 
respectively. For the male template, we choose the brain ranking 
at number one according to the fi rst two criteria. For the female 
template we choose number two, because visual inspection of the 
three best ranked brains revealed that the left peduncle of female 
brain number one was somehow twisted towards the midline. In 
the female ranking, brains number one and two were very close 
together. The choice of the template brain does not infl uence the 
resulting standard volumes (Kurylas et al., 2008). For creation of 
standard brain neuropil labels, we chose an overlap threshold of 
40% for all neuropils.

The statistical analysis of these data was obtained using Excel 
XP for Windows. The synapsin-immunoreactivity (syn-ir) in 
Figures 1 and 5 was auto-contrasted in the OrthoSlice module of 
AMIRA. For visualization, neuropils segmented in AMIRA, were 
fi lled with transparent colored labels using Adobe Photoshop 8 
(Adobe Systems, San Jose, CA, USA). Snapshots taken in AMIRA 
and Pictures edited in Photoshop (Figures 1–3 and 5), and dia-
grams generated with Excel XP (Figures 4 and 6) were imported 
to Corel Draw 13 (Corel Corporation, Ottawa, Ontario, CA, USA) 
without any further modifi cation.

RESULTS
RECONSTRUCTED NEUROPILS
Of all major areas of the Tribolium brain we reconstructed those 
which we were able to unambiguously delimit in all three dimen-
sions (8 paired and 3 unpaired neuropils). In the optic lobes, 
we reconstructed the medulla (Me), the lobula (Lo), the lobula 
plate (LoP), and the accessory medulla (aMe) (Figures 1A-d,
B-c′ and 2). The LoP which lays posterior to the Lo is exclusively 
found in Ephemeroptera, Trichoptera, Coleoptera, Lepidoptera, 
Diptera (Strausfeld, 2005), and Heteroptera (Settembrini and 
Villar, 2005).

In the central brain we divided the mushroom body into two 
neuropils, the pedunculus (Pe), which contained the vertical lobe 
(vL) and medial lobe (mL), and the calyx (Ca) (Figures 1A-b,
B-a′,b′ and 2). Although visible in the synapsin immunostaining, 
we refrained from including subunits of the pedunculus described 
for the moth Spodoptera littoralis (Sjöholm et al., 2005) or Bombyx 
mori (Fukushima and Kanzaki, 2009); the resulting complexity of 
the pedunculus would have greatly interfered with standardiza-
tion procedures, and would have also interfered with interspecies 
comparison. Nevertheless, with the exception of the β’-, and γ-lobe, 
which lay very tight together and which typically are one protrusion 
after reconstruction, the other lobes of the pedunculus, the α-, α’-, 
and β- lobe (Zhao et al., 2008) are discernible protrusions in our 
reconstructions (Figure 2). Between the left and right mushroom 
body lies the central complex, which comprises the protocerebral 
bridge (PB), the upper and lower unit of the central body (CBU, 
CBL) and a small paired neuropil ventrally attached to the central 
body, the noduli (No) (Figures 1A-c,e,f,B–b′ and 2). The anteri-
ormost labeled neuropils were the deutocerebral antennal lobes 
(AL, Figures 1A-a and 2).

http://www.neurofly.de
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Representative outlines of all labels of these selected neuropils 
are shown in frontal and horizontal slices (Figure 1), an anima-
tion of all orthogonal sections of this brain can be found in the 
supplementary material (Supplement 2). Additionally, all recon-
structed neuropils are displayed three-dimensionally to provide a 
3D visualization of the whole brain (Figure 2).

THE STANDARD BRAINS
To apply the VIB protocol on the 3D brain reconstructions, one 
brain reconstruction had to be chosen as positional reference 
(Jenett et al., 2006). To reduce a subjective bias, we selected the 
template brains according to (1) position and (2) symmetry of 
the reconstructed neuropils, and (3) fi nal visual inspection of the 

FIGURE 1 | Confocal images of the individual T. castaneum brain stained 

with an antibody against synapsin which was used as template for the VIB 

protocol. (A, B) Single optical sections through the brain in the frontal (A) and 
horizontal plane (B). All manually labeled neuropil areas are shown as 
reconstructed in AMIRA. Labels of paired neuropils are only visualized in the left 
hemispheres, to provide a comparison to the unlabeled neuropils of the right 
hemispheres. (A) Frontal sections with the positions a–f from anterior to posterior 
and as described in (D). (B) Horizontal sections with the positions a´–c´ from 

dorsal to ventral as described in (D). (C) The color code of the labeled neuropils is 
consistent with Brandt et al. (2005), Kurylas et al. (2008), and el Jundi et al. (2009). 
AL, antennal lobe; Ca, Calyx; CBL, lower unit of the central body; CBU, upper unit 
of the central body; aMe, accessory medulla; Lo, lobula; LoP, lobula plate; Me, 
medulla; No, nodulus; PB, protocerebral bridge; and Pe, pedunculus with lobes. 
(D) Volume rendered (Voltex) view of the template brain from dorsal and frontal. 
The sections (a–f) and (a′–c′) represent the positions of the optical sections in 
(A,B). Orientation bars, p, posterior; m, median; d, dorsal. All scale bars, 50 µm.
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three best brains resulting from criteria one and two (see Section 
“Materials and Methods”). The template brain used for generating 
the male standard brain is shown in Figures 1 and 2.

For the female and the male standard brain we reconstructed 
selected neuropils of 20 individual female and 20 individual male 
brains of freshly eclosed (A0) T. castaneum. With the VIB protocol 
we generated three-dimensional standard atlases of both sexes con-
sisting of 19 neuropils (eight paired and three unpaired neuropils), 
including both hemispheres of the brain. The neuropil surface 
model and the corresponding average intensity map produced by 
direct volume rendering of the male standard brain are shown in 
Figures 3A–C,A′–C′ from anterior, ventral and posterior. Volume 
rendering of all 20 label images after non-rigid registration reveal 
the high quality of registration (Figures 3D,E). Clear deviations 

are only visible in the vL of the MBs (Figures 3D,E). An animated 
view of the male standard brain can be seen in the online supple-
ment (Supplement 3).

COMPARISON OF THE FEMALE AND MALE BRAINS
The VIB protocol also generates the standard volumes for each of 
the reconstructed brain areas of the 20 female and 20 male brains 
respectively. Table 1 gives mean volumes, standard deviation and 
standard error of absolute and relative volumes of all 19 areas. 
Within each sex, a comparison of the volumes of the correspond-
ing left and right brain neuropils using the two-tailed student t-test 
revealed no signifi cant difference (not shown). Comparing the 
volumes of corresponding neuropils between females and males 
resulted also in no signifi cant difference (Figure 4).

FIGURE 2 | 3D reconstruction of the male template brain of T. castaneum 

in (A) anterior (B) ventral, and (C) posterior view. The neuropils were 
visualized with the AMIRA tools SurfaceGen and Surfaceview. Note that 
the α and α´ lobes of the medial lobes can be clearly distinguished. In the 

medial lobes, the β-lobes are visible, while the second protrusion represents 
the β´- and the γ-lobes which were not discernable in the reconstruction. vL, 
vertical lobe. See Figure 1 for color code and abbreviations. Scale bar, 
50 µm.
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glomerulus dl-7 always being the most dorsal glomerulus of this 
set (Figure 5). We reconstructed these eight glomeruli from 10 
female and 10 male right ALs with each AL stemming from a dif-
ferent specimen. Like the comparison between the AL volumes and 
all other reconstructed neuropils, comparison of the glomerular 
volumes between the two sexes revealed no signifi cant difference 
in any one of the selected glomeruli (Figure 6).

DISCUSSION
Tribolium castaneum belongs to the most species-rich and most 
diverse order in the animal kingdom; Coleoptera comprise about 
40% of all insect species and thus about 30% of all living animal 
species (Grimaldi and Engel, 2005; Hunt et al., 2007; Hauser et al., 
2008). Worldwide, Tribolium is a major pest for stored grain and 
grain products and serves as a powerful model for the study of 

MALE – FEMALE GLOMERULUS COMPARISON
The glomerular array of ALs of adult female and male T. casta-
neum consists of about 70 glomeruli (Schachtner et al., 2007). 
The glomeruli are arranged in two layers around a central coarse 
neuropil. Anatomical sexual dimorphism in the ALs has been found 
in several species in which typically males have enlarged glomeruli 
at the entrance site of the antennal nerve (Schachtner et al., 2005). 
However, inspection of optical section series did not reveal an obvi-
ous morphological difference between A0 female and male ALs.

Searching for glomeruli which we could easily identify from 
animal to animal, we found an array of eight glomeruli at the lat-
eral dorsal part of the AL, which we could unequivocally detect in 
75% of our preparations. The set of dorso-lateral (dl) glomeruli 
consists of two larger glomeruli (dl-1, dl-2), three midsized (dl-
3, dl-4, dl-7), and three smaller glomeruli (dl-5, dl-6, dl-8) with 

FIGURE 3 | 3D male standard brain of T. castaneum calculated from 20 

individual brains by using the VIB protocol. (A–C) Surface reconstructions 
of all 18 averaged labels in (A) anterior (B) ventral, and (C) posterior view. 
The brain surface (as in A´–C´) is not labeled. See Figure 1 for color code. 
(A′–C′) 3D visualization of the corresponding average intensity map by 

direct volume rendering with (A′) anterior (B′) ventral, and (C’) posterior view, 
using non-rigid transformation. (D, E) Direct volume rendered view of the 
resulting average label images from (D) anterior and (E) posterior, exhibiting 
deviations primarily in the lobes of the pedunculi of the MBs. Scale bar, 
50 µm.
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 general insect development and evolution. Owing to the feasibility 
of transgenic approaches, such as powerful reverse genetics based 
on systemic RNA-interference, directed gene expression, the recently 
published full genome sequence, easy culturing, a short life cycle, 
high fecundity and longevity, Tribolium is emerging as a model sys-
tem at many fronts. With the current study, we provide a reference 
for future anatomical studies of the brain in connection with geneti-
cal manipulation and external parameters as e.g. odor- or social 
environment and adaptive learning. The average brain atlas comes 
from freshly eclosed Tribolium of both sexes. Since we are especially 
interested in the development and plasticity of the  olfactory sys-

tem, we established an anatomical and volumetric reference of eight 
selected female and male olfactory glomeruli. Compared to existing 
insect standard brains, the T. castaneum standard poses - together 
with the Drosophila standard - the smallest brain.

STANDARD BRAIN GENERATION
Two methods have been established to obtain a standard insect brain: 
(1) the VIB protocol, as used for the fruit fl y, the desert locust, and 
the sphinx moth (Rein et al., 2002; Jenett et al., 2006; Kurylas et al., 
2008; el Jundi et al., 2009), and (2) the ISA method, as used for the 
honeybee and also the desert locust (Rohlfi ng et al., 2004; Brandt 

Table 1 | Volume measures of neuropil structures in the male and female standard brain of T. castaneum. Mean volume (Mean vol.), relative volume 

(Rel. vol.), standard deviation (SD), relative standard deviation (Rel. SD), standard error (SE), and relative standard error (Rel. SE) of all segmented brain areas in 

the male (n = 20) and female (n = 20) standard brain of T. castaneum.

Structure Sex Mean vol. (µm3) Rel. vol. (%) SD (µm3) Rel. SD (%) SE (µm3) Rel. SE (%)

Medulla (left) ♂ 30339.91 14.85 7271.10 23.97 1625.87 5.36

 ♀ 34216.66 16.94 10668.84 31.18 2325.22 6.97

Medulla (right) ♂ 31172.43 15.25 6053.76 19.42 1353.66 4.34

 ♀ 34157.33 16.91 9922.73 29.05 2162.61 6.50

Lobula plate (left) ♂ 4824.63 2.36 1292.49 26.79 289.01 5.99

 ♀ 5251.18 2.60 850.56 16.20 185.37 3.62

Lobula plate (right) ♂ 4599.73 2.25 1023.55 22.25 228.87 4.98

 ♀ 5073.72 2.51 681.34 13.43 148.50 3.00

Inner lobula (left) ♂ 8685.43 4.25 1828.24 21.05 408.81 4.71

 ♀ 9554.28 4.73 1735.88 18.17 378.33 4.06

Inner lobula (right) ♂ 9517.20 4.66 2256.13 23.71 504.49 5.30

 ♀ 9624.48 4.77 2820.86 29.31 614.79 6.55

Accessory medulla (left) ♂ 1143.63 0.56 385.77 33.73 86.26 7.54

 ♀ 1173.94 0.58 350.44 29.85 76.38 6.67

Accessory medulla (right) ♂ 1159.82 0.57 340.94 29.40 76.24 6.57

 ♀ 1230.22 0.61 406.31 33.03 88.55 7.39

Calyx (left) ♂ 6003.60 2.94 1408.59 23.46 314.97 5.25

 ♀ 5515.65 2.73 1228.05 22.26 267.65 4.98

Calyx (right) ♂ 6191.91 3.03 1084.28 17.51 242.45 3.92

 ♀ 5412.37 2.68 764.70 14.13 166.66 3.16

Pedunculus (left) ♂ 17571.30 8.60 4577.99 26.05 1023.67 5.83

 ♀ 15796.60 7.82 3972.44 25.15 865.77 5.62

Pedunculus (right) ♂ 17256.15 8.44 4794.07 27.78 1071.99 6.21

 ♀ 16057.83 7.95 3547.41 22.09 773.14 4.94

Central body upper unit ♂ 10263.34 5.02 3179.91 30.98 711.05 6.93

 ♀ 8668.66 4.29 1842.36 21.25 401.53 4.75

Central body lower unit ♂ 2838.02 1.39 1406.16 49.55 314.43 11.08

 ♀ 2364.33 1.17 713.66 30.18 155.54 6.75

Protocerebral bridge ♂ 3551.02 1.74 863.97 24.33 193.19 5.44

 ♀ 3310.99 1.64 630.28 19.04 137.37 4.26

Nodulus (left) ♂ 371.08 0.18 115.22 31.05 25.77 6.94

 ♀ 378.12 0.19 74.10 19.60 16.15 4.38

Nodulus (right) ♂ 380.17 0.19 142.66 37.53 31.90 8.39

 ♀ 362.49 0.18 70.73 19.51 15.42 4.36

Antennal lobe (left) ♂ 24373.09 11.93 5834.27 23.94 1304.58 5.35

 ♀ 22316.68 11.05 6733.24 30.17 1467.48 6.75

Antennal lobe (right) ♂ 24105.27 11.80 6511.04 27.01 1455.91 6.04

 ♀ 21492.52 10.64 6132.60 28.53 1336.57 6.38
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 plasticity in the male antennal lobe of the sphinx moth (Huetteroth 
and Schachtner, 2005). Since we carefully checked for animal age, 
the female and male standard brain will serve as a reference in future 
quantitative studies using genetical or behavioral approaches.

BRAIN NEUROPIL COMPARISON BETWEEN SEXES
We found no volumetric differences between females and males 
in any one of the standardized brain neuropils, including the 
eight olfactory glomeruli. Anatomical sexual dimorphism in brain 
structures has been described in a variety of insects primarily with 
respect to the ALs (for a review see Schachtner et al., 2005). Enlarged 
glomeruli at the entrance site of the antennal nerve are described 
for males, as example for cockroaches (Jawlowski, 1948; Neder, 
1959; Boeckh et al., 1987), bees (Arnold et al., 1984; Brockmann 
and Brückner, 2001), ants (Kleineidam et al., 2005; Nishikawa et al., 
2008), fl ies (Kondoh et al., 2003), and moths (reviewed in Anton 
and Homberg, 1999; Hansson and Anton, 2000). These glomeruli 
are usually called macroglomeruli or macroglomerular complex 
(MGC). These glomeruli appear to be involved in pheromone signal 
processing (reviewed e.g. in Hansson and Christensen, 1999).

Why did we see no sexual dimorphism in the examined brain 
areas? In principal we expect sexual dimorphism on the level of the 
brain areas due to sexual specifi c input (e.g. in the case of the olfac-
tory system a higher number of receptor neurons responsible for the 
detection of the female pheromone) and/or due to sexual specifi c 
behaviors which have to be coordinated from female or male brains 
in the context of sexual reproduction. The question is whether this 
dimorphism can be seen on the level of gross brain anatomy like 
in the case of the sexual specifi c glomeruli or whether it is due to a 
few special neurons or and/or different neurochemistry with only 
little or no effect on gross morphology. As individual variations in 
neuropil volumes range in the mean at around 20%, we cannot detect 
anatomical sexual dimorphism smaller than that. Furthermore, we 
looked at freshly eclosed animals. Thus, the animals are not sexually 
mature at that time and the brain has just started to get acquainted to 
the environmental cues including odor information like e.g. pherom-
ones. Currently, we produce a female and male standard brain atlas 
for 7-day-old animals to examine how brain anatomy is changing 
in females and males. In M. sexta for example, the sexual dimorphic 
male glomeruli increase about 40% in volume during the fi rst 4 days 
of adulthood (Huetteroth and Schachtner, 2005).

INTERSPECIES BRAIN COMPARISON
The relative size of a defi ned brain area is closely related to its 
apparent importance for the respective animal (e.g. Barton et al., 
1995; Gronenberg and Hölldobler, 1999; Schoenemann, 2006). For 
example in insects larger optic lobes primarily correlate with larger 
complex eyes containing more photoreceptor cells, while the vol-
ume of ALs correlates with the amount of olfactory sensory axons 
entering this structure. Likewise, the volumes and the organization 
of higher order integration centers like the mushroom bodies cor-
relate with the complexity of multimodal sensory integration (e.g. 
Technau, 2007; Molina and O’Donnell, 2008). Additionally, studies 
in several insect species demonstrated a correlation of volumes of 
brain areas with age, caste, sex and experience, including primary 
sensory integration centers like OL and AL, and higher integration 
centers like the mushroom bodies (Heisenberg et al., 1995; Barth 

et al., 2005; Kurylas et al., 2008). The VIB protocol was primarily 
developed to compare brain areas e.g. between wildtype and geneti-
cally manipulated Drosophila, while the ISA method aims to generate 
a synthetic but realistic standard brain, into which single recon-
structed neurons from various individuals could be mapped. The 
VIB script keeps neuropil volumes rather unchanged, while the ISA 
method, in contrast, averages anatomical differences on the cost of 
volume accuracy (Kuß et al., 2007; Kurylas et al., 2008; el Jundi et al., 
2009). Both methods require an initial reference or template brain 
for alignment. While the visualization of the standardized brain 
areas using the VIB protocol is clearly biased towards this template, 
the ISA method is thought to be independent of the choice of the 
template (Guimond et al., 2000; Brandt et al., 2005), with the notable 
exceptions of orientation and scale. During affi ne registration in the 
ISA method, all brains are resized using anisotropic scaling to match 
the size of the template brain. Thus, the resulting standard volumes 
of the brain areas generated by the ISA method depend on the choice 
of the template brain (Rohlfi ng et al., 2001; el Jundi et al., 2009). 
Therefore we decided to use the VIB protocol for standardization, 
since we primarily wanted to compare volumes of neuropils and did 
not aim for registration of reconstructed neurons (Rø et al., 2007; 
Kurylas et al., 2008). Given that both methods are established in 
our lab, a female and a male standard brain calculated by the ISA 
method could be computed on request.

It has to be noted that our whole mount specimens, like all 
immunohistochemical preparations, are subjected to considerable 
tissue shrinking (Bucher et al., 2000; Ott, 2008). Therefore absolute 
sizes are probably underestimated and make most sense in rela-
tive comparisons, i.e. comparisons might only be useful between 
brains after similar histological treatment. In a previous work, we 
already showed the usability of 3D reconstructions to quantify adult 

FIGURE 4 | Comparison of neuropil volumes between male (gray) and 

female (white) brains. The data revealed no signifi cant difference (two-tailed 
Student’s t-test) between the volumes of the corresponding neuropils of 
females and males. Bars, standard error; n.s., not signifi cant.



Frontiers in Systems Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 3 | 9

Dreyer et al. Tribolium standard brain

and Heisenberg, 1997; Barth et al., 1997; Sigg et al., 1997; Julian 
and Gronenberg, 2002; Groh et al., 2006; Technau, 2007; Krofczik 
et al., 2008; Molina and O’Donnell, 2008; Maleszka et al., 2009; 
Snell-Rood et al., 2009). So far, the few published insect standard 
brains give only a limited view on the respective relative volumes 
of defi ned brain areas of these species because they provide (1) 
data for only one sex (with the exception of M. sexta) and (2) one 
age (D. melanogaster: 5-day-old adult females; Rein et al., 2002; M. 
sexta: freshly eclosed adult females and males; el Jundi et al., 2009), 
or (3) a mixture of different ages (A. mellifera foragers: Brandt 
et al., 2005; S. gregaria males: Kurylas et al., 2008). Caste or  possible 

experience dependent differences have also not been taken into 
account. Thus, a comparison between the relative volumes of the 
available standardized brain areas has to be judged under these 
prerequisites (Table 2).

In T. castaneum, the optic lobes show the smallest relative vol-
umes, which corresponds to the relative small compound eyes 
(with 80–83 ommatidia per eye; Friedrich et al., 1996) compared 
to the other insect species. The ALs in contrast display the largest 
relative volume, which suggests that Tribolium may primarily rely 
upon chemical cues, a fact which has been generally proposed for 
insects inhabiting grain storage areas (Levinson and Levinson, 

FIGURE 5 | Right antennal lobe of a male T. castaneum brain. (A–A′) 
Anterior (A), ventral (A′), and lateral view (A′′) of 3D-reconstructed glomeruli 
including the antennal nerve (AN, transparent). The eight color coded dorso-
lateral glomeruli (dl-1 to 8, compare with B,C) can be unequivocally identifi ed in 
75% of all preparations. Other glomeruli are depicted in transparent green; the 
displayed outline of the AL is shown in transparent gray. The transparent 

encasement around the AL represents the shape of the whole AL. The vertical 
bars in (A′′) display section levels of (B,C) and (B′,C′), respectively. Orientation 
bars: a, anterior; d, dorsal; m, medial; v, ventral. (B,C) Frontal confocal sections 
through the antennal lobe according to (A′′). The eight dorso-lateral glomeruli are 
manually labeled as reconstructed in AMIRA. (B′,C′) Confocal sections through 
the antennal lobe corresponding to (B,C). All scale bars: 10 µm.
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FIGURE 6 | Comparison of the volumes of the eight identifi ed glomeruli 

between right male (gray; n = 10) and right female (white; n = 10) ALs, 

revealed no signifi cant difference between the sexes (two-tailed student 

t-test). Bars, standard error; n.s., not signifi cant.

1995). Behavioral assays showed that T. castaneum prefers damaged 
or deteriorated grains to full grains and it responds best to volatiles 
characteristic of damaged or fungus-infested grain (Trematerra 
et al., 2000). Tenebrionid beetles, including T. castaneum, produce 
a rich repertoire of volatiles in a variety of glands. Major volatile 
secretions, stored in specialized prothoracic and postabdominal 
glands are the quinones which may act as defensive secretions and 
antimicrobial substances (Prendeville and Stevens, 2002; Yezerski 
et al., 2004, 2007). Adult males of T. castaneum possess setiferous 
glands on the femora of their prothoracic legs (Faustini et al., 
1981, 1982), which secrete the highly volatile pheromone, 4,8-
dimethyldecanal (DMD), which is attractive to females and, to a 
less extent, to males and was therefore classifi ed as an aggregation 
pheromone (Suzuki, 1980, 1981). However, the male setiferous 
glands may not be the major source of DMD (Bloch Qazi et al., 
1998; Arnaud et al., 2002). Moreover, a recent electrophysiological 
investigation on Tribolium volatile compounds led to the con-
clusion that several beetle produced compounds, in addition to 
DMD, may be part of a complex aggregation pheromone system 
(Verheggen et al., 2007).

Mushroom bodies (MBs) are generally associated with higher 
integration processes and learning (e.g. Menzel, 2001; Heisenberg, 
2003), but might also serve a general function in the control of 
behavior (e.g. Huber, 1955a, b; Erber et al., 1987; Zars, 2000; 
Strausfeld et al., 2009). While the social honeybee by far exhibits 
the largest relative MB volumes, interestingly, Tribolium is second 
before Drosophila (Table 2). A recent study found similar develop-
ment of MBs in Tribolium and Drosophila, with the remarkable 
difference, that adult neurogenesis occurs in Tribolium (Zhao et al., 
2008). MBs vary in relative size in different nymphalid butterfl ies, 
without a correlation with optic or antennal lobe size. Heliconius 
charitonius for example has almost four times bigger mushroom 
bodies than other butterfl ies of that family (Sivinsky, 1989). This 
is attributed to its relative long life combined with its occurrence 
in forest habitats with only scattered food resources, and a shared 
resting place with conspecifi cs. As discussed by the author, remem-
bering a common resting place and good food sites might be a 
higher evolutionary constraint for learning ability than fi nding 
proper egg-laying sites, which does not necessarily involve memory 
tasks (Sivinsky, 1989). For the ant Cataglyphis, Wehner et al. (2007) 
discussed social interaction rather than food gathering for being 
responsible of bigger mushroom bodies compared to other ant 
species, an idea originally brought up by von Alten (1910). The 
relative large size of the MBs in Tribolium suggests a high integra-
tive capacity which may include olfactory components (see above). 
Additionally, a life expectation of months to years and a long repro-
ductive period (Dawson, 1977) might also justify an investment 
into a brain structure dedicated to higher integration, memory, 
and behavioral control.

The function of the central complex still remains elusive, but 
is probably best described as a central coordinating function in 
sensory and motor integration (for reviews see Strauss, 2002; 
Wessnitzer and Webb, 2006; Homberg, 2008). Regarding the rela-
tive volume of the central complex, the sum of relative ellipsoid 
body volume and fan-shaped body volume in the fl y and the rela-
tive volume of upper and lower units in locust, honeybee, moth, 
and beetle, Tribolium exceeds even that of the fl y. This suggests a 
more complex function than in all other examined insects. In this 
context, it would be interesting to have comparable standardized 
central complex volumes of other coleopterans with different life-
styles e.g. water beetles or non-fl ying beetles.

Table 2 | Comparison of relative neuropilar volumes between different insect species obtained from fi ve different insect orders, namely Diptera 

(Drosophila melanogaster: Rein et al., 2002), Hymenoptera (Apis mellifera: Brandt et al., 2005), Orthoptera (Schistocerca gregaria: Kurylas et al., 

2008), Lepidoptera (M. sexta, el Jundi et al., 2009), and Coleoptera (T. castaneum, this work). We included the sex and the number of individuals which 

were used for respective standardization. Only neuropils which have complements in all examined animals were compared (optic lobes: medulla, lobula 

complex, and lobula plate; antennal lobes, mushroom bodies including calyces and pedunculi, upper and lower unit of the central body).

Order Diptera Hymenoptera Orthoptera Lepidoptera Coleoptera

Species D. melanogaster A. mellifera S. gregaria M. sexta T. castaneum

Sex ♀ ♀♀  ♂ ♀ ♂ ♀ ♂

Number of individuals 28 20 10 12 12 20 20

Optic lobes (%) 79.65 57.91 72.67 79.36 77.35 50,06 45,05

Antennal lobes (%) 9.36 8.53 9.68 12.86 15.09 22,41 24,50

Central body (%) 3.43 0.91 1.67 0.91 0.89 5,64 6,62

Mushroom bodies (%) 7.56 32.65 15.98 6.87 6.76 21,88 23,83
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With the current study we provide a standard female and male 
brain of freshly eclosed T. castaneum. These standard brains will serve 
as a useful tool to study brain development and brain plasticity.
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