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mapping often cannot be assumed in the fi rst place; the voxels 
and sensors of brain imaging, for example, refl ect the activity of 
large numbers of neurons. Although model units as well can rep-
resent sets of neurons, we cannot in general assume a one-to-one 
correspondency. When a one-to-one mapping does not exist, the 
attempt to defi ne such a mapping is clearly ill-motivated. Defi ning 
the correspondency more generally in terms of a linear transform 
would require the fi tting of a weights matrix, which will often have 
a prohibitively large number of parameters (number of model units 
by number of data channels).

Similar correspondency problems arise in relating activity pat-
terns between different modalities of brain-activity measurement. 
Modern techniques of multi-channel brain-activity measurement 
(including invasive and scalp electrophysiology, as well as fMRI) can 
take rich samples of neuronal pattern information. Invasive elec-
trophysiology is the ideal modality in terms of resolution in both 
space (single neuron) and time (ms). However, only a very small 
subset of neurons can be recorded from simultaneously. Imaging 
techniques (fMRI and scalp electrophysiology), sample neuronal 
activity contiguously across large parts of the brain or across the 
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A fundamental challenge for systems neuroscience is to quantitatively relate its three major 
branches of research: brain-activity measurement, behavioral measurement, and computational 
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literature on similarity analysis, we propose a new experimental and data-analytical framework 
called representational similarity analysis (RSA), in which multi-channel measures of neural activity 
are quantitatively related to each other and to computational theory and behavior by comparing 
RDMs. We demonstrate RSA by relating representations of visual objects as measured with 
fMRI in early visual cortex and the fusiform face area to computational models spanning a 
wide range of complexities. The RDMs are simultaneously related via second-level application 
of multidimensional scaling and tested using randomization and bootstrap techniques. We 
discuss the broad potential of RSA, including novel approaches to experimental design, and 
argue that these ideas, which have deep roots in psychology and neuroscience, will allow the 
integrated quantitative analysis of data from all three branches, thus contributing to a more 
unifi ed systems neuroscience.
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INTRODUCTION
RELATING REPRESENTATIONS IN BRAINS AND MODELS
A computational model of a single neuron (e.g., in V1) can be 
tested and adjusted on the basis of electrophysiological recordings 
of the activity of that type of neuron under a variety of circum-
stances (e.g., across different stimuli). This has been one successful 
avenue of evaluating computational models of single neurons with 
brain-activity data (e.g., David and Gallant, 2005; Koch, 1999; Rieke 
et al., 1999). This single-unit fi tting approach becomes intractable, 
however, for computational models at a larger scale of organization, 
which simulate comprehensive brain information processing and 
include populations of units with different functional properties. 
A major problem in relating such models to brain-activity data is 
the spatial correspondency problem: Which single-cell recording or 
functional magnetic resonance imaging (fMRI) voxel corresponds 
to which unit of the computational model? Defi ning a one-to-one 
mapping between model units and data channels will require that 
the functional properties of the simulated and real neurons are well 
characterized in advance; and fi nding the optimal match-up will 
still be challenging. To further complicate matters, a one-to-one 
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whole brain. In imaging, however, a single channel refl ects the joint 
activity of tens of thousands (high-resolution fMRI), or even mil-
lions of neurons (scalp electrophysiology).

If the same activity patterns are measured with two different 
techniques, we expect an overlap in the information sampled. 
However, different techniques sample activity patterns in funda-
mentally different ways. Invasive electrophysiology measures the 
electrical activity of single cells, whereas fMRI measures the hemo-
dynamic aspect of brain activity. Although the hemodynamic fMRI 
signal has been shown to refl ect neuronal activity (Logothetis et al. 
2001; see also Bandettini and Ungerleider, 2001), fMRI patterns 
are spatiotemporally displaced, smoothed, and distorted. Scalp 

 electrophysiology combines high temporal resolution with a spatial 
sampling of neuronal activity that is even coarser than in fMRI.

Neuroscientifi c theory must abstract from the idiosyncrasies of 
particular empirical modalities. To this end, we need a modality-
independent way of characterizing a brain region’s representation. 
Such a characterization will also enable us to elucidate in how far 
different modalities provide consistent or inconsistent informa-
tion. One way of characterizing the information a brain region 
represents is in terms of the mental states (e.g., stimulus percepts) 
it distinguishes (Figure 1). Here we suggest to relate modalities of 
brain-activity measurement and information-processing models 
by comparing activity-pattern dissimilarity matrices. Our approach 

FIGURE 1 | Characterizing brain regions by representational similarity 

structure. For each region, a similarity-graph icon shows the similarities 
between the activity patterns elicited by four stimulus images. Images placed 
close together in the icon elicited similar response patterns. Images placed far 
apart elicited dissimilar response patterns. The color of each connection line 
indicates whether the response-pattern difference was signifi cant for the group 
(red: p < 0.01; light gray: p ≥ 0.05, not signifi cant). A connection line, like a 
rubberband, becomes thinner when stretched beyond the length that would 
exactly refl ect the dissimilarity it represents. Connections also become thicker 
when compressed. Line thickness, thus, indicates the inevitable distortion of 
the 2D representation of the higher-dimensional similarity structure. The 

thickness of the connection lines is chosen such that the area of each 
connection (length times thickness) precisely refl ects the dissimilarity measure. 
This novel visualization of fMRI response-pattern information combines (A) a 
multidimensional-scaling arrangement of activity-pattern similarity (as introduced 
to fMRI by Edelman et al., 1998), (B) a novel rubberband-graph depiction of 
inevitable distortions, and (C) the results of statistical tests of a pattern-
information analysis (for details on the test, see Kriegeskorte et al., 2007). The 
icons show fi xed-effects group analyses for regions of interest individually 
defi ned in 11 subjects. Early visual cortex was anatomically defi ned; all other 
regions were functionally defi ned using a data set independent of that used to 
compute the similarity-graph icons and statistical tests.
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obviates the need for defi ning explicit spatial correspondency map-
pings or transformations from one modality into another.

THE REPRESENTATIONAL DISSIMILARITY MATRIX
For a given brain region, we interpret (Dennett, 1987) the activ-
ity pattern associated with each experimental condition as a rep-
resentation (e.g., a stimulus representation)1. By comparing the 
activity patterns associated with each pair of conditions (Edelman 

et al., 1998; Haxby et al., 2001), we obtain a representational 
 dissimilarity matrix (RDM; Figure 2), which serves to character-
ize the representation2.

An RDM contains a cell for each pair of experimental conditions 
(Figure 2). Each cell contains a number refl ecting the dissimilar-
ity between the activity patterns associated with the two condi-
tions. As a consequence, an RDM is symmetric about a diagonal of 

FIGURE 2 | Computation of the representational dissimilarity matrix. For 
each pair of experimental conditions, the associated activity patterns (in a brain 
region or model) are compared by spatial correlation. The dissimilarity between 
them is measured as 1 minus the correlation (0 for perfect correlation, 1 for no 
correlation, 2 for perfect anticorrelation). These dissimilarities for all pairs of 

conditions are assembled in the RDM. Each cell of the RDM, thus, compares 
the response patterns elicited by two images. As a consequence, an RDM is 
symmetric about a diagonal of zeros. To visualize the representation for a small 
number of conditions, we suggest the similarity-graph icon (top right, cf. 
Figure 1).

1More generally, we can think of the activity pattern as the physical manifestation of 
the mental state induced by the experimental condition. The mental state could be 
the percept of an external object or something more remotely related to the external 
world, such as a motor program, a plan, or an emotion.

2Note that similarity (a term we use here to refer to the general concept) can equal-
ly well be characterized by a similarity measure (in which greater values indicate 
greater similarity) or a dissimilarity measure (in which greater values indicate less 
similarity). We prefer the latter because of its intuitive relationship to distances in 
a multidimensional space.
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of the objects to the similarity structure of the representations. This 
promises a higher-level functional perspective, which is comple-
mentary to the perspective of fi rst-order isomorphism.

RELATED APPROACHES IN THE LITERATURE
The qualitative and quantitative analysis of similarity structure has 
a long history in philosophy, psychology, and neuroscience. A good 
entry to the literature is provided by Edelman (1998), who (Edelman 
et al., 1998) also pioneered application of similarity analysis to fMRI 
activity patterns using the technique of multidimensional scaling 
(MDS; Borg and Groenen, 2005; Kruskal and Wish, 1978; Shepard, 
1980; Torgerson, 1958). Laakso and Cottrell (2000) compared repre-
sentations in hidden units of connectionist networks by correlating 
the dissimilarity structures of their activity patterns. They suggest 
that this approach could be used as a general method for compar-
ing representations and discuss the philosophical implications. Op 
de Beeck et al. (2001) related the representational similarity of sil-
houette shapes in monkey inferior temporal cortex to physical and 
behavioral similarity measures for those stimuli.

At a more general level, activity-pattern similarity is related 
to activity-pattern information as targeted in a number of recent 
studies in human fMRI (Carlson et al., 2003; Cox and Savoy, 2003; 
Davatzikos et al., 2005; Friston et al., 2008; Hanson et al., 2004; 
Haxby et al., 2001; Haynes and Rees, 2005a,b; Haynes et al., 2007; 
Kamitani and Tong, 2005, 2006; Kriegeskorte et al., 2006; LaConte 
et al., 2005; Mitchell et al., 2004; Mourao-Miranda et al., 2005; 
Pessoa and Padmala, 2006; Polyn et al., 2005; Serences and Boynton, 
2007; Spiridon and Kanwisher, 2002; Strother et al., 2002; Williams 
et al., 2007; for reviews see Haynes and Rees, 2006; Kriegeskorte 
and Bandettini, 2007; Norman et al., 2006) and also in monkey 
electrophysiology (Hung et al., 2005; Tsao et al., 2006).

Explicit similarity analyses of neuronal activity patterns have 
begun to be applied in human fMRI (Aguirre, 2007; Aguirre et al., 
in preparation; Drucker and Aguirre, submitted; Edelman et al., 
1998; Kriegeskorte et al., in press; O’Toole et al., 2005) and monkey 
electrophysiology (Kiani et al., 2007; Op de Beeck et al., 2001).

CONNECTING THE BRANCHES OF SYSTEMS NEUROSCIENCE
In this paper, we argue that the theoretical concept of second-order 
isomorphism (Shepard and Chipman, 1970) can serve a much more 
general purpose than previously thought, relating not only exter-
nal objects to their brain representations, but bridging the divides 
between the three branches of systems neuroscience: behavioral 
experimentation, brain-activity experimentation, and computa-
tional modeling (Figure 3).

We introduce an analysis framework called representational 
similarity analysis (RSA), which builds on a rich psychological 
and mathematical literature (Edelman, 1995, 1998; Edelman and 
Duvdevani-Bar, 1997a,b; Kruskal and Wish, 1978; Laakso and 
Cottrell, 2000; Shepard, 1980; Shepard and Chipman, 1970; Shepard 
et al., 1975; Torgerson, 1958). The core idea is to use the RDM as a 
signature of the representations in brain regions and computational 
models. We defi ne a specifi c working prototype of RSA and discuss 
the potential of this approach in its full breadth:

(1) Integration of computational modeling into the analysis of 
brain-activity data. A key advantage of RSA is that  computational 

zeros. We suggest using correlation distance (1-correlation) as the 
 dissimilarity measure, although we explore a number of measures 
below (Figure 10).

The RDM indicates the degree to which each pair of condi-
tions is distinguished. It can thus be viewed as encapsulating the 
information content (in an informal sense) carried by the region. 
For any computational model (Figure 5) that can be exposed to 
the same experimental conditions (e.g., presented with the same 
stimuli), we can obtain an RDM for each of its processing stages 
in the same way as for a brain region (Figure 6).

The RDMs serve as the signatures of regional representations 
in brains and models. Importantly, these signatures abstract from 
the spatial layout of the representations. They are indexed (hori-
zontally and vertically) by experimental condition and can thus be 
directly compared between brain and model. What we are com-
paring, intuitively, is the represented information, not the activity 
patterns themselves.

MATCHING DISSIMILARITY MATRICES: A SECOND-ORDER 
ISOMORPHISM
RDMs can be quantitatively compared just like activity patterns, 
e.g., using correlation distance (1-correlation) or rank-correlation 
distance. Because RDMs are symmetric about a diagonal of zeros, 
we will apply these measures using only the upper (or equivalently 
the lower) triangle of the matrices.

Analysis of similarity structure has a history in psychology and 
related fi elds. When exposed to a suitable sensory stimulus, our brain 
activity refl ects many properties of the stimulus. The refl ection of a 
stimulus property in the activity level of a neuron constitutes what 
has been termed a fi rst-order isomorphism between the property 
and its representation in the brain. Most neuroscientifi c studies 
of brain representations have focused on the relationship between 
stimulus properties and brain-activity level in single cells or brain 
regions, i.e., on the fi rst-order isomorphism between stimuli and 
their representations. One concept at the core of our approach is 
that of second-order isomorphism (Shepard and Chipman, 1970), 
i.e., the match of dissimilarity matrices.

When we encounter diffi culty establishing a direct correspond-
ence, i.e., a fi rst-order isomorphism3, in studying the relationship 
between stimuli and their representations, we may attempt instead 
to establish a correspondence between the relations among the 
stimuli on the one hand and the relations among their representa-
tions on the other, i.e., a second-order isomorphism. We can study 
the second-order isomorphism by relating the similarity structure 

3A fi rst-order isomorphism between object and representation can be interpreted in 
several ways. Naively: The representation is a replication of the object, i.e., identical 
with it. (Problem: A chair does not fi t into the human skull.) More reasonably, we 
may interpret fi rst-order isomorphism as a mere similarity of some sort. For exam-
ple a retinotopic representation of an image in V1 may emit no light, be smaller and 
distorted, but it does bear a topological similarity to the image. More cautiously, 
we could maintain that fi rst-order isomorphism requires only that the representa-
tion has properties (e.g., neuronal fi ring rates) that are related to properties of the 
objects represented (e.g., line orientation). While the naive interpretation is clear-
ly untenable, the other interpretations are generally accepted in neuroscience. We 
concur with this widespread view, which motivates studies of stimulus selectivity 
at the level of single cells and brain regions. However, we feel that analysis of the 
second-order isomorphism (which can refl ect a fi rst-order isomorphism) is equally 
promising and offers a complementary higher-level functional perspective.
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models of brain information processing form an integrated 
 component of data analysis and can be directly evaluated and com-
pared. We demonstrate how to apply multivariate analysis to a set of 
dissimilarity matrices from brain regions and models in order to fi nd 
out (1) which model best explains the representation in each brain 
region and (2) to what extent representations among regions and 
models resemble each other. We introduce a randomization test of 

 representational relatedness and a bootstrap technique for obtaining 
error bars on estimates of the goodness of fi t of different models.
(2) Relating regions, subjects, species, and modalities of brain-
activity measurement. We discuss how RSA can be used to quan-
titatively relate:
• representations in different regions of the same brain (“repre-

sentational connectivity”),

A

B

FIGURE 3 | The representational dissimilarity matrix as a hub that relates 

different representations. (A) Systems neuroscience has struggled to relate its 
three major branches of research: behavioral experimentation, brain-activity 
experimentation, and computational modeling. So far these branches have 
interacted largely on two levels: (1) They have interacted on the level of verbal 
theory, i.e., by comparing conclusions drawn from separate analyses. This level 
is essential, but it is not quantitative. (2) They have interacted at the level 
characteristic functions, e.g., by comparing psychometric and neurometric 
functions. This form of bringing the branches in touch is equally essential 
and can be quantitative. However, characteristic functions typically contain 
only a small number of data points, so the interface is not informationally 

rich. Note that the RDM shown is based on only four conditions, yielding 
only (42 − 4)/2 = 6 parameters. However, since the number of parameters 
grows as the square of the number of conditions, the RDM can provide 
an informationally rich interface for relating different representations. 
Consider for example the 96-image experiment we discuss, where the 
matrix has (962 − 96)/2 = 4,560 parameters. (B) This panel illustrates in 
greater detail what different representations can be related via the 
quantitative interface provided by the RDM. We arbitrarily chose the example of 
fMRI to illustrate the within-modality relationships that can be established. Note 
that all these relationships are diffi cult to establish otherwise (gray double 
arrows).
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• corresponding brain regions in different subjects (“intersubject 
information”),

• corresponding brain regions in different species (e.g., humans 
and monkeys),

• and different modalities of brain-activity data (e.g., cell recor-
dings and fMRI).

(3) Relating brain and behavior. We discuss how RSA can quan-
titatively relate brain-activity measurements to behavioral data. 
This possibility has already been demonstrated in previous work 
(Aguirre et al., in preparation; Kiani et al., 2007; Op de Beeck et al., 
2001).
(4) Addressing a broader array of neuroscientifi c questions with 
each experiment by means of condition-rich design. While RSA is 
applicable to conventional experimental designs, is synergizes with 
novel condition-rich experimental designs, where a single experi-
ment can address a large number of neuroscientifi c questions. We 
demonstrate this with an fMRI experiment that has 96 separate 
conditions and discuss the broader implications.

We hope that RSA will contribute to a more integrated systems 
neuroscience, where different multi-channel measures of neural 
activity are quantitatively related to each other and to computa-
tional theory and behavior via the information-rich characteriza-
tion of distributed representations provided by the RDM.

REPRESENTATIONAL SIMILARITY ANALYSIS – STEP-BY-STEP
In this section we describe the core of RSA step-by-step. We assume 
that the data to be analyzed consists in a multivariate activity pat-
tern measured for each of a set of conditions in a given brain 
region, whose representation is to be better understood. The data 
could be from single-cell or electrode-array recordings, from neu-
roimaging, or any other modality of brain-activity measurement. 
We  demonstrate the analysis on an fMRI experiment, in which 
human subjects viewed 96 particular object images. The step-by-
step description that follows describes the method. The empirical 
results for our example experiment are described and interpreted 
subsequently.

STEP 1: ESTIMATING THE ACTIVITY PATTERNS
The fi rst step of the analysis is the estimation of an activity pat-
tern associated with each experimental condition. In our example, 
the activity patterns are spatial response patterns from early visual 
cortex (EVC) and from the fusiform face area (FFA). The analysis 
proceeds independently for each region.

Instead of spatial activity patterns we could use spatiotemporal 
patterns or simply temporal patterns from a single site as the input 
to RSA. Similarly, we could fi lter the measurements in some neu-
roscientifi cally meaningful way. For cell recordings, for example, 
we could use windowed spike counts, multi-unit activity, or local 
fi eld potentials as the input.

In our fMRI example, we obtain an activity estimate for each 
voxel and condition using massively univariate linear modeling 
(Figure 7). The design matrix used to model each voxel’s response 
is based on the event sequence and a linear model of the hemody-
namic response (Boynton et al., 1996). For each region of interest, 
the resulting condition-related activity patterns form the basis for 
computation of the representational dissimilarities.

STEP 2: MEASURING ACTIVITY-PATTERN DISSIMILARITY
In order to compute the RDM (Figure 2), we compare the activity 
patterns associated with each pair of conditions. A useful meas-
ure of activity-pattern dissimilarity that normalizes for both the 
mean level of activity and the variability of activity is correlation 
distance, i.e., 1 minus the linear correlation between patterns (cf. 
Aguirre, 2007; Haxby et al., 2001; Kiani et al., 2007). Alternative 
measures include the Euclidean distance (cf. Edelman et al., 1998), 
the Mahalanobis distance (cf. Kriegeskorte et al., 2006) and, in 
order to relate RSA to conventional activation-based fMRI analy-
sis, the absolute value of the regional-average activation difference 
(Figure 10).

The dissimilarity values for all pairs of conditions are assembled 
in an RDM, which will have a width and height corresponding to the 
number of conditions and is symmetric about a diagonal of zeros 
(Figure 2). We can use MDS to visualize the similarity structure 
of the activity patterns. This is demonstrated in Figure 4, where 
conditions are represented by colored dots. The distances between 
the dots approximate the dissimilarities of the activity patterns the 
conditions are associated with.

STEP 3: PREDICTING REPRESENTATIONAL SIMILARITY WITH A RANGE 
OF MODELS
In this section we describe the different types of model that can be 
evaluated using RSA. Figure 5 shows the internal representations 
of several example models and Figure 6 shows the dissimilarity 
matrices characterizing the model representations.

Complex computational models
In order to evaluate a computational model with RSA, the model 
needs to simulate some aspect of the information processing occur-
ring in the subject’s brain during the experiment. The term model, 
thus, has a different meaning here than conventionally in statistical 
data analysis, where it often refers to a statistical model that does not 
simulate brain information processing (such as the design matrix 
in Figure 7, which was used to estimate the activity patterns).

In our example, we are interested in visual object perception, 
so the models to be used simulate parts of the visual processing. 
The models are presented with the same experimental stimuli as 
our human subjects. Moreover, their internal representations are 
analyzed in the same way as the measured brain representations 
of our subjects.

We demonstrate RSA with three complex computational mod-
els. First, we use a model of V1 consisting in retinotopic maps of 
simulated simple and complex cells based on banks of Gabor fi lters 
for a range of spatial frequencies and orientations at each location 
(details in the Appendix). We also include a variant of this model, 
in which we attempted to simulate the local averaging of fMRI 
voxels by pooling local responses of the original V1 model (V1 
model, smoothed).

Second, as an example of a higher-level representation, we use 
a model developed in the HMAX framework (Riesenhuber and 
Poggio, 2002; Serre et al., 2007), which includes C2 units based on 
natural-image patches as fi lters and corresponds, approximately, 
to the level of representation in V4.

Third, we use a computational model from computer vision, the 
RADON transform, whose components in the present  implementation 
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FIGURE 4 | Unsupervised arrangement of 96 experimental conditions 

refl ecting pairwise activity-pattern similarity. As in Figure 1, but for 96 
instead of 4 conditions, the arrangements refl ect the activity-pattern similarity 
structure. Each panel visualizes the RDM from the corresponding panel in 
Figure 10. Each condition (corresponding to the presentation of one of 96 object 
images) is represented by a colored dot, where the color codes for the category 
(legend at the bottom). In each panel, dots placed close together indicate that 
the two conditions were associated with similar activity patterns. Dots placed 

far apart indicate that the two conditions were associated with dissimilar activity 
patterns. The panels show results of non-metric multidimensional scaling 
(minimizing the loss function “stress”) for two brain regions (rows) and three 
activity-pattern dissimilarity measures (columns). Note that a categorical 
clustering of the face-image response patterns is apparent in the right FFA 
(bottom row), but not in early visual cortex (top row). (Note that the absolute 
activation differences could be represented by an arrangement along a straight 
line, had the dissimilarity matrices not been averaged across subjects.)

are not meant to resemble neurons in the primate visual system. 
However, this model could be implemented with biological neurons 
and has been proposed as a functional account of the representation of 
visual stimuli in the lateral occipital complex (Wade and Tyler, 2005) 
based on fMRI evidence. Detailed descriptions of the model represen-
tations are to be found in the Section “Methodological Details.”

Simple computational models
The models described above are meant to simulate brain information 
processing in some sense. We can additionally use simple image trans-
formations as competing computational models. Although there may 
be no compelling neuroscientifi c motivation for such models, they 
can provide useful benchmarks and help us characterize the infor-
mation represented in a given brain region. Here we include (1) the 
digital images themselves in the Lab color space (which more closely 
refl ects human color similarity perception than the RGB color space 
more commonly used for image storage), (2) the luminance patterns 
(grayscale versions) of the images, (3) low-pass (i.e., smoothed), and 
(4) high-pass (i.e., edge-emphasized) versions of the luminance pat-
terns, (5) the Lab joint histograms of the images (representing the set 
of colors present in each image), and (6) the silhouettes of the objects, 
in which each fi gure pixel is 1 and each background pixel 0. These 
models as well are described in more detail in the Appendix.

Conceptual models
Model dissimilarity matrices can be obtained not only from explicit 
computational accounts. A theory may specify that a given brain 

region represents particular information and abstracts from other 
information without specifying how the representation is com-
puted. In such “conceptual models”, the information processing is 
miraculous (i.e., unspecifi ed) and the activity patterns unknown. 
However, we can still specify a hypothetical similarity structure 
to be tested by comparison to the similarity structures found in 
different brain regions.

Here we use two categorical models as examples of this model vari-
ety (Figure 6). The fi rst is the animate–inanimate model, in which two 
object images are identical (dissimilarity = 0) if they are either both 
animate or both inanimate, and different (dissimilarity = 1) if they 
straddle the category boundary. The second categorical model follows 
the same logic for the category of faces: two object images are identical 
(dissimilarity = 0) if they are either both faces or both non-faces, and 
different (dissimilarity = 1) if exactly one of them is a face.

In addition, we use a “face-animal-prototype model”, which 
assumes that all faces elicit a prototypical response pattern (imply-
ing small dissimilarities between individual face representations) 
and that the same is true to a lesser degree for the more general 
class of animal images.

Behavior-based similarity structure
We could also use behavioral measures to defi ne reference dis-
similarity matrices. The dissimilarity values could come from 
explicit similarity judgments or from reaction times or confusion 
errors in comparison tasks (Aguirre et al., in preparation; Cutzu 
and Edelman, 1996, 1998; Edelman et al., 1998; Kiani et al., 2007; 
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FIGURE 5 | Model representations of two example images. Two example 
images (A,B) from the 96-image experiment and their representations in a 
number of computational models, including standard transformations of image 

processing as well as neuroscientifi cally motivated models. Note that each such 
representation defi nes a unique similarity structure for the 96 stimuli (as 
encapsulated in the RDMs of Figure 6).

Op de Beeck et al. 2001; Shepard et al., 1975). Such behavioral 
dissimilarity matrices may refl ect the representations that deter-
mine the behavioral choices, reaction times, or confusion errors. A 

close match between the RDM of a brain region and the behavioral 
 dissimilarity matrix would suggest that the regional representation 
might play a role in determining the behavior measured.
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FIGURE 6 | Representational dissimilarity matrices for models and brain 

regions. Dissimilarity matrices for model representations and regional brain 
representations (as introduced in Figure 2). The dissimilarity measure is 
1 − correlation (Pearson correlation across space). Note that each model yields a 
unique representational similarity structure that can be compared to that of 

each brain region (bottom fi ve matrices). This comparison is carried out 
quantitatively in the following fi gure. The text labels indicate the representation 
depicted with the color indicating the type: complex computational model (blue), 
simple computational model (black), conceptual model (green), brain 
representation (red).
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FIGURE 7 | Design matrix for condition-rich ungrouped-events fMRI design. 
Both panels illustrate the design matrix used for the 96-image experiment, an 
example of a condition-rich ungrouped-events design. The top panel shows the 
hemodynamic predictor time courses for the experimental events occurring in 
the fi rst couple of minutes of the fi rst run. Note that events occur at 4-s trial-
onset asynchrony, yielding overlapping but dissociable hemodynamic responses 
and a reasonable frequency of stimulus presentation. (Each of the 96 conditions 

occurs exactly once in each run. The condition sequence is independently 
randomized for each run.) The bottom panel shows the complete design matrix 
with predictor amplitude color coded (see colorbar on the right). In addition to 
the 96 predictors for the experimental conditions, the design matrix also 
includes components modeling slow artefactual trends and residual head-
motion artefacts (after rigid-body head-motion correction), and a confound-mean 
predictor for each run.

STEP 4: COMPARING BRAIN AND MODEL DISSIMILARITY MATRICES
Once the dissimilarity matrices of the brain representations 
(Figure 10) and those of theoretical models (Figure 6) have been 

specifi ed they can be visually and quantitatively compared. One 
way to quantify the match between two dissimilarity matrices is by 
means of a correlation coeffi cient. We use 1-correlation as a measure 
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of the dissimilarity between RDMs (Figure 8). Because dissimilarity 
matrices are symmetrical about a diagonal of zeros, the correla-
tion is computed over the values in the upper (or equivalently the 
lower) triangular region. Note that above we suggested the use 
of this measure for comparing activity patterns. Here we suggest 
using it to assess second-order dissimilarity: the dissimilarity of 
dissimilarity matrices.

We could use an alternative distance measure, such as the Euclidean 
distance, for comparing dissimilarity matrices. As for comparing 
activity patterns, we again prefer correlation distance, because it is 
invariant to differences in the mean and variability of the dissimilari-
ties. For the models we use here, we do not wish to assume a linear 
match between dissimilarity matrices. We therefore use the Spearman 
rank correlation coeffi cient to compare them. In the Appendix, we 
present another argument for the use of rank-correlation distance 
(instead of the Pearson linear correlation distance or Euclidean dis-
tance) for comparing dissimilarity matrices. The argument is based 
on the observation that, in high-dimensional response spaces, a 
prominent component of the effect of activity-pattern noise on the 
dissimilarities can be accounted for by a monotonic transform.

Figure 8 shows the deviations (1-Spearman correlation) of the 
models from each brain region’s RDM. Smaller bars indicate better 
fi ts. In order to estimate the variability of each model deviation 
expected if a similar experiment were to be performed with differ-
ent stimuli (from the same population of stimuli), we computed 
each model deviation 100 times over for bootstrap resamplings 
of the condition set (i.e., 96 conditions chosen with replacement 
from the original set of 96 on each iteration)4. This method is 
attractive, (1) because it requires few assumptions, (2) because only 
the dissimilarity matrices are needed as input, (3) because it is 
computationally less intensive than modeling the noise at a lower 
level, and (4) because it generalizes (to the degree possible given the 
experimental data) from the set of conditions actually used in the 
experiment to the population of conditions that the actual condi-
tions can be considered a random sample of. This bootstrap pro-
cedure would also lend itself to testing whether one model fi ts the 
data better than another model, as discussed in the Appendix5.

STEP 5: TESTING RELATEDNESS OF TWO DISSIMILARITY MATRICES BY 
RANDOMIZATION
In order to decide whether two dissimilarity matrices are related, 
we can perform statistical inference on the RDM correlation. The 
classical method for testing correlations assumes independent 
measurements for the two variables. For dissimilarity matrices 

such independence cannot be assumed, because each similarity is 
dependent on two response patterns, each of which also codeter-
mines the similarities of all its other pairings in the RDM.

We therefore suggest testing the relatedness of dissimilarity 
matrices by randomizing the condition labels. We choose a ran-
dom permutation of the conditions, reorder rows and columns of 
one of the two dissimilarity matrices to be compared according 
to this permutation, and compute the correlation. Repeating this 
step many times (e.g., 10,000 times), we obtain a distribution of 
correlations simulating the null hypothesis that the two dissimilar-
ity matrices are unrelated. If the actual correlation (for consistent 
labeling between the two dissimilarity matrices) falls within the 
top α × 100% of the simulated null distribution of correlations, we 
reject the null hypothesis of unrelated dissimilarity matrices with a 
false-positives rate of α. The p-value for each brain region’s related-
ness to each model is given beneath the model’s bar in Figure 8. 
They are conservative estimates based on 10,000 random relabe-
lings, so the smallest possible estimate is 10−4.

STEP 6: VISUALIZING THE SIMILARITY STRUCTURE OF 
REPRESENTATIONAL DISSIMILARITY MATRICES BY MDS
MDS provides a general method for arranging entities in a low-
dimensional space (e.g., the 2D of a fi gure on paper), such that their 
distances refl ect their similarities: Similar entities will be placed 
together, dissimilar entities apart. In Figure 4 we used MDS to 
visualize the similarity structure of activity patterns in EVC and 
FFA. Here we suggest using MDS also to visualize the similarity 
structure of RDM.

We fi rst assemble all pairwise comparisons between activity-
 pattern dissimilarity matrices in a dissimilarity matrix of dissimilar-
ity matrices (Figure 9A), using rank-correlation as the dissimilarity 
measure as suggested above. We then perform MDS on the basis 
of this second-order dissimilarity matrix.

This exploratory visualization technique (Figure 9B) simul-
taneously relates all RDMs (from models and brain regions) to 
each other. It thus summarizes the information we would get by 
inspecting a bar graph of RDM fi ts (Step 4) not just for EVC and the 
right FFA (as shown in Figure 8), but for each model and region. 
The conciseness of the MDS visualization comes at a cost: the dis-
tances are distorted (depending on the number of representations 
included) and there are no error bars or statistical indications. 
Nevertheless this exploratory visualization technique provides a 
useful overall view. It can alert us to relationships we had not con-
sidered and prompt confi rmatory follow-up analysis.

EMPIRICAL RESULTS AND THEIR INTERPRETATION
THE REPRESENTATIONAL DISSIMILARITY MATRICES OF EVC AND FFA
Figure 10 shows that the correlation-distance matrix for EVC and 
FFA. For the FFA, but not EVC, the matrix refl ects the categori-
cal structure of the stimuli. This structure is obvious, because the 
condition sequence for the dissimilarity matrices were defi ned by 
the categorical order. Note, however, that this order affects merely 
the visual appearance of the matrices. Reordering the conditions 
does not affect the results of RSA. For the FFA, the correlation-dis-
tance matrix reveals a pattern markedly different from that exhib-
ited by the two other measures of activity-pattern dissimilarity. 
The absolute-activation-difference matrix shows the prominent 

4A complication of this method is that bootstrap resampling of the condition set 
moves zeros from the diagonal into the off-diagonal parts of the matrix whenever 
a condition is selected multiple times in the bootstrap resampling. The inclusion of 
these off-diagonal zeros leads to artefactually small model deviation estimates (be-
cause it increases the correlation between the dissimilarity values). In order to avoid 
underestimating the model deviations in the bootstrap simulation, these artefac-
tual off-diagonal zeros (about 1% of the dissimilarity values here) were excluded 
before computing the model deviations.
5Alternatively, we could obtain error bars and statistical tests by estimating the 
distribution of the model deviation estimates for repetitions of the experiment 
with the same stimuli and subjects or with the same stimuli and different subjects, 
or with different stimuli and different subjects. These approaches would provide 
complementary information to the condition-label bootstrap approach we have 
described.
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FIGURE 8 | Matching models to brain regions by comparing 

representational dissimilarity matrices. The dissimilarity matrices 
characterizing the representation in early visual cortex (top) and the right FFA 
(bottom) are compared to dissimilarity matrices obtained from model 
representations and other brain regions. Each bar indicates the deviation 
between the RDM of the reference region (early visual cortex or the right FFA) 
and that of a model or other brain region. The deviation is measured as 1 minus 
the Spearman correlation between dissimilarity matrices (for motivation see 
Step 4 and Appendix). Text-label colors indicate the type of representation: 
complex computational model (blue), simple computational model (black), 
conceptual model (green), brain representation (red). Error bars indicate the 
standard error of the deviation estimate. (The standard error is estimated as the 
standard deviation of 100 deviation estimates obtained from bootstrap 

resamplings of the conditions set.) The number below each bar indicates 
the p-value for a test of relatedness between the reference matrix (early 
visual cortex or the right FFA) and that of the model or other region. (The test 
is based on 10,000 randomizations of the condition labels.) The black 
line indicates the noise fl oor, i.e., the expected deviation between 
the empirical reference RDM (with noise) and the underlying true RDM 
(without noise). The red line indicates the expected retest deviation 
between the empirical dissimilarity matrices that would be obtained for 
the reference region if the experiment were repeated with different 
subjects (both matrices affected by noise). Both of these reference lines as 
well as the dissimilarity signal-to-noise ratios (dissimilarity SNR: below the 
titles) are estimated from the variability of the dissimilarity estimates across 
subjects.
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A

B

FIGURE 9 | Simultaneously relating all pairs of representations. Figure 8 
showed the relationships between two reference regions and all models and 
other regions. Here we simultaneously visualize the pair-relationships 
between all models and regions (text labels). Note that the visualization of all 
pair-relationships comes at a cost: statistical information is omitted here. Text-
label colors indicate the type of representation: complex computational 
model (blue), simple computational model (black), conceptual model (green), 

brain representation (red). (A) The correlation matrix (Spearman rank 
correlation) of RDMs. (B) Multidimensional scaling arrangement (minimizing 
metric stress) of the representations. Note that MDS was used here to arrange 
not activity patterns (as in Figures 1 and 4), but dissimilarity matrices. The 
rubberband graph (gray connections) depicts the inevitable distortions 
introduced by arranging the models in 2D (see legend of Figure 1 for an 
explanation).
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 contrast in activation level between faces and inanimate objects 
and less prominently between animate and inanimate objects. The 
correlation-distance matrix normalizes out the regional-average 
activation effects and reveals that the activity patterns are highly 
correlated among faces (human or animal) and to a lesser degree 
among animals. The Euclidean-distance matrix is sensitive to 
both the absolute activation difference and the pattern correla-
tion. Unless indicated otherwise, subsequent analyses are based 
on correlation-distance matrices.

THE SIMILARITY STRUCTURE OF ACTIVITY PATTERNS IN EVC AND FFA 
AS REVEALED BY MDS
Figure 4 visualizes the dissimilarity structure as estimated with 
the three measures by arranging dots that represent the 96 object 
images in 2D with category-color-coding, such that stimuli elicit-
ing similar response patterns are placed close together and stimuli 
eliciting dissimilar response patterns are placed far apart. Such 
arrangements are computed by MDS. We observe some  categorical 

clustering (for faces and, to a lesser degree, for animate objects) 
in FFA, but not in EVC. This is consistent with our inspection of 
dissimilarity matrices in Figure 10.

MODEL FITS TO EVC AND FFA
Figure 6 shows the RDMs of the models. The fi rst thing to note is 
that each matrix presents a unique pattern that characterizes the 
model representation. Figure 8 shows the deviation of each model 
from the empirical RDMs of EVC and FFA. We do not have the 
space here to fully discuss the neuroscientifi c implications of this 
analysis, but we offer some basic observations that demonstrate 
how RSA can help characterize regional representations:

• For EVC, note that the best-fi tting model is the silhouette-
image model. This is plausible because EVC is known to 
contain retinotopic representations of the visual input. The 
fMRI patterns in EVC appear to refl ect primarily the shape of 
the retinotopic region stimulated (i.e., the shape of the fi gure, 

FIGURE 10 | Dissimilarity matrices of activity patterns elicited in early 

visual cortex and FFA by viewing 96 object images. Dissimilarity matrices (as 
introduced in Figure 2) are shown for early visual cortex (top row) and right FFA 
(bottom row) and for three different measures of dissimilarity (columns): 
1 − correlation (Pearson correlation across space), the Euclidean distance 
between the two response patterns (in standard error units) and the absolute 
activation difference (i.e., the absolute value of the difference of the spatial-mean 
activity level). The absolute activation difference is sensitive only to the overall 
level of activation and has been included only because regional-average 
activation is conventionally targeted in fMRI analysis. Note that the correlation 

distance (1 − correlation) normalizes for both the overall activation and the 
variability of activity across space. It is therefore the preferred measure for 
detecting distributed representations without sensitivity to the global activity 
level (which could be attributed e.g., to attention). The Euclidean distance 
combines sensitivity to pattern shape, spatial-mean activity level, and variability 
across space. Note that as expected using the Euclidean distance yields an 
RDM resembling both the one obtained with correlation distance and the one 
obtained with absolute activation difference. The matrices have been separately 
histogram-equalized (percentile units) for easier comparison. Dissimilarity 
matrices were averaged across two sessions for each of four subjects.
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since the background is uniformly gray). That the simple 
silhouette model explains the RDM better here than the V1 
model suggests that the orientation information is not as 
strongly refl ected in the RDM. This is consistent with recent 
results by Kay et al. (2008), who showed that images can be 
identifi ed on the basis of their fMRI responses in EVC, with 
the major portion of the information provided by the reti-
notopic representation of edge energy and a smaller portion 
provided by the representation of edge orientation6. Early 
visual orientation information is likely to be attenuated in 
fMRI data because of its fi ne-scale spatial organization and 
pooling of columns of all orientation-preferences in each 
fMRI voxel.

• Among the complex computational models, the V1 model fi ts 
the EVC data best, but only the “smoothed” version, where 
we simulated local pooling of orientation-specifi c responses 
in fMRI voxels. Like the good fi t of the silhouette model, this 
is consistent with the limited spatial resolution of our fMRI 
voxels.

• The RDMs of the fusiform face and parahippocampal place 
areas in either hemisphere fi t the EVC matrix better than the 
V1 model, but not as well as the silhouette model. One expla-
nation for this is that the conventional V1 model does not 
capture the full complexity of the representation in EVC. This 
would be plausible for two reasons: On the one hand, our EVC 
region contains voxels from the early visual foveal confl uence, 
not just from V1. On the other hand, V1 itself is likely to con-
tain a more complex representation than our Gabor-based 
model of simple and complex cells.

• The higher-level HMAX-C2 representation based on natu-
ral image patches, plausibly does not capture the simila-
rity structure we fi nd in EVC, nor do the simple image 
transformations.

• For the right FFA, the best-fi tting dissimilarity structure consi-
sts in the empirical dissimilarity of FFA in the opposite hemi-
sphere. This is plausible, given the close functional relationship 
between the regions.

• The dissimilarities of the right FFA are best modeled by a 
conceptual model: the “face-animal-prototype model”. This 
suggests that, to a fi rst approximation, different faces elicit a 
prototypical response pattern – implying small dissimilarities 
between individual face response patterns, consistent with 
Kriegeskorte et al. (2007), and that the same is true to a lesser 
degree for the more general class of animal images.

• Among the complex computational models, the HMAX-C2 
representation based on natural image patches provides the 
best fi t to the right FFA. This may refl ect the higher-level 
nature of the representations in FFA.

• The right FFA resembles the EVC more closely than the V1 
model, the silhouette model, or any other brain region. This 
could refl ect feedback from FFA to EVC. Alternatively, FFA may 
refl ect some of the more complex features of the early visual 
representation that are not captured by either the silhouette or 
the V1 model.

THE SIMILARITY STRUCTURE OF REPRESENTATIONAL DISSIMILARITY 
MATRICES AS REVEALED BY MDS
Figure 9 simultaneously relates the RDM “signatures” of all 
brain regions and models to each other by means of MDS. This 
representation is devoid of indications of statistical signifi cance 
and inevitably compromised by geometric distortions (because 
a higher-dimensional structure is represented in 2D). However, 
it provides a useful overview of all pairwise relationships (not 
just the relationships shown in Figure 8 of EVC and the right 
FFA to the other representations). Although the 2D distances do 
not precisely refl ect the actual dissimilarities between the dis-
similarity matrices, almost all observations from Figure 8 are 
also refl ected in the MDS arrangement of Figure 9. However, the 
MDS arrangement provides us with a lot of additional informa-
tion. As examples of the additional information, consider these 
observations:

• The close interhemispheric observed for the left and right FFA 
(Figure 8), also holds for the left and right parahippocampal 
place area.

• The smoothing applied to the V1 model and the RADON 
model in order to simulate pooling of responses within fMRI 
voxels does not appear to drastically alter the RDM of either of 
these models.

• The fi ve brain regions included (red) all seem to be somewhat 
related in their representational similarity structure. The fact 
that no model appears in their midst suggests that there may 
be a common component to these visual representations that 
is not captured by any of the models.

THE BROAD POTENTIAL OF REPRESENTATIONAL SIMILARITY 
ANALYSIS
RELATING MODELS, BRAIN REGIONS, SUBJECTS, SPECIES, AND 
BEHAVIOR
Systems neuroscience has struggled to quantitatively relate its three 
major branches of research: behavioral experimentation, brain-
activity experimentation, and computational modeling. The RDM 
can serve as a hub that relates representations from a variety of 
sources in the three branches (Figure 3). We can use dissimilarity 
matrices to compare internal representations between two models 
or two brain regions in the same subject (representational con-
nectivity, see below). In addition, RSA provides a solution to the 
fi ne-grained spatial-correspondency problem encountered when 
relating corresponding brain regions in different subjects of an 
fMRI experiment. Conventionally, different subjects in an fMRI 
experiment are related by transforming the data into a common 

6Note that Kay et al. (2008) used stimuli of about 20° visual angle (in contrast to 
the 2.9° stimuli used here) thus driving a more extended retinotopic representa-
tion, which may provide more power for detecting the subtler orientation informa-
tion present in the fMRI signals. Note also that the two studies take very different 
approaches to activity-pattern analysis. Finally, the stimulus set always infl uences 
what aspects of a representation we are sensitive to in any neurophysiological expe-
riment. Our stimulus set here may not afford great sensitivity to orientation infor-
mation in the context of RSA: A given pair of images may be similar in orientation 
at one retinal location and dissimilar at another, such that the overall representatio-
nal dissimilarity (across the entire extent of the image) ends up at an intermediate 
value for all pairs of images. Different results might be expected for grating stimuli, 
where some stimulus pairs are similar in orientation across the entire extent of the 
image, and other pairs are dissimilar in orientation everywhere (cf. Kamitani and 
Tong, 2005)
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spatial frame of reference, such as Talairach space (Talairach and 
Tournoux, 1988) or cortical-surface space defi ned by cortex-based 
alignment (Fischl et al., 1999; Goebel and Singer, 1999; Goebel et al., 
2006). However, these available common spaces do not have suf-
fi cient precision to relate high-resolution fMRI voxels. Establishing 
spatial correspondency is not merely a technical challenge. It is a 
fundamental empirical question to what spatial precision inter-
subject correspondency even exists in different functional areas 
(Kriegeskorte and Bandettini, 2007). RSA offers an attractive way 
of abstracting from the spatial layout and even from the linear 
basis of the representation, allowing us to relate fi ne-grained 
activity patterns between subjects. Even different species and 
 modalities of brain-activity data (e.g., single-cell recording and 
fMRI; Kriegeskorte et al., in press) can be meaningfully related 
with RSA.

ADVANCED TYPES OF REPRESENTATIONAL SIMILARITY ANALYSIS
Similarity searchlight: Finding brain regions matching a model
RSA also allows us to localize a brain region whose intrinsic rep-
resentation resembles that of a specifi ed model. For this purpose 
we can move a spherical or cortex-patch searchlight (Kriegeskorte 
et al., 2006) throughout the measured volume to select, at each 
location, a local contiguous set of voxels, for which RSA is per-
formed. The results, for each model, form a continuous statisti-
cal brain map refl ecting how well that model fi ts in each local 
neighborhood.

Representational connectivity analysis
In order to assess to what extent two brain regions in the same 
subject represent the same information, we can compare the two 
regions’ condition- or time-point-based dissimilarity matrices 
(Kriegeskorte et al., in press). The latter approach can be applied 
to either the raw data or residuals of the linear modeling of stimu-
lus-related effects. Using the residuals will focus the analysis on the 
internal representational dynamics of the system including stochas-
tic innovations. In analogy to functional connectivity analysis, we 
refer to this approach as “representational connectivity analysis”. It 
can be combined with the searchlight approach (Kriegeskorte et al., 
2006) in order to fi nd a set of regions representationally connected 
to a given region.

Fitting parameters of computational models
The computational models we present as examples here are fi xed 
models in that they do not have any parameters fi tted on the basis 
of the data. It will be interesting to extend our approach to the fi t-
ting of model parameters on the basis of an empirical RDM. For 
example, a network model could be trained (supervised learning) 
to fi t a given RDM. In order to avoid circular (i.e., self-fulfi lling) 
inference, a separate set of conditions (e.g., different experimental 
stimuli) will then be needed to assess the fi t of the computational 
model to the experimental data.

Composite modeling of a brain region’s representational 
dissimilarity matrix
In our demonstration here, we have treated the models as sep-
arate accounts of the data to be evaluated independently. A 

 complementary approach is to model the RDM of a brain region 
by combining several models. To this end, one could combine units 
from the internal representations of several models (as we have 
done for simple and complex V1-model units) and compute the 
overall representational dissimilarity. One could then fi t param-
eters, including the number of units from each model to include 
in the representation, so as to best account for an empirical RDM. 
A simpler approach is to directly model an empirical RDM as a 
combination of model dissimilarity matrices. If we use Euclidean 
distance to compare activity patterns and assume that the different 
models account for orthogonal components of the activity patterns 
(e.g., separate sets of units), then we can account for the squared 
empirical Euclidean distance matrix as a linear combination of 
the squared model Euclidean distance matrices. (Note that this 
does not require the dissimilarity patterns of the models to be 
orthogonal; the linear model would use the dissimilarity variance 
uniquely explained by each model to disambiguate the explana-
tion of shared dissimilarity variance.) A more generally applicable 
approach would be to explain the empirical RDM as a weighted 
sum of monotonically transformed model dissimilarity matrices, 
where a separate monotonic transform is estimated for each model 
simultaneously with the weights.

Weighted representational readout analysis
So far we have thought of a region’s representation as character-
ized by a single RDM. Alternatively, we can consider the repre-
sentation as a high-dimensional structure that is viewed from 
different perspectives by the regions that read it out. If readout 
consists in multiple linear weightings of the representational 
units, then it amounts to a linear projection that can be likened 
to the transformation of a 3-D structure to a 2-D “view” of it. 
In this spirit, we can reverse the logic of the previous paragraph 
and see to what extent we can read out a particular dissimilarity 
structure from the representation by weighting the units before 
computing the RDM. Again, using the squared Euclidean distance 
yields a simple relationship: Each unit (e.g., a voxel or a neuron) 
yields a separate RDM. The overall squared Euclidean distance 
matrix is the sum of the single-unit squared Euclidean distance 
matrices. Now we can “account for” each model’s dissimilarity 
pattern as a linear combination of the single-unit dissimilarity 
matrices. This avenue can be construed as a generalization of 
linear discriminant analysis from a single contrast to a complex 
pattern of contrast predictions. It is interesting because of its 
neuroscientifi c motivation in terms of readout by other brain 
regions. As in linear discriminant analysis and classifi cation in 
general, independent test data will be needed to confi rm any rela-
tionships suggested by such a fi t.

CORE CONCEPTS FOR EXPERIMENTAL DESIGN
What experimental designs lend themselves to RSA? A distin-
guishing feature of RSA is its potential to simultaneously exploit 
the spatial and temporal richness of multi-channel brain-activity 
data. Although RSA can be applied to a wide range of conventional 
experimental designs, there may be little conceptual motivation 
for it in the context of certain experiments, e.g., a low-resolution 
block-design fMRI experiment that targets regional activation and 
averages across very different processes (e.g., perception of different 
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stimuli within a given category). The benefi ts of RSA will be greatest 
for condition-rich experimental designs targeting activity-pattern 
information with high-resolution measurement. In this section we 
describe novel types of experimental design that are feasible with 
RSA and optimally exploit its potential.

Condition-rich design
RSA is particularly useful in conjunction with condition-rich 
designs. One example of such a design is the 96-object-image 
experiment we presented to demonstrate the approach. We refer 
to a design as condition-rich if the number of effective experimental 
conditions (that is brain states to be discerned) is large. Condition-
rich designs approach the limit of the temporal complexity of the 
signal measured in order to amply sample the space of all possible 
conditions.

Within the classical approach of massively univariate activa-
tion-based analysis (Friston et al., 1994, 1995; Worsley and Friston, 
1995; Worsley et al., 1992), one way of enriching design has been to 
parameterize the conditions. The result is a larger number of condi-
tions that might not singly yield stable estimates, but the correla-
tion between condition parameters and brain activity – combining 
evidence across conditions – can be stably estimated. Such designs 
also lend themselves to RSA: The model dissimilarity matrices can 
be computed from the condition parameters.

However, RSA is not limited to designs whose conditions sam-
ple a predefi ned parameter space in a regular way. In RSA, the 
parametric statistical models describing activity variation across 
time are replaced by computational models exposed to the same 
experimental conditions. Regular parameterization may help focus 
the experiment on particular hypotheses, but RSA also accommo-
dates less restricted designs such as the 96-object-image design we 
use as an example here.

Ungrouped-events design
In the classical block-design approach to fMRI experimentation, an 
experimental block corresponding to one of the conditions typically 
includes a variety of brain states (e.g., corresponding to percepts of 
a variety of stimuli from the same category) that are to be averaged 
across. While differences between block-average activation can be 
very sensitively detected with this method, the average results will 
be ambiguous with respect to single-trial processing (Bedny et al., 
2007; Kriegeskorte et al., 2007). Equally importantly, the temporal 
capacity of the fMRI signal to discern a large number of separate 
brain states is largely wasted. In event-related designs (Buckner, 
1998), stimuli can appear in complex temporal sequences allowing 
for a wider range of experimental tasks. However, the experimental 
events are usually still grouped in condition sets and the variety of 
events forming a single condition is averaged across in the analy-
sis (e.g., by modeling each condition by a single predictor). The 
sequence of experimental events is often designed to maximize 
estimation effi ciency for the condition contrasts of interest. In that 
case the design itself will imply a grouping of the experimental 
events.

We propose to avoid any predefi ned grouping of experimental 
events (ungrouped-events design). Each experimental event (e.g., 
each stimulus) is treated as a separate condition (Figure 7; Aguirre 
2007; Kriegeskorte et al., 2007; Kriegeskorte et al., in press). The 

4-image experiment is an example of an ungrouped-events design. 
The 96-image experiment is an example of an ungrouped events 
design, which is also condition-rich.

One approach is to have events occur in a random sequence 
implying no grouping. In order to include a reasonable number 
of events, but still be able to discern the activity patterns they 
are associated with, we use a design with temporally overlapping 
but still separable single-trial hemodynamic responses here. Our 
example employs a design with a trial-onset asynchrony (TOA) 
of 4 s (Figure 7). The effects of varying the TOA are explored in 
Figure 11. A more detailed discussion of optimal event sequences 
for condition-rich designs (including ungrouped-events designs) 
is to be found in the Appendix (Section “Optimal Condition-Rich 
fMRI Design”).

For estimation of a given contrast of interest, a condition-rich 
ungrouped-events design with a random sequence will be less effi -
cient than a block-design or a sequence-optimized rapid event-
related design. In our view, however, the statistical cost is more 
than offset by the ability to group the events into arbitrary sets 
and, more generally, to study the rich space they populate and its 
relationship to the brain-activity patterns they are associated with. 
RSA provides an attractive method for exploring this rich empirical 
information and testing particular hypotheses.

Unique-events design and time-continuous experimentation
An ungrouped-events design does not group different experimen-
tal events into a condition set, but it may contain repetitions of 
identical experimental events. An extreme type of ungrouped-
events design would be a unique-events design, in which no 
experimental event is ever repeated. RSA can handle unique-
events designs just like any other design. This is an important 
property, because unique-events designs take the complexity of 
the conditions set to the limit of the temporal capacity of the 
measured signal. In addition, there are neuroscientifi c domains, 
where exact repetition of an experimental event is a questionable 
concept. Strictly speaking each experimental event in any experi-
ment – and in fact any experienced event at all – permanently 
changes the brain. In many studies, we may choose a design that 
minimizes such effects so that we can neglect them in the analysis. 
For studies of plasticity, however, it may be attractive to track 
changes to the system along with its activity dynamics. RSA in 
conjunction with a suitably plastic computational model could 
address this challenge.

We can go one step further and abolish the notion of discrete 
experimental events in favor of that of time-continuous experimen-
tation (e.g., Hasson et al., 2004). For time-continuous designs, we 
can treat each acquired volume as a separate condition and directly 
compute the RDM from the data. For each region of interest, the 
resulting RDM will then have a width and height corresponding to 
the number of time points. We refer to such a dissimilarity matrix as 
a time2 dissimilarity matrix. For fMRI data, the time2 dissimilarity 
matrix will refl ect the temporal characteristics of the hemodynamic 
response.

Time-continuous RSA is attractive for studies of time-continu-
ous perception of stimuli, including complex natural stimuli such 
as movies (Hasson et al., 2004), and, more generally, for studies 
of time-continuous interactions, such as playing computer games 
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FIGURE 11 | Design effi ciency as a function of trial-onset asynchrony for a 

96-condition fMRI design. This fi gure shows simulation results exploring how 
statistical effi ciency depends on the trial-onset asynchrony (TOA) under linear-
systems assumptions for a 96-condition design with one hemodynamic-
response predictor per condition and a random sequence of experimental 
events (including 25% null events for baseline estimation). We assume that 
about 50 min of fMRI data are to be collected in a single subject. The simulation 
suggests a simple conclusion: The more closely the trials are spaced in time, the 
higher the effi ciency will be (top panels) for single-conditions (cyan) and pairwise 
condition contrasts (red). Doubling the number of trials packed into the same 50-
min period, then, would improve effi ciency about as much as performing the 
whole experiment twice: decreasing the standard errors of the estimates 
roughly by a factor of sqrt(2). In other words, the standard errors are proportional 
to sqrt(TOA). (Why does not the greater response overlap decrease effi ciency? 

For an intuitive understanding, consider that although the greater response 
overlap for shorter TOAs correlates predictors, the greater number of event 
repetitions decorrelates them.) Importantly, however, the straightforward 
relationship suggested by the simulation rests on the assumption of a linear 
neuronal and hemodynamic response system. In reality, the effects of closely 
spaced events may interact at the neuronal level and the hemodynamic 
responses may also not behave linearly (e.g., three 16-ms stimuli at a TOA of 32-
ms are unlikely to elicit a hemodynamic response that is three times higher than 
that to a single such stimulus). The choice of TOA therefore requires an informed 
guess regarding the short-TOA nonlinearity for the particular experimental 
events used. For the 96-image experiment, we chose a TOA of 4 s. Details on 
the simulation and an intuitive explanation for the result are given in the 
Appendix (Section “Optimal Condition-Rich fMRI Design”), along with further 
discussion of design choices including the TOA.
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or interacting with a virtual-reality environment (Baumann et al., 
2003). Note that time-continuous experimentation allows for 
greater ecological validity (i.e., the subject’s experimental experi-
ence can be made more similar to experiences in natural envi-
ronments). However, time-continuous experimentation can also 
utilize stimuli and interactions that are unnatural and designed 
to address a particular hypothesis – trading ecological validity for 
experimental control.

DATA-DRIVEN AND HYPOTHESIS-DRIVEN REPRESENTATIONAL 
SIMILARITY ANALYSIS
RSA lends itself to a broad spectrum of analyses from data-driven 
(where results richly refl ect the data) to hypothesis-driven (where 
results are strongly constrained by theoretical assumptions and the 
data serve to test predefi ned hypotheses). On the former end of the 
spectrum, the RDM itself richly refl ects a given region’s representa-
tion. A multidimensional-scaling arrangement of the conditions 
set in 2D (Figures 1 and 4) provides a data-driven, exploratory 
visualization that can allow us to discover natural groupings within 
the representational space (Edelman et al., 1998). But RSA becomes 
distinctly hypothesis-driven when we test whether a predefi ned 
model fi ts a brain region’s representation (Figure 8). One hallmark 
of hypothesis-driven analysis is complexity reduction. When we test 
a model fi t by comparing two dissimilarity matrices, the voxel-by-
time data matrix is reduced to a single fi t parameter or the result 
of a statistical test.

The RDM at the front end of RSA certainly is a more data-
driven representation than a scalar measure of model fi t. But 
how rich is it exactly? That depends on the number of condi-
tions. Usually computing the RDM will reduce the amount of 
data. Consider a single-subject experiment with 96 conditions 
(as in our example here). Let’s assume we are analyzing a region 
of 100 voxels and the experiment has 500 time points. The data 
matrix has 100 × 500 = 50,000 numbers. The RDM (symmetrical 
about a diagonal of zeros) has (962 − 96)/2 = 4,560 parameters. 
Computing the RDM, thus, constitutes a complexity reduction. 
If we consider the time2 dissimilarity matrix, on the other hand, 
we have expanded the data matrix into a 500 × 500 matrix with 
(5002 − 500)/2 = 124,750 parameters.

Meaningful statistical summaries
In order to learn from the massive amounts of brain-activity data 
we can acquire today with techniques including fMRI as well as 
scalp and invasive multi-channel electrophysiological techniques 
and voltage-sensitive dye imaging, we need meaningful statistical 
summaries that relate a complex data set to systems-level theory. 
First, statistical summaries are needed to reduce the complexity of 
the effects and relate them to theory. Second, statistical summaries 
combine the evidence of many noisy measurements, thus helping 
us separate effects from noise.

The most obvious and widespread method of summarizing data 
is averaging. While potentially powerful, averaging applied too early 
in the analysis can remove the effects of greatest neuroscientifi c 
interest. In fMRI, for example, data are often locally averaged (i.e., 
smoothed) prior to mapping analysis. This removes fi ne-grained 
spatial-pattern effects that refl ect each functional region’s intrinsic 

representation (Kriegeskorte and Bandettini, 2007; Kriegeskorte 
et al., 2006). Similarly in the temporal dimension, grouped-
events designs (including block designs) average across very dif-
ferent experimental events, rendering results ambiguous with 
regard to single-trial processing (Bedny et al., 2007; Kriegeskorte 
et al., 2007).

Late combination of evidence
A central theme of RSA is late combination of evidence: In order 
to better exploit the complexity of the data toward neuroscientifi c 
insights, spatial as well as temporal averaging (across sets of dif-
ferent experimental events) is omitted. This does not mean that 
the analysis involves less combination of evidence for reduction of 
complexity. Instead the combination of the evidence occurs later 
on, in ways that are conceptually better motivated.

Evidence is combined in RSA, for example, when (1) the pat-
terns of activity within an extended region of interest are sum-
marized in an RDM, when (2) dissimilarity matrices for a given 
functional region are averaged across subjects, and when (3) the 
complex structure of the resulting group-average RDM is compared 
to model dissimilarity matrices (summarizing the region’s func-
tion by its goodness of fi t to several models or by the index of the 
best-fi tting model).

Combining evidence requires theoretical assumptions. If we 
take a step back to look at the empirical cycle as a whole, we can 
motivate late combination of evidence in terms of late commitment 
to theoretical assumptions.

Late commitment: Using theoretical assumptions to constrain 
analysis, not design
In the fi rst step of the empirical cycle, we strive to minimize the 
theoretical assumptions built into the experimental design. This 
approach is motivated by the observation that designs, e.g., of fMRI 
experiments, can be made much more versatile (allowing us to 
address more neuroscientifi c questions) at moderate costs in terms 
of statistical effi ciency (for addressing a given question). A general 
design that can address a 100 questions appears more useful than 
a restricted design that addresses a single question with slightly 
greater effi ciency.

Statistical power is afforded by combining the evidence – usually 
by averaging. When we decide on a grouping of experimental events 
(e.g., for a block design), we commit to a particular way of combin-
ing the evidence and thus give up versatility. Ungrouped-events 
designs allow us to combine the evidence in many different ways 
during analysis. First, this approach allows for exploratory analyses, 
which can (1) test basic assumptions of a fi eld, (2) usefully direct 
our attention to larger phenomena (in terms of explained variance), 
and (3) lead to unexpected discoveries. Second, ungrouped-events 
designs allow a broad set of theoretically constrained analyses to 
be performed on the same data. And third, as a consequence, such 
designs allow us to combine data across studies and research groups 
in order to address a particular question with a power otherwise 
unattainable. In the Appendix, we assess this third point, the poten-
tial of data sharing within subfi elds of neuroscientifi c inquiry, in 
detail.
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DISCUSSION
TO WHAT EXTENT DOES MEASURED PATTERN INFORMATION REFLECT 
NEURONAL REPRESENTATIONS?
A fundamental question in systems neuroscience is to what extent 
brain-activity patterns measured with different techniques refl ect 
neuronal pattern information. RSA characterizes pattern informa-
tion in terms of pattern similarity and, thus, provides one attractive 
avenue for addressing this issue. We will focus our discussion here 
on blood-oxygen-level-dependent fMRI (Bandettini et al., 1992; 
Kwong et al., 1992; Ogawa et al., 1990, 1992), but similar arguments 
hold for other modalities.

What pattern information will be shared between fMRI and 
neuronal activity is diffi cult to predict, because fMRI voxels sample 
neuronal activity through a complex spatiotemporal transform: 
the hemodynamics. If voxels refl ected simply the spatiotemporally 
local average of neuronal activity, then any neuronal pattern dif-
ferences in the attenuated high spatial and temporal frequency 
bands would be reduced or eliminated in the fMRI similarity 
structures. However, fMRI voxel sampling is likely to be more 
complex than local averaging and may have sensitivity to neuronal 
pattern information in unexpectedly high spatial (and possibly 
temporal) frequencies (consider Kamitani and Tong, 2005). The 
unexpected sensitivity of fMRI is encouraging, but also suggests a 
more complex transform from neuronal to fMRI patterns, making 
it more diffi cult to predict what aspects of neuronal information 
exactly are refl ected in fMRI patterns.

We used RSA to relate neuronal patterns recorded in monkey 
IT (Kiani et al., 2007) to fMRI patterns elicited by the same set of 
92 object images (the set also used in our example here) in human 
IT (Kriegeskorte et al., in press). Despite the confounding spe-
cies difference, results show a surprising match between the two 
dissimilarity matrices (linear correlation = 0.49, p < 0.0001). This 
indicates not only that monkey and human IT represent similar 
object-image information, but also that this information is simi-
larly refl ected in single-cell recordings and high-resolution fMRI, 
when analyzed with massively multivariate information-based 
techniques. The convergence of fMRI and neuronal recordings had 
not previously been addressed at the level of pattern information 
and our results are encouraging. Ultimately, however, assessing 
to what extent pattern information is shared between neuronal 
activity and fMRI will require simultaneous measurement in both 
modalities, just as for local activity (Logothetis et al., 2001; Shmuel 
et al., 2007).

It appears likely that high-resolution fMRI (Cheng et al., 2001; 
Duong et al., 2001; Harel et al., 2006; Hyde et al., 2001; Kriegeskorte 
and Bandettini, 2007; Yacoub et al., 2003) and cell recording will 
turn out to convey overlapping but non-identical components of 
the underlying neuronal pattern information. While fMRI is limited 
by hemodynamic signal confl uence yielding an ambiguous combi-
nation signal at each voxel, invasive electrophysiological techniques 
are limited by selective subsampling of neuronal responses. It will 
be interesting to see if fMRI provides us with merely a subset of the 
information recorded by implanted multi-electrode arrays or if it 
can also give us neuronal pattern information missing in a given 
array recording. RSA appears attractive for relating modalities and 
also for use in each modality, no matter what their relationship 
turns out to be.

RELATION BETWEEN RSA AND OTHER TOOLS OF PATTERN-
INFORMATION ANALYSIS
Multivariate techniques of pattern-information analysis have 
recently gained momentum in fMRI and electrophysiology (see 
list of citations in the Section “Introduction”). RSA shares a key 
feature with the cited pattern-information approaches: it is moti-
vated by the theoretical concept of distributed representation and 
targets activity-pattern information, combining evidence across 
space and time. However, RSA differs from the cited pattern-infor-
mation approaches in that it considers how the activity-pattern 
dissimilarity matrix relates to dissimilarity matrices predicted by 
theoretical models, i.e., a second-order isomorphism. The cited pat-
tern-information approaches, in contrast, attempt to demonstrate 
that each condition is associated with a distinct activity pattern, 
i.e., a fi rst-order isomorphism.

RSA can be thought of as a particular variant of pattern-infor-
mation analysis, which need not involve decoding or classifi cation 
of internal representations. But at the same time RSA can be con-
strued as a generalization of pattern-information analysis, where 
many pattern-contrast predictions are tested together. A test of 
the discriminability of the activity patterns associated with two 
conditions is handled as a special case, using a binary model dis-
similarity matrix7.

An important feature of RSA is the goal of understanding and 
quantitatively explaining the empirical RDM. This entails a healthy 
focus on the major variance-explaining components in the data. 
In classifi er-based pattern-information analysis, by contrast, we 
typically focus on a particular dimension defi ned by the sets of 
experimental conditions we set out to discriminate. Classifi er-based 
pattern-information analysis, therefore, typically has a stronger 
theoretical bias than RSA. However, we are free to trade off vari-
ance for bias by means of testing constrained model spaces. For 
example, instead of asking, which of a range of models best explains 
the FFA representational dissimilarity (RSA), we could ask simply if 
animacy can be decoded from the FFA response patterns (pattern-
information analysis). Or we could address the same smaller ques-
tion with RSA by asking if the animate–inanimate matrix explains 
any dissimilarity variance.

The simple implementation of RSA that we describe here is 
less sophisticated than classifi cation approaches in how it accounts 
for structured noise and nonlinear representational geometries. 
This may suggest the use of more complex dissimilarity measures. 
However, estimating nonlinear relationships requires substantial 
amounts of data. One strength of RSA is its ability to deal with 
and integrate information about a large number of conditions. 
For condition-rich experiments, the amount of data per condition 
pair will be small and techniques accounting for more complex 
geometries will likely need to combine information across many 
conditions in order to provide stable estimates.

7We would enter a 1 in the model dissimilarity matrix when the hypothesis predicts 
distinct activity patterns and a 0 otherwise. In order to obtain enough dissimilarity 
values for correlation of dissimilarities, we might need to use multiple activity-pat-
tern estimates obtained for replications of each condition. Consider the simplest 
case of a two-condition experiment. The lower triangle of the dissimilarity matrix 
would contain a single cell, rendering dissimilarity correlation impossible. Howe-
ver, we could split the data to get two independent activity-pattern estimates per 
condition, or we could use each trial as a separate estimate.
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RSA AND INFORMATION-THEORETIC QUANTIFICATION
Considering the RDM is motivated by the idea that it encapsulates, 
in an intuitive sense, the pattern information a region conveys about 
the experimental condition. It is natural to ask for formal infor-
mation-theoretic quantifi cation. It would be desirable to obtain 
pattern-information estimates (i.e., mutual information between 
experimental condition and spatiotemporal activity pattern) that 
do not depend on assumptions about the code (as pattern clas-
sifi cation, or “decoding”, approaches do). To this end, we could 
estimate a multivariate pattern distribution for each condition and 
compute the plug-in estimate of mutual information. But esti-
mates of high-dimensional distributions from small numbers of 
data points (as are available in fMRI in relation to the number of 
voxels) are highly susceptible to noise, unless constrained by strong 
assumptions. The diffi culty will grow with the number of condi-
tions. Modern approaches to estimation of mutual information 
circumvent explicit multivariate distribution estimates and take 
a graph-theoretical approach (Kraskov et al., 2004). In our hands, 
however, grasping for such generality in fMRI analysis has been 
associated with prohibitive penalties in terms of estimate stability. 
Nevertheless information-theoretic quantifi cation is an important 
direction for further exploration.

APPENDIX
OPTIMAL CONDITION-RICH fMRI DESIGN
How should the sequence of events be designed for a condition-
rich fMRI experiment like the 96-image experiment? The fi eld has 
developed sophisticated methods for designing experimental event 
sequences to optimize statistical effi ciency (e.g., Wager and Nichols, 
2003). These methods are general and apply to condition-rich 
designs as a special case. However, the large number of conditions 
has some consequences that merit consideration.

Our goal here is the estimation of (1) a response amplitude for 
each condition and (2) a response-amplitude contrast for each pair 
of conditions. We assume a linear hemodynamic response model 
(Boynton et al., 1996) to obtain a design matrix for the experi-
ment (Figure 7). Optimizing the event sequence so as to maximize 
the stability of these estimates will have two main consequences: 
(1) Events belonging to the same condition (identical events in 
ungrouped-events design) will become clustered in time. (This 
improves estimate stability because temporally overlapping hemo-
dynamic responses to successive trials will add up so as to increase 
the sum of squares, i.e., the predictor energy.) (2) Events will be 
sequenced so as to approximately orthogonalize the hemodynamic 
response predictors for all pairs of conditions. (This improves esti-
mate stability because it reduces mutual dependency for pairs of 
condition estimates, thus disambiguating the joint least-squares 
estimate.)

We will argue that in the context of condition-rich design, (1) 
temporal clustering may be undesirable, (2) random sequences may 
yield suffi ciently low predictor correlation, and (3) shorter TOA 
yields greater power, as long as linearity of the responses holds.

(1) Temporal clustering may be undesirable. For a condition-rich 
design, temporal clustering of conditions may not be desirable. 
Consider our 96-condition example. We will assume the realistic 
scenario that, within a single experimental session, we acquire 

about 50 min of fMRI data for the main experiment. At a TOA 
of 2 s (about the minimum if we are to avoid nonlinearities of 
the hemodynamic response), we can only repeat each condition 
about 12 times per session. Temporal clustering of such few rep-
etitions over a 50-min experiment is undesirable: it would entail 
that a given condition occurs only a handful of times (with two 
or more consecutive repetitions) over the course of the entire 
session, rendering temporal confounds (e.g., subject fatigue) a 
serious concern. This problem will be even more pronounced 
at longer TOAs (such as the 4-s TOA used in our experiment), 
because there will be even fewer repetitions. We prefer to distrib-
ute the repetitions of each condition equally across the experi-
ment. In our experiment here, we repeated each condition exactly 
once in each run, which has the added benefi t that failed runs 
do not create imbalances in the amount of data available for 
each condition.
(2) Random sequences may yield suffi ciently low predictor correlation. 
Sequence optimization can serve to orthogonalize predictors. How 
large a benefi t does this promise? Figure 11 explores design-effi -
ciency for 96-condition designs as a function of TOA. We used an 
unoptimized random sequence for each run (with 25% null events 
interspersed at random), concatenating such sequences to fi ll the 
50-min experimental session. The predictor correlation matrices 
for these unoptimized random sequences suggest that predictor 
correlation is already low. For short TOAs (e.g., 2 s), there is some 
room for improvement. For slightly longer TOAs (e.g., 4 s as used 
in the experiment here), predictor correlation depends mainly on 
the immediate temporal neighbors of each condition (because the 
hemodynamic response overlap is negligible for trials that have an 
intervening trial between them). In the 4-s TOA case, each condi-
tion is repeated six times in the 50-min experiment. Using random 
sequences, most conditions have no repeated temporal neighbors, 
about a third of the conditions have one repeated temporal neigh-
bor. This is refl ected in the predictor correlation matrix, which 
shows homogeneously low correlations (below 0.1) across pairs of 
conditions. Sequence optimization might bring the design slightly 
closer to the ideal of predictor orthogonality, but effi ciency gains 
will be very small, because there is little room for improvement. 
Practical considerations add to the argument in favor of using ran-
dom sequences: We may have to deal with failed runs. Moreover, 
during analysis we may want to divide the data into subsets of 
runs (e.g., odd runs as training set, even runs as test set). Sequence 
optimization should ideally anticipate these eventualities, thus 
complicating the process. In sum, event-sequence optimization 
should be considered in designing a condition-rich fMRI experi-
ment. However, in certain scenarios, such as the present example, 
the benefi ts may be negligible.
(3) Shorter trial-onset asynchrony yields greater power, as long as 
linearity holds. What is the optimal TOA for a condition-rich 
fMRI experiment? Figure 11 explores how statistical effi ciency 
depends on TOA for a 96-condition design using a random event 
sequence (including 25% null events). The simulation suggests 
a simple conclusion: The more closely the trials are spaced in 
time, the higher the effi ciency will be (Figure 11, top panels) for 
single-condition amplitude estimates (cyan) and pairwise ampli-
tude contrasts (red) – assuming linearity of the responses. The 
choice of TOA therefore requires an informed guess: it should 
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be the  shortest TOA, for which linearity holds for the particular 
experimental events used.

We now describe the simulation in detail and explain why 
the linear-systems assumption does not predict a greater cost of 
response overlap in time. We, again, assume that about 50 min of 
fMRI data are to be collected in a single subject in a given session. If 
the TOA is 8 s, we can repeat each of the 96 conditions three times 
(with 25% null events in each run). If the TOA is 4 s, we can repeat 
each of the 96 conditions six times, but now the hemodynamic 
responses clearly overlap. The greater number of repetitions in the 
measurement time increases design effi ciency. However, hemody-
namic-response overlap renders predictors nonorthogonal, which 
decreases design effi ciency. Predictor nonorthogonality is refl ected 
in the predictor correlation matrices (Figure 11, bottom row) for a 
TOA of 2 s (left), 4 s (middle), and 8 s (right). We use the standard 
general linear model framework to predict the standard errors of 
the estimates of (1) response amplitudes for single conditions (cyan 
in top row) and (2) contrasts between pairs of conditions (red in top 
row). The standard error estimate is sqrt(var(residuals) × cT(XTX)−1c
), where c is the contrast of interest and X the design matrix. We plot 
sqrt(cT(XTX)−1c), which can be interpreted as the standard error in 
noise standard deviation units (sqrt(var(residuals))). The standard 
error is plotted as a function of the TOA (inversely related to the 
number of repetitions, as each simulation assumes the same overall 
measurement duration of 50 min). The simulation suggests that 
the loss due to hemodynamic overlap is negligible. This is because 
shorter TOAs also allow more repetitions: A given condition will 
overlap more, but also be repeated more (and overlap with differ-
ent other conditions on each repetition). As a result, doubling the 
number of trials roughly divides the standard error by sqrt(2), as 
expected for no overlap. For shorter TOAs, however, the standard 
error of pairwise contrast estimates varies more across contrasts, 
because some pairs of conditions overlap more than others (for 
long TOAs, there is no overlap for any pair of conditions). The 
simulation is based on the assumption of a linear system, which will 
break down for short TOAs, because responses to successive trials 
will interact. Such interactions may occur as part of the hemody-
namics and as part of the neuro-cognitive processes occurring in 
the experiment. For each experiment, thus, we need to judge how 
closely we think we can space the trials and still rely on the linear-
systems assumption for analysis.

Our example here employs a design with a TOA of 4 s (Figure 7). 
Because this is faster than a slow event-related design (i.e., a design 
with nonoverlapping hemodynamic responses to successive events, 
TOA ≥ 12 s), but slower than most rapid event-related designs 
(which have overlapping hemodynamic responses, TOA < 4 s), we 
refer to it as a quick event-related fMRI design. If linearity holds, 
a more rapid design, e.g., using a TOA of 2 s should yield greater 
statistical effi ciency. Estimating single-trial responses would be 
compromised for a 2-s TOA, but this may not be considered a 
drawback.

Should trials be temporally jittered on a grid fi ner than the 
minimal TOA? Temporal jittering is important when the goal is 
the estimation of the shape of the hemodynamic response (e.g., 
using a fi nite-impulse-response model). Here our goal is the esti-
mation of response amplitudes and pairwise amplitude contrasts 

under the assumption of a shape for the hemodynamic response 
(Boynton et al., 1996). Fine-scale temporal jittering does not in 
general improve estimate stability in this context.

RSA AND DATA SHARING WITHIN SUBFIELDS OF NEUROSCIENTIFIC 
INQUIRY
Data sharing has great potential in many fi elds including the dif-
ferent disciplines of neuroscience. For human fMRI, the National 
fMRI Data Center (Van Horn et al., 2005) has pioneered the central 
facilitation of data sharing. A problem to be overcome is the com-
plexity of individual experiments to be described and understood 
by other researchers. The fact that experiments are often designed 
to test particular hypotheses reduces the versatility of the data. 
The scientist reanalyzing a given data set may fi nd that particular 
details of the design are detrimental to answering the question 
to be addressed by the reanalysis. This can render reanalysis less 
attractive than performing a new experiment designed specifi cally 
for the hypothesis at hand.

The approach suggested here of keeping design more general 
with respect to the hypotheses to be addressed enhances the poten-
tial for data sharing. In order to overcome the disconnect impeding 
data sharing today, greater generality of design needs to be com-
pounded by data-sharing efforts specialized to specifi c subfi elds. 
This promises collaborative synergies previously diffi cult to imag-
ine. For example, it may allow us to test a given novel hypothesis 
instantly using a large amount of data acquired by multiple groups 
over a number of years. Within subfi elds, experimental designs are 
often similar in many of their generic features. This is certainly 
the case for subfi elds of the fi eld of visual perception. Consider 
object-vision fMRI, where the only essential differences between 
a large number of experiments concern the images presented and 
their grouping. (There are certainly studies with unique designs or 
task manipulations. However, a sizable subset could be assimilated 
to a generic approach.) Essential similarities of design are also evi-
dent within subfi elds of the fi elds of auditory perception, memory 
research, higher cognition, and motor control.

Within object-vision fMRI, it would be useful to collect stimulus 
images along with the response patterns they elicit in individual 
subjects. The collection of experimental data in this format of 
stimulus pattern and response pattern should be combined with 
the collection of computational models (e.g., in Matlab) capable of 
processing arbitrary stimulus images. We envision a phase of infor-
mal data and model sharing (during which formats will be negoti-
ated) to culminate in the development of a web-based collaboration 
portal for object-vision fMRI (and perhaps other modalities). The 
object-vision fMRI portal would allow downloading of data sets and 
computational models as well as online testing of computational 
models and theoretical hypotheses. As a result, separate popula-
tions of theoretical and experimental neuroscientists could relate 
their contributions via an information-rich quantitative interface. 
On the one hand, this will enable individuals to specialize in either 
theoretical or experimental work, while keeping the other aspect 
an integral part of their quantitative analyses. On the other hand, it 
will empower researchers interested in both computational theory 
and experimental work to take their transdisciplinary approach to 
another level.
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ADDITIONAL STATISTICAL TESTS FOR RSA
There is an extended literature on fi nding lower-dimensional repre-
sentations on the basis of dissimilarity or distance matrices. Popular 
techniques include MDS (Kruskal and Wish, 1978; Shepard, 1980; 
Torgerson, 1958) and clustering algorithms (e.g., Johnson, 1967; 
von Luxburg, 2007), as well as nonlinear manifold-learning tech-
niques such as isomap (Tenenbaum et al., 2000) and locally linear 
embedding (Roweis and Saul, 2000). However, we are not aware 
of a literature on statistical testing of the relationships between 
two or more dissimilarity matrices. Analysis of RDM relationships 
is an interesting special case of multivariate analysis, where the 
space typically has a very large number of the dimensions (4,560 
in our 96-condition example), and those dimensions are related 
in a particular way – as each corresponds to a pair of conditions. 
We will briefl y discuss some basic statistical tests for dissimilarity 
matrices that have yet to be developed (or found in the literature 
in case they exist).

Difference between two dissimilarity matrices
We have proposed a randomization procedure for testing the relat-
edness of two dissimilarity matrices (Step 5). A separate statistical 
question is whether two dissimilarity matrices are different. Why is 
this a separate question? First, a failure to fi nd a signifi cant relatedness 
does not imply that there is no relation; the noise in the data may just 
obscure the effect. Second, multivariate entities such as dissimilarity 
matrices can be at once related and distinct – just like two people (e.g., 
brothers) can be related without being identical. In order to test the 
difference between two dissimilarity matrices, we need to estimate 
the distribution of the measure of fi t (e.g., correlation between the 
matrices) under the null hypothesis that the two dissimilarity matri-
ces are identical. The measure of fi t will vary due to measurement 
noise affecting one or both dissimilarity matrices.

Difference in fi t of two model dissimilarity matrices to a brain-data 
dissimilarity matrix
We may wish to assess whether one model RDM fi ts the data RDM 
for a given brain region better than another one. The previously dis-
cussed tests do not have direct implications for this one. Consider, 
for example, a case in which both models are signifi cantly related 
to and signifi cantly different from the data RDM. One of them 
may still fi t the data signifi cantly better (given measurement noise) 
than the other. Figure 8 shows two bar graphs of RDM model 
fi ts (to EVC and FFA). The standard-error bars are estimated as 
the standard deviation of the fi t parameter obtained for bootstrap 
resamplings of the conditions set. Bootstrap resampling could also 
be used for a formal test of the difference between two models in 
fi tting a data RDM.

Inference from experimental sample of conditions to the population of 
conditions
Statistical inference in neuroscience usually generalizes within sub-
jects (i.e., to potential replications of the experiment with the same 
subjects) or across subjects (i.e., to the population the subjects 
were randomly selected from). Both of these forms of inference 
can be performed in RSA, but the methods have yet to be devel-
oped. In addition, condition-rich design promises the possibility of 

 performing statistical inference to generalize from the  experimental 
conditions actually used in the experiment to the population of 
experimental conditions the actual conditions were randomly 
selected from. Bootstrap resampling of the conditions set (as used 
to compute the standard-error bars in Figure 8) is one method of 
estimating the distribution of RDM fi ts for random sets of experi-
mental conditions. Formal statistical inference to the conditions 
population is an exciting topic for further research.

A MOTIVATION FOR THE USE OF RANK-CORRELATION DISTANCE IN 
COMPARING REPRESENTATIONAL DISSIMILARITY MATRICES
Given the nature of the computational and conceptual models 
and the noise affecting the brain dissimilarity matrices, we can-
not in general rely on a direct match of the dissimilarity mag-
nitudes between models and regions. The Euclidean distance 
therefore does not appear appropriate for comparing dissimilarity 
matrices, unless the matrices are fi rst normalized in some way. 
Normalization could consist in a rank-transform of each RDM 
(i.e., replacing each value by its rank in the context of all the 
other values in the matrix). This yields a uniform distribution 
of dissimilarity values, which conserves the order. Alternatively, 
we could impose a Gaussian distribution of dissimilarities, again 
preserving the order8.

Instead of normalizing each RDM before computing Euclidean 
distances, we could choose a distance measure that implies a nor-
malization, for example correlation distance, i.e., 1 − r. If we expect 
the true relationship between the dissimilarity values in two matri-
ces to be linear, we can use the Pearson linear correlation coef-
fi cient to compute r. Whenever one of the matrices is of merely 
ordinal scale or a nonlinear monotonic relationship between the 
dissimilarities is plausible, a rank correlation coeffi cient is more 
appropriate.

Another line of argument suggests using rank correlation to 
compare brain and model dissimilarities, even when a linear rela-
tionship between the true dissimilarities is expected. The argument 
is based on the effect of activity-pattern noise on a brain region’s 
RDM. We assume (1) that the activity-patterns are high-dimen-
sional (hundreds or thousands of values in each activity pattern), 
and (2) that the activity pattern noise is additive, independent of 
the activity patterns, and isotropic. The high dimensionality of the 
activity-pattern space has a desirable consequence (a blessing of 
dimensionality, if you will): The displacement of each true activity 
pattern by an additive noise pattern is likely to be (1) approxi-
mately orthogonal to each of the activity-pattern differences and to 
each other noise displacement, and (2) of approximately constant 
Euclidean length. The approximate orthogonality results from the 
fact that there are so many directions in a high-dimensional space 
and most of them are approximately orthogonal to any given direc-
tion. The approximately constant length results from the fact that 
the variability of the displacements’ Euclidean lengths (relative to 

8Gaussianization may be a useful transformation before averaging dissimilarity 
matrices (e.g., across sessions or subjects). Because the resulting distances between 
dissimilarity matrices are not limited in range (as is the case for correlation distance 
or any rank-transformed distance), the distribution of noise displacements in RDM 
space may be closer to isotropic, rendering the average a more meaningful measure 
of central tendency.
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their mean length) becomes smaller and smaller as dimensional-
ity increases. We can, thus, think of the activity-pattern noise as 
affecting the Euclidean distance matrix (condition-by-condition) 
approximately as follows: d

i
′ = sqrt(d

i
2 + 2c2), where d

i
 are the true 

distances, d
i
′ the approximate distance estimates from noisy data, i 

the condition-pair index, and c the norm of the noise  displacement 
affecting each activity-pattern estimate. The activity-pattern noise, 
thus, places the squared Euclidean distances on a pedestal. As a 
result, the Euclidean distance matrix is nonlinearly, but monotoni-
cally transformed. The transform is monotonic because none of the 
three operations (squaring, adding c, and taking the square root) 
changes the order of the values. The most prominent features of 
the transform are that the values are scaled down (smaller variance 
of dissimilarities across the matrix) and shifted up (greater mean 
dissimilarity).

In practice, the effect of the activity-pattern noise on the RDM 
will not precisely conform to this prediction, (1) because activity-
pattern dimensionality is fi nite, and therefore the noise displace-
ments of the activity patterns will not be of exactly constant length 
or exactly orthogonal to the true pattern differences, (2) because 
the assumptions about the noise may not hold, and (3) because we 
may use a distance other than Euclidean distance (e.g., correlation 
distance) for the activity-pattern dissimilarity matrix. Nevertheless, 
this relationship may hold approximately. The expected prominent 
shift up of all values in the RDM and its nonlinear and approxi-
mately monotonic transform suggest using a rank-correlation 
distance (e.g., 1 − Spearman rank correlation) for comparing rep-
resentational similarity matrices.

METHODOLOGICAL DETAILS
fMRI EXPERIMENTS
The results shown here to demonstrate RSA have not been presented 
before. However, the experiments have been previously described 
and analyzed to address different questions in Kriegeskorte et al. 
(2007; 4-image experiment) and Kriegeskorte et al. (in press; 96-
image experiment), where further experimental details can be 
found.

Ungrouped-events designs and tasks
4-Image experiment. We performed an ungrouped-events design 
using 4 object photos as stimuli. The particular stimuli are shown 
in Figure 1. Subjects were familiarized with the four images before 
the experiment and instructed to continually fi xate a central cross, 
which was always visible, and to perform an anomaly-detection task 
during the experiment. On 12% of the trials of each experimental 
run, subtle variations of the four images were presented. In each 
anomalous version, the global shape of the object as well as several 
details were slightly distorted. Subjects were asked to press a button 
placed underneath their right index fi nger on a regular trial and 
a button underneath their left index fi nger when they detected an 
anomalous image. The task served to motivate subjects to attend to 
each image presentation even after many repetitions and allowed us 
to monitor attentive viewing. We used a rapid event-related design 
with a basic trial duration of 3 s (minimal TOA), corresponding to 
two functional volumes of time to repeat (TR) = 1.5 s. The event 
sequence was optimized for estimation of the contrasts between 
the responses to the four original images by a method based on 

a genetic algorithm (Wager and Nichols, 2003). Each image was 
presented for 400 ms. In each run, there were 63 presentations of 
each of the four original images, 33 presentations of anomalous 
versions of the images and nine null trials, on which the image 
presentation was omitted and the fi xation cross remained visible. 
The total number of 3-s time slots was, thus, 4 × 63 + 33 + 9 = 294, 
and the duration of the run including two empty time slots at the 
end was (294 + 2) × 3 s = 14.8 min.

96-Image experiment. We performed an ungrouped-events design 
using 96 object photos as stimuli. The stimuli were chosen from the 
set used in Kiani et al. (2007), so as to include human and animal 
bodies (including faces) as well as natural and artifi cial objects. 
Stimuli were run-unique with each image presented exactly once 
in each run. The stimuli were presented at a width of 2.9° visual 
angle for a duration of 300 ms at a minimal TOA of 4 s (Figure 7). 
For estimation of baseline activity, the sequence also included null 
events (25% of trials) with no stimulus presented. Stimuli were 
presented in random order (no sequence optimization) on a con-
stantly visible uniform gray background while subjects fi xated a 
white fi xation cross. Subjects performed a color-discrimination 
task: During stimulus presentation the fi xation cross turned either 
green or blue and the subject responded with a right-thumb button 
press for blue and a left-thumb button press for green. We used a 
different random event sequence on each of up to 18 runs (spread 
over up to three fMRI sessions) per subject. The fi xation-cross 
changes to blue or green were chosen according to an independ-
ent random sequence. Stimuli were centered with respect to the 
fi xation cross.

fMRI measurements
4-Image experiment. We acquired 15 transversal functional slices 
with a Siemens Magnetom Trio scanner (3 T) using a single-shot 
gradient-echo echo-planar-imaging (EPI) sequence and a standard 
birdcage headcoil. The imaged volume consisted in a 3-cm thick 
temporal-occipital slab including early visual regions as well as the 
entire ventral visual stream. The pulse-sequence parameters were 
as follows: in-plane resolution: 2 × 2 mm2, slice thickness: 2 mm 
(no gap), slice acquisition order: interleaved, fi eld of view (FoV): 
256 × 256 mm2, acquisition matrix: 128 × 128, TR: 1.5 s, time to 
echo (TE): 32 ms, fl ip angle (FA): 75°. A functional run lasted 
14.8 min. Each subject underwent a single imaging session includ-
ing two functional runs and a high-resolution T1-weighted ana-
tomical magnetization prepared rapid gradient echo (MPRAGE) 
scan lasting 9.8 min (192 slices, slice thickness: 1 mm, TR: 2.3 s, 
TE: 3.93, FA: 8°, FoV: 256 × 256 mm2, matrix: 256 × 256). The 
experiments were performed at the Donders Centre for Cognitive 
Neuroimaging (Nijmegen, The Netherlands).

96-Image experiment. Blood-oxygen-level-dependent measure-
ments were performed at high spatial resolution using a 3T GE 
HDx MRI scanner. For signal reception, we used a receive-only 
whole-brain surface-coil array (16 elements, NOVA Medical Inc., 
Wilmington, MA, USA). Twenty-fi ve 2-mm axial slices (no gap) 
were acquired, covering the occipital and temporal lobe, using sin-
gle-shot interleaved gradient-recalled EPI. Imaging parameters were 
as follows: EPI matrix size: 128 × 96, voxel size: 1.95 × 1.95 × 2 mm3, 
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TE: 30 ms, TR: 2 s. Each functional run consisted of 272 volumes 
(9 min and 4 s per run). Four subjects were scanned in two separate 
sessions each, resulting in 11 to 14 runs per subject, yielding a total 
of 49 runs (equivalent to 7 h, 24 min, and 16 s of fMRI data). As 
an anatomical reference, we acquired high-resolution T1-weighted 
whole-brain anatomical scans with an MPRAGE sequence. Imaging 
parameters were as follows: matrix size: 256 × 256, voxel size: 
0.86 × 0.86 × 1.2 mm3, 124 slices.

Data preprocessing
The fMRI data sets were subjected to slice-scan-time adjustment and 
head-motion correction (in this order) using the BrainVoyagerQX 
software package (R. Goebel, Maastricht, The Netherlands). (1) 
Slice-scan-time adjustment was performed by resampling the time 
courses with linear interpolation such that all voxels in a given vol-
ume represent the signal at the same point in time. (2) Small head 
movements were automatically detected and corrected by utiliz-
ing the anatomical contrast present in functional MR images. The 
Levenberg–Marquardt algorithm was used to determine translation 
and rotation parameters (six parameters) that minimize the sum of 
squares of the voxelwise intensity differences between each volume 
and the fi rst volume of the fi rst run of each session. Each volume 
was then resampled using trilinear interpolation in 3D space so 
as to align it with the fi rst volume of the fi rst run of the session. 
All further analysis was conducted in Matlab. The cortical surface 
reconstruction in Figure 1 was performed with the AFNI-SUMA 
software package (R. Cox and Z. Saad, Bethesda, MD, USA).

Extracting condition responses by univariate linear modeling
We concatenated the runs within a session along the temporal 
dimension. For each voxel, we performed a single univariate lin-
ear model fi t to extract an activity-amplitude estimate for each of 
the 96 stimuli. The model (Figure 7) included a hemodynamic-
response predictor for each of the 96 stimuli. Since each stimulus 
occurred once in each run, each of the 96 predictors had one hemo-
dynamic response per run and extended across all within-session 
runs included. The predictor time courses were computed using a 
linear model of the hemodynamic response (Boynton et al., 1996) 
and assuming an instant-onset rectangular neural response dur-
ing each condition of visual stimulation. For each run, the design 
matrix included these stimulus predictors along with six head-
motion-parameter time courses, a linear-trend predictor, a 6-pre-
dictor Fourier basis for nonlinear trends (sines and cosines of up to 
three cycles per run) and a confound-mean predictor. Trends were, 
thus, modeled by a separate set of predictors for each run. The trend 
predictors for a particular run had zero entries for all other runs 
along time. For head-motion models and confound means as well, 
separate predictors accounted for each run (Figure 7). Because of 
the large amount of data concatenated along the temporal dimen-
sion for each session, the model fi tting was performed in spatial 
chunks. For each of the 96 stimuli, we converted the activity-ampli-
tude (beta) estimate map into a t map. The resulting 96 t maps 
were used for RSA.

Defi nition of regions of interest
All regions of interest (ROIs) were defi ned on the basis of independ-
ent experimental data. In the 4-image experiment (Kriegeskorte 

et al., 2007), we used a subset of the main-experimental data to 
defi ne the FFA (Kanwisher et al., 1997) by means of the contrast 
faces minus buildings. In the 96-image experiment (Kriegeskorte 
et al., in press), we defi ned FFA by means of a separate block-design 
experiment including blocks with faces, places and objects (see 
below for details on the localizer experiment). The FFA was defi ned 
by the contrast faces minus objects. The resulting t contrast map was 
thresholded so as to defi ne FFA at a range of sizes (for details, see 
Kriegeskorte et al., in press). To defi ne EVC, we selected the most 
visually responsive voxels within a manually defi ned anatomical 
mask selecting an extended cortical region around the calcarine 
sulcus. Visual responsiveness was assessed using the t map for the 
average response to the 96 images as assessed for one third of the 
runs within each session. The remaining runs were used to per-
form RSA on the ROI. (Since visual responsiveness is orthogonal 
to the effects of interest here, the data splitting may not be crucial 
for the present analyses. However, we prefer to consistently use 
separate data sets for defi ning ROIs, because it allows us to defi ne 
ROIs by analyses related to the analyses performed on the ROIs. 
Using the same data in this context would render the ROI analysis 
circular.)

Localizer block-design experiment. Along with the 96-image 
experiment, we performed a functional localizer experiment 
using the same fMRI sequence as for the 96-image main experi-
ment. Subjects viewed grayscale photos of faces, places, and 
objects presented in category blocks. Each block lasted 30 s 
(SOA: 1 s; stimulus duration: 700 ms), alternating with 20-s 
fi xation blocks. Three blocks were presented for each stimulus 
category (face, place, object), resulting in a total run duration 
of 7 min and 50 s. Stimuli were presented on a constantly vis-
ible uniform black background while subjects fi xated a white 
fi xation cross. Subjects continually fi xated a central cross and 
performed a one-back repetition-detection task on the images, 
responding with a left-thumb button press for each consecutive 
repetition (three to fi ve repetitions per block). Each stimulus 
was only presented once, except for the immediate repetitions 
to be detected in the one-back task. Stimuli were centered with 
respect to the  fi xation cross.

Subject-group statistics
In order to combine information across subjects we simply aver-
age the dissimilarity matrices computed for each subject sepa-
rately. Note that this allows the representational patterns to be 
unique in each subject, while requiring consistency across subjects 
at the level of the similarity structure. As an alternative to averag-
ing across subjects, one could compute the RDM on the union of 
ROI voxel sets across subjects (group-brain method). These two 
alternatives are similar but not equivalent for correlation distance. 
Computing a separate RDM for each subject will be required if 
generalization to the population is to rely on a random-effects 
analysis. A fi xed-effects analysis will afford greater statistical 
sensitivity. However, generalization to the population will then 
depend on the assumption that the brain function under study 
has a neuronal mechanism consistent across the population. This 
assumption may be reasonable for basic visual functions shared 
even across species.



Frontiers in Systems Neuroscience www.frontiersin.org November 2008 | Volume 2 | Article 4 | 26

Kriegeskorte et al. Representational similarity analysis

MODEL REPRESENTATIONS OF THE STIMULI
We processed our stimuli to obtain their representations in a 
number of low-level models. We then analyzed these model rep-
resentations in the same way as the brain-activity data. Each image 
was converted to a representational vector as described below for 
each model. As for the brain-activity data, each representational 
vector was then compared to each other representational vector by 
means of 1 − r as the dissimilarity measure (where r is the Pearson 
linear correlation.

Color image (CIELAB). The RGB color images (175 × 175 pixels) 
were converted to the CIELAB color space, which approximates 
a linear representation of human perceptual color space. Each 
CIELAB image was then converted to a pixel vector (175 × 175 × 3 
numbers).

Luminance image. The RGB color images (175 × 175 pixels) were 
converted to luminance images. Each luminance image was then 
converted to a pixel vector (175 × 175 numbers). We addition-
ally used smoothed versions of these images (low-passed), which 
were computed by convolving the images with a Gaussian kernel 
of 11.75 pixels (0.2° visual angle) full width at half maximum. 
We also used high-passed versions of the images, which were the 
complements of the low-passed versions (original image minus 
low-passed version).

Binary silhouette image. The RGB color images (175 × 175 pix-
els) were converted to binary silhouette images, in which all back-
ground pixels had the value 0 and all fi gure pixels had the value 1. 
Each binary silhouette image was then converted to a pixel vector 
(175 × 175 binary numbers).

CIELAB joint histogram (6 × 6 × 6 bins). The RGB color images 
(175 × 175 pixels) were converted to the CIELAB color space. The 
three CIELAB dimensions (L, a, b), were then divided into 6 bins of 
equal width. The joint CIELAB histogram was computed by count-
ing the number of fi gure pixels (gray background left out) falling 
into each of the 6 × 6 × 6 bins. The joint histogram was converted 
to a vector (6 × 6 × 6 numbers).

V1 model. The luminance images (175 × 175 pixels, 2.9° vis-
ual angle) were given as input to a population of modeled V1 
simple and complex cells (Kiani et al., 2007; Lampl et al., 2004; 
Riesenhuber and Poggio, 2002). The receptive fi elds (RFs) of sim-
ple cells were simulated by Gabor fi lters of 4 different orienta-
tions (0°, 90°, −45°, and 45°) and 12 sizes (7–29 pixels). Cell RFs 
were distributed over the stimulus image at 0.017° intervals in 
a cartesian grid (for each image pixel there was a simple and a 
complex cell of each selectivity that had its RF centered on that 
pixel). Negative values in outputs were rectifi ed to 0. The RFs of 
complex cells were modeled by the MAX operation performed 
on outputs of neighboring simple cells with similar orientation 
selectivity. The MAX operation consists in selecting the strong-
est (maximum) input to determine the output. This renders the 
output of a complex cell invariant to the precise location of the 
stimulus feature that drives it. Simple cells were divided into four 

groups based on their RF size (7–9, 11–15, 17–21, and 23–29 
pixels) and each complex cell pooled responses of neighboring 
simple cells in one of these groups. The spatial range of pooling 
varied across the four groups (4 × 4, 6 × 6, 9 × 9, and 12 × 12 pix-
els for the four groups, respectively). This yielded 4 (orientation 
selectivities) × 12 (RF sizes) = 48 simple-cell maps and 4 (orien-
tation selectivities) × 4 (sets of simple-cell RF sizes pooled) = 16 
complex-cell maps of 175 × 175 pixels. All maps of simple and 
complex cell outputs were vectorized and concatenated to obtain 
a representational vector for each stimulus image.

HMAX-C2 model based on natural image fragments. This model 
representation developed by Serre et al. (2005) builds on the com-
plex-cell outputs of the V1 model described above (implemented 
by the same group). The C2 features used in the analysis may be 
comparable to those found in primate V4 and posterior IT. The 
model has four sequential stages: S1–C1–S2–C2. The fi rst two stages 
correspond to the simple and complex cells described above, respec-
tively. Stages S2 and C2 use the same pooling mechanisms as stages 
S1 and C1, respectively. Each unit in stage S2 locally pools infor-
mation from the C1 stage by a linear fi lter and behaves as a radial 
basis function, responding most strongly to a particular prototype 
input pattern. The prototypes correspond to random fragments 
extracted from a set of natural images (stimuli independent of 
those used in the present study). S2 outputs are locally pooled by 
C2 units utilizing the MAX operation for a degree of position and 
scale tolerance. A detailed description of the model (including the 
parameter settings and map sizes we used here) can be found in 
Serre et al. (2005). The model, including the natural image frag-
ments, was downloaded from the author’s website in January 2007 
(for the current version, see http://cbcl.mit.edu/software-datasets/
standardmodel/index.html).

Radon transform. As an example of a model inspired by image 
processing, we included the Radon transform, which has been 
proposed as a functional account of the representation of visual 
stimuli in the lateral occipital complex (Wade and Tyler, 2005). 
The Radon transform of a 2-D image is a matrix, each column 
of which corresponds to a set of integrals of the image intensities 
along parallel lines of a given angle. We used the Matlab func-
tion radon to compute the Radon transform for each luminance 
image.
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