
Frontiers in Systems Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 14 | 1

SYSTEMS NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 26 October 2009
doi: 10.3389/neuro.06.014.2009

et al., 2006) and the Iterative Shape Averaging (ISA) procedure 
developed to generate the honeybee standard brain (Rohlfi ng et al., 
2001; Brandt et al., 2005). This study concluded that the VIB pro-
cedure using a global and a local rigid transformation followed by 
a local nonrigid transformation preserves anatomical variability, 
whereas the ISA procedure using an affi ne transformation followed 
by iterative nonrigid registrations reduces the variability.

The digital brain atlases of these four insects are based on 
common neuropil substrates like the protocerebrum including 
the optic lobes, the central body and the mushroom bodies, the 
deutocerebrum with the antennal lobes, and the tritocerebrum. 
Additional structures included in two or three of the atlases are 
the protocerebral bridge, anterior optic tubercles, lateral horns and 
the suboesophageal ganglion, the latter fused with the brain in the 
fl y, the honeybee and the moth. These structures are involved in 
visual, olfactory and gustatory information processing as well as 
 associative learning and memory formation. They are linked by 
neurons mediating information from one structure to the next 
where the information is further processed, thus forming networks 
within and between the different brain structures. In order to 

INTRODUCTION
Challenged by the need to integrate the rapidly growing data in 
neuroscience, digital brain atlases have become an important tool 
serving as a database for neural structures with their three dimen-
sional spatial information. The intention is to provide common 
frameworks into which data from different brain preparations can 
be registered and spatially related. As the scientifi c record includes 
data from many animal species, digital brain atlases of several ver-
tebrates and invertebrates have been made (Toga and Thompson, 
2001; Rein et al., 2002; Toga, 2002; Van Essen, 2002; Brandt et al., 
2005; Kurylas et al., 2008; Jundi et al., 2009). In insects, three dimen-
sional digital brain atlases have been generated for four species; 
the population-based quantitative atlas of the fruit fl y Drosophila 
melanogaster (Rein et al., 2002), the average shaped standard atlas 
of the honeybee Apis mellifera (Brandt et al., 2005) and the locust 
Schistocerca gregaria (Kurylas et al., 2008), and the recently made 
standard brain atlas of the hawkmoth Manduca sexta (Jundi et al., 
2009). In creating the locust brain atlas two procedures were used 
for comparison, the Virtual Insect Brain (VIB) procedure initially 
developed for standardisation of the fruit fl y neuroanatomy (Jenett 
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understand how the neuronal networks operate, it is critical to 
clarify the connectivity between physiologically and morphologi-
cally characterised neurons in the circuits. Revealing such details 
is a very elaborate process requiring a preparation accessible for 
in vivo recordings of identifi able neurons. Particularly suited for 
these examinations are the insects. Their nervous system is eas-
ily accessible for intracellular electrophysiological recordings. 
Combined with staining the entire morphology of the neurons 
can be precisely determined and three dimensionally visualised in 
the individual brain. In addition the brain is small enough to be 
studied as a whole, avoiding the problem of cutting neurons pro-
jecting out of a section. The number of identifi ed neurons is large 
and growing, like neurons of the visual system in the fl y Calliphora 
vicina and the locust Schistocerca gragaria (Borst and Haag, 2002; 
Heinze and Homberg, 2007), the olfactory system in a number of 
species (Kanzaki et al., 1989; Heinbockel et al., 1999; Lei et al., 2001; 
Müller et al., 2002; Reisenman et al., 2005; Rø et al., 2007; Yamagata 
et al., 2007) auditory system of the crickets (Poulet and Hedwig, 
2006) the mushroom bodies in the honeybee (Mauelshagen, 1993; 
Rybak and Menzel, 1998) as well as neuromodulatory neurons and 
descending neurons (Kanzaki et al., 1991; Hammer, 1993; Bräunig 
and Pfl üger, 2001). Consequently the need for a standardized 
brain model as a tool for organizing and analyzing data has been 
substantial in many species. In addition to the three dimentional 
digital standard atlases providing common frames for integrat-
ing neurons in the entire brain, separate atlases of the antennal 
lobes have been made in a number of species, including heliothine 
moths (Rospars and Chambille, 1981; Flanagan and Mercer, 1989; 
Stocker et al., 1990; Galizia et al., 1999; Laissue et al., 1999; Rospars 
and Hildebrand, 2000; Chiang et al., 2001; Berg et al., 2002; Sadek 
et al., 2002; Reischig and Stengl, 2002; Smid et al., 2003; Greiner 
et al., 2004; Huetteroth and Schachtner, 2005; Masante-Roca et al., 
2005; Skiri et al., 2005a; Iyengar et al., 2006; Jefferis et al., 2007). 
These atlases are valuable tools for studying the neuronal network 
involved in processing olfactory information (Namiki and Kanzaki, 
2008; Staudacher et al., 2009).

The moth, Heliothis virescens, is a major pest insect in agricul-
ture and an object for extensive research in many areas, includ-
ing chemosensory coding, learning and memory (Hartlieb, 1996; 
Mustaparta, 2002; Skiri et al., 2005b; Jørgensen et al., 2006, 2007a,b; 
Kvello et al., 2006). The generation of a standard brain atlas of 
H. virescens is particularly motivated by the already large amount 
of data on the olfactory and the gustatory system. Tuning of olfac-
tory receptor neurons according to biologically relevant odorants, 
pheromones as well as plant odorants have been described (Berg 
et al., 1998; Mustaparta and Stranden, 2005; Røstelien et al., 2005). 
Projections of the primary axons in particular glomeruli of the 
antennal lobe are shown for the pheromone system by functional 
tracing (Berg et al., 1998). Antennal lobe projection neurons have 
been anatomically described according to glomerular innervation 
and axonal tracts (Rø et al., 2007), studies that are being followed 
up in ongoing investigations focusing on the physiology of mor-
phologically characterised neurons.

Whereas the central olfactory pathways have been described 
in this as well as in many insect species, only scarce knowledge 
exists about the central gustatory pathways in two insect species, 
the fl y Sarcophaga bullata (Mitchell and Itagaki, 1992) and in the 

locust Locusta migratoria (Rogers and Newland, 2003). H. virescens 
is emerging as one of few model insects in elucidating the gusta-
tory pathways. The axonal projections of the gustatory receptor 
neurons have been traced to defi ned areas of the suboesophageal 
ganglion and tritocerebrum (Jørgensen et al., 2006; Kvello et al., 
2006), and intracellular recordings combined with staining of indi-
vidual gustatory neurons in the CNS have been made from a large 
number of neurons (unpublished). Particularly interesting is the 
connection between the gustatory and the olfactory systems which 
forms the neuronal basis for associative learning of odorants and 
tastants. In order to integrate the existing and future data, as well 
as to spatially relate neurons of any brain compartment, a com-
mon framework of the entire H. virescens brain is needed. Using 
standard brain atlases to integrate identifi ed neurons of different 
preparations offers easy visual access to the relative position of the 
neurons in three dimensions and thus promotes an understand-
ing of their functional relationship. Therefore, in the search for 
neuronal networks in any animal species, a standard brain atlas 
is a valuable tool.

In this paper we present a digital standard brain atlas of the moth 
Heliothis virescens. Since the purpose is to relate spatial informa-
tion between different preparations it is important to minimize 
individual variability. We therefore chose to generate the standard 
brain using the ISA procedure. To demonstrate its application we 
have registered two olfactory and two gustatory interneurons, as 
well as the axonal projections of the gustatory receptor neurons 
on the antennae and proboscis into the model using the procedure 
described by Brandt et al. (2005). The presented average standard 
brain atlas of this moth will be used as a tool for investigating and 
visualising the neural networks underlying gustatory and olfactory 
coding as well as appetitive and aversive learning and memory 
formation. The moth standard brain is accessible at http://www.
ntnu.no/biolog/english/neuroscience/brain

MATERIALS AND METHODS
INSECTS
The moths, Heliothis virescens (Heliothinae; Lepidoptera; 
Noctuidae) were imported as pupae from a laboratory culture 
at Novartis Crop Protection, Basel, Switzerland. Before emerging 
the pupae were separated according to sex and placed in a glass 
container (height: 18 cm, width: 12 cm, depth: 17 cm) covered 
by a perforated plexiglass. The container with pupae was kept in 
a Refritherm 6 E incubator (Struers) at a reversed photoperiod 
(14-h light and 10-h dark) and at a temperature of 22–23°C. When 
emerged, the adults were placed into a plexiglass cylinder (height: 
20 cm, diameter: 10 cm) covered by a perforated lid. The moths 
were fed ad. lib. on a 0.15 M sucrose solution. Experiments were 
performed on adult female moths 3- to 5-days after emerging.

THE STANDARD BRAIN
Preparations
Female moths were mounted in plastic tubes with the head immo-
bilized by dental wax (Kerr Corporation, Romulus, MI, USA). 
After removing cephalic scales and mouthparts, the moths were 
decapitated. The brains were dissected in Ringer solution and 
fi xed in 4% paraformaldehyde in a phosphate-buffered saline 
(PBS: 684 mM NaCl, 13 mM KCl, 50.7 mM Na2HPO4 and 5 mM 

http://www.ntnu.no/biolog/english/neuroscience/brain
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KH2PO4, pH 7.2) over night at 4°C. After a 10-min rinse in PBS, 
 preparations were dehydrated in an increasing ethanol series 
(50%, 70%, 90%, 96%, 100%, 10 min each), degreased in xylol 
for 5 min, and  rehydrated in a decreasing ethanol series (100%, 
96%, 90%, 70%, 50%, 10 min each). The brains were then washed 
for 10 min in PBS, and incubated for 30 min in 1 mg/ml colla-
genase solution (Collagenase Type I, Invitrogen Norge AS) at 36°C. 
Subsequently the brains were preincubated in 10% normal goat 
serum (NGS; Sigma, St. Louis, MO, USA) in a PBS solution con-
taining 0.1% Triton X (PBSX) for 30 min at room temperature. 
The brains were further incubated with a monoclonal antibody 
against the synaptic protein synapsin (SYNORF 1, kindly provided 
by Dr. E. Buchner, Würzburg, Germany), diluted 1:10 in PBSX 
and 10% NGS for 48 h at 4°C. After the preparations had been 
rinsed fi ve times each for 20 min in PBS, they were incubated for 
24 h with a Cy5-conjungated goat anti-mouse secondary antibody 
(Jackson Immunoresearch; dilution 1:500 in PBSX) at 4°C. The 
incubation was followed by rinsing in PBS, fi ve times for 20 min, 
before the brains were dehydrated in increasing ethanol series. 
Finally the brains were cleared in methyl salicylate and mounted 
as whole mounts in double-sided aluminium slides.

Visualization of brain preparations
The stained whole-mount brain preparations were visualized with 
a laser-scanning confocal microscope (LSM 510 META Zeiss, Jena, 
Germany) using a C-Apochromat 10×/0.45NA water objective. The 
fl uorescent dye (Cy5) was exited by a 633 nm line of argon laser. 
Due to the large size of the brain, each preparation was scanned 
in two partially overlapping tiles with a resolution of 1024 × 1024 
pixels in the xy-plane and an interslice distance of 3 µm (voxel size 
of 0.75 µm × 0.75 µm × 3 µm). The resulting two stacks of optical 
sections per brain were resampled in order to make the size of the 
fi les manageable for the computer, then merged and fi ltered by the 
computer software Amira 4.1 (Mercury Computer Systems, San 

Diego, CA, USA). To  compensate for the refraction indexes of the 
mountant and that of the water objective, the z-axis dimension 
was multiplied by a factor of 1.3. The fi nal voxel size of each stack 
consequently increased to 1.1 µm × 1.1 µm × 3.9 µm.

Reconstruction of brain structures
The gray value image stacks acquired from the confocal microscope 
were elaborately examined section by section and brain structures 
of interest were manually labelled using the segmentation editor 
in Amira (Table 1). In this process any group of voxels belonging 
to a particular brain structure was given a unique label resulting 
in a stack of label images corresponding to the underlying confo-
cal images. As a prerequisite to the subsequent registration and 
averaging process corresponding structures of the different brain 
preparations were given the same label. These label images were 
subsequently used to perform conventional volumetric analyzes, 
to reconstruct polygonal surface models and to generate the aver-
age standard brain atlas. The volume of each labelled structure 
was calculated by the “TissueStatistics” tool in Amira 4.1. Other 
conventional volumetric analyses, like mean volume, relative vol-
ume, standard deviations and relative standard deviation, were 
performed using Microsoft offi ce Excel (2003).

Averaging brain structures
Creating the average standard brain followed the ISA method 
according to the description for the honeybee Apis mellifera and 
the locust Schistocerca gregaria (Rohlfi ng et al., 2001; Brandt et al., 
2005; Kurylas et al., 2008). One brain was fi rst selected as a template. 
Then the label images of the other brain preparations were affi ne 
registered to the label images of the template brain followed by mak-
ing an average. Then the affi ne registered brain preparations and the 
template were elastically registered to the average followed by the 
generation of a second average. This was repeated by a second elastic 
registration of the previous elastic registered  preparations to the 

Table 1 | Volumetric analysis of the 16 reconstructed brain structures included in the standard brain atlas. Calculations for the medulla, lobula and 

lobula plate are based on 10 brains, whereas the remaining structures are based on 11. Mean volume (Mean V), relative volume (Rel. V), standard deviation 

(SD) and relative standard deviation (Rel. SD).

Structure Mean V (µm3) Rel. V (%) SD (µm3) Rel. SD (%)

Right antennal lobe 4.34 × 106 2.95 4.95 × 105 11.37

Left antennal lobe 4.31 × 106 2.92 5.15 × 105 11.96

Central body 1.69 × 106 1.14 3.05 × 105 18.07

Right calyx 2.38 × 106 1.61 3.15 × 105 13.22

Left calyx 2.38 × 106 1.61 3.24 × 105 13.61

Right peduncle and lobe 1.41 × 106 0.96 4.34 × 105 30.76

Left peduncle and lobe 1.34 × 106 0.91 3.89 × 105 28.93

Right anterior optic tubercle 4.98 × 105 0.34 1.26 × 105 25.37

Left anterior optic tubercle 5.00 × 105 0.34 1.24 × 105 24.77

Midbrain region 9.31 × 107 63.12 1.52 × 107 16.32

Right medulla 1.30 × 107 8.79 1.07 × 106 8.24

Left medulla 1.27 × 107 8.63 1.05 × 106 8.26

Right lobula 3.61 × 106 2.44 2.52 × 105 6.98

Left lobula 3.40 × 106 2.30 3.34 × 105 9.82

Right lobula plate 1.47 × 106 1.00 2.83 × 105 19.23

Left lobula plate 1.38 × 106 0.94 3.22 × 105 23.33
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second average brain. Thus, the affi ne  registration  compensating for 
position, rotation and global size differences was performed only 
once whereas the elastic registration compensating for local dif-
ferences in shape was performed twice. To verify the average shape 
property of the ISA-generated standard brain atlas, three dimen-
tional polygonal surface models of the standard brain and each 
individual brain were made. They were subsequently aligned with 
respect to position, orientation and size before the shape differences 
between them were calculated. The calculations were performed 
using the surface distance tool in Amira 4.1 which measured the 
average distance between corresponding points on the surface of 
the different brain preparations.

INTERNEURONS
Preparation
The insects were mounted in a plastic tube with the head exposed. 
Wax was used to immobilize the head and the mouthparts. For 
recording from the olfactory neurons, the antennae were fastened 
to the wax with tungsten cramps. The cuticle between the eyes 
was removed, exposing the antennal lobes and the protocerebrum. 
Large trachea, intracranial- and antennal muscles were removed 
to eliminate brain movements. When recording from gustatory 
interneurons the antenna and the uncoiled proboscis were fastened 
to the wax with tungsten cramps. The labium was cut off and the 
underlying trachea removed. Subsequently the left eye was cut off 
and the preparation tilted in order to expose the left side of the SOG 
and tritocerebrum. To facilitate insertion of the microelectrode the 
neurolemma was removed with a tungsten hook and the prepara-
tion was superfused with ringer solution.

Stimulation, recordings and staining
The taste stimuli used in the experiments were sucrose (1 M, 
Sigma-Aldrich), quinine hydrochloride (0.1 M, VWR), distilled 
water, and tactile touch, previously found to elicit responses in 
separate receptor neurons (Jørgensen et al., 2007a). The stimuli 
were applied to the sensilla as droplets on a glass rod. The olfac-
tory stimuli were applied as air puffs (0.8 ml/500 ms) through 
glass cartridges, each containing the odorants applied to a fi l-
ter paper. The two neurons included were tested for 100 µg of 
each of 12 primary plant odorants (Hexanol, (3Z)-Hexen-1-ol, 
(3Z)-Hexenyl acetate, Ocimene, racemic- Linalool, Geraniol, 
(+)-3-Carene, trans-Verbenol, Methyl benzoate, 2-Phenylethanol, 
(-)-Germacrene D, Farnesene) (Røstelien et al., 2005). Neuronal 
activity in the antennal lobe and the SOG was recorded intracel-
lularly with a glass microelectrode containing 0.2 M K+-acetate 
solution with 4% dye (Micro-Ruby or Micro-Emerald, Invitrogen). 
After stimulation with tastants and odorants the neurons were 
stained by passing a 1–3 nA depolarizing current of 2 Hz with 
0.2 s duration. Complete labelling of the neurons required dye 
injection for 5–10 min. After current injection, the dye was allowed 
to diffuse over night at 4°C. The brains were dissected in Ringer 
solution. The “olfactory” preparation was fi xed in 4% parafor-
maldehyde in PBS similar to the standard brain preparations. The 
two “gustatory” preparations were also fi xed in a solution of 4% 
paraformaldehyde in PBS, but additionally added 0.5% glutaralde-
hyde as an alternative and less time consuming way of visualizing 
neuropile structures. All three preparations were left over night 

at 4°C. To amplify the staining of the labelled neurons the brains 
were incubated in Streptavidin-Cy3 (Micro-Ruby stained prepa-
rations) and Streptavidin-Cy2 (Micro-Emerald stained prepara-
tions) (Jackson immunoresearch, West Grove, PA, USA; diluted 
1:200 in PBS) over night at 4°C. After 10 min rinse in PBS the 
“olfactory” preparation went through the same protocol as the 
preparations used for the standard brain, starting with preincuba-
tion in 10% normal goat serum (NGS; Sigma, St. Louis, MO, USA) 
in a PBS solution containing 0.1% Triton X (PBSX) for 30 min at 
room temperature. Finally, all preparations were dehydrated in 
increasing ethanol series and cleared in methyl salicylate.

Visualization
The brains were mounted as whole mounts on double-sided alu-
minium slides and the stained neurons were examined with a 
confocal laser-scanning microscope (LSM 510 META, Zeiss, Jena, 
Germany) using a C-Apochromat 10×/0.45NA water objective, a C-
Achroplan 40×/0.8NA water objective and a Plan-Neofl uar 20×/0.5 
dry lens objective. The two fl uorescent dyes were exited by different 
lasers. Micro-emerald was excited by a Titanium Sapphire laser of 
780 nm and a 488 nm argon laser, both fi ltered through a bandpass 
fi lter BP 500–550 IR. Micro-ruby was excited by a 543 nm Helium 
Neon laser and fi ltered through a bandpass fi lter BP 565–615 IR. 
The Titanium Sapphire laser was used for two-photon microscopy 
increasing the resolution in the z-axis which enabled us to better 
distinguish among overlapping neurites. The brains were scanned 
frontally with an interslice distance of 0.5–3 µm and an optical 
resolution in the y- and x-axis of 1024 × 1024 pixels. The neurons 
were scanned in several tiles and the tiles were manually merged in 
Amira. To compensate for the refraction indexes of the mountant 
and that of the water and dry lens objective, the z-axis dimension 
was multiplied by a factor of 1.3 and 1.6, respectively.

Reconstruction and registration of neurons into the average 
standard brain atlas
The gray value image stacks acquired from the confocal  microscope 
were examined section by section and the neurons were semi-
 automatically reconstructed using the skeleton tool (Evers et al., 
2004; Schmitt et al., 2004), which was implemented as a custom 
module in Amira 3.1. Registration of the neurons into the standard 
brain atlas followed the same procedure as described by Brandt 
et al. (2005). Selected brain structures in the “neuron-preparations” 
were reconstructed as label images. The selection only included 
brain structures corresponding to the structures in the standard 
brain atlas. Then, the label images in the “neuron-preparations” 
were affi ne- and elastically registered to the label images of the 
standard brain. The resulting transformation parameters for the 
brain structures were subsequently applied to the reconstructed 
neurons. The same procedure was followed for integrating the 
previously described gustatory receptor neurons (Jørgensen et al., 
2006; Kvello et al., 2006).

RESULTS
RECONSTRUCTION
For creating the standard brain of the moth Heliothis virescens we 
selected the 11 best out of 72 female brain preparations. The selec-
tion was mainly based on the staining quality and the preservation 
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of brain structures. Brain neuropils with high synaptic density were 
clearly stained with the antibody SYNORF 1 against synapsin, as 
visualized in the confocal microscope images (Figure 1).

FIGURE 1 | Confocal images of the Heliothis virescens brain 

immunostained with the synaptic marker SYNORF 1. Sections from 
anterior to posterior at depths 30 µm, 100 µm, 162 µm and 246 µm. (A) Right 
and left antennal lobes with olfactory glomeruli. (B–D) Anterior optic tubercle 
(AOT), mushroom body lobes (MBL), tritocerebrum (T), central body (CB), 
medulla (M), lobula (L), Lobula plate (LP), mushroom body peduncle (MBP) 
and mushroom body calyces (MBC). Light intensity difference is due to 
merging of two image stacks with different light intensities.

Based on distinguishable structures, each of the 11 brain 
 preparations was divided into 16 anatomical regions that were 
separately labelled (Table 1).

In one of the 11 preparations the optic lobes were excluded 
because of mechanical damage. However, the medial part of this 
brain was included because of its high staining quality. Because 
some neuropil structures could not be clearly distinguished in 
these whole mount preparations, they were included in a larger 
region. Thus, the region termed “Midbrain region” includes 
the protocerebral lobes with the lateral horns, the lateral acces-
sory lobes, the protocerebral bridge and a small, previously not 
described structure located posterior to the antennal lobe glomeruli 
and merging into the protocerebrum. The midbrain region also 
includes the antennal mechanosensory and motor centre of the 
deutocerebrum, the tritocerebrum and the suboesophageal gan-
glion (SOG) (Figures 2A,B).

The calyces of the mushroom bodies could be clearly distin-
guished from the surrounding protocerebrum and labelled as 
one distinct structure (Figures 2C,D). The pedunculus and the 
lobe system of the mushroom bodies were diffi cult to completely 
separate and were therefore included as a single labelled region 
(Figures 2E,F). The central body and the anterior optic tuber-
cles could be distinguished and were assigned to separate labels 
(Figures 2G–J). Among the lateral protocerebral structures com-
prising the optic lobes we included the medulla, the lobula and 
the lobula plate as separate labels (Figures 2K,L). Among the deu-
tocerebral structures we have collectively assigned the antennal lobe 
glomeruli as one labelled region (Figures 2M,N). As a prerequisite 
to the subsequent registration process corresponding structures 
of the different preparations were given the same label. From the 
constructed label fi les a complete three dimensional surface recon-
struction of one brain was made, shown in Figure 3.

Conventional volumetric analyzes including means and stand-
ard deviations of the absolute and relative volumes were performed 
on the label images of each anatomical region in all 11 brain 
 preparations (Table 1).

AVERAGING
After constructing the label images of all 11 brain preparations one 
brain was selected as a template into which the other were registered 
and subsequently averaged. The selection of the template brain 
was based on staining quality and shape. Before starting the ISA 
procedure the label images were divided into three major compart-
ments, the right optic lobe, the left optic lobe and the remaining 
medial brain structures. The registration and averaging procedures 
were subsequently performed separately on each compartment. 
The procedures were repeated according to the ISA method. The 
three average label image stacks resulting from the second elastic 
registration were selected as the standard brain. A three dimen-
tional polygonal surface model of each major compartment was 
created (Figure 4).

To verify the average shape property of the standard brain which 
we defi ned as the brain shape being most similar to the 11 indi-
vidual brains, we calculated the shape difference between them. 
The calculations were performed using the surface distance tool 
in Amira 4.1 which measured the mean distance between corre-
sponding points on the surface of the different brain  preparations. 
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FIGURE 2 | The structures included in the Heliothis virescens standard 

brain atlas visualized by confocal images including their labelled outline 

(left) and surface reconstructions (right). The images are from a single brain 
preparation. (A,B) Midbrain region. (C,D) Mushroom body calyx. 

(E,F) Mushroom body peduncle and lobes. (G,H) Central body. (I,J) Anterior 
optic tubercle. (K,L) Optic lobe neuropils including the medulla (M), lobula plate 
(LP) and lobula (L). (M,N) Antennal lobe glomeruli. Light intensity difference is 
due to merging of two image stacks with different light intensities.
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FIGURE 3 | Surface reconstruction of an individual brain of Heliothis 

virescens. (A) Anterior view. (B) Posterior view. (C) Dorsal view. Midbrain 
region (MR), right mushroom body calyces (rMBC), right mushroom body 
peduncle and lobes (rMBPL), central body (CB), right anterior optic tubercle 
(rAOT), right antennal lobe (rAL), right medulla (rM), right lobula plate (rLP), 
right lobula (rL), left mushroom body calyces (lMBC), left mushroom body 
peduncle and lobes (lMBPL), left anterior optic tubercle (lAOT), left antennal 
lobe (lAL), left medulla (lM), left lobula plate (lLP), left lobula (lL).

FIGURE 4 | The average standard brain of Heliothis virescens. (A) Anterior 
view. (B) Posterior view. (C) Dorsal view. Midbrain region (MR), right 
mushroom body calyces (rMBC), right mushroom body peduncle and lobes 
(rMBPL), central body (CB), right anterior optic tubercle (rAOT), right antennal 
lobe (rAL), right medulla (rM), right lobula plate (rLP), right lobula (rL), left 
mushroom body calyces (lMBC), left mushroom body peduncle and lobes 
(lMBPL), left anterior optic tubercle (lAOT), left antennal lobe (lAL), left medulla 
(lM), left lobula plate (lLP), left lobula (lL).

All the brains were compared with each other and with the stand-
ard after they had been aligned with respect to position, rotation 
and global size (rigid and iso-scaling transformations). The cal-
culations were performed separately on each of the three major 
compartments (Figure 5).

As shown in Figure 5, on average the standard brain is a true 
average brain, fulfi lling the average shape requirements for the 
standard brain atlas.

FITTING SINGLE NEURONS INTO THE STANDARD BRAIN ATLAS
To demonstrate the application of the average standard brain 
atlas we have registered four intracellularly recorded and stained 
interneurons into the model, two olfactory and two gustatory neu-
rons. To visualize the gustatory input region we have also registered 
the previously described axonal projections of the antennal and the 
proboscis gustatory receptor neurons (Jørgensen et al., 2006; Kvello 
et al., 2006). The two olfactory interneurons were stained simul-
taneously during one recording, a phenomenon often observed 
for antennal lobe projection neurons. The olfactory function was 
manifested as exitation to several of the tested odorants in repeated 
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FIGURE 5 | The mean surface distance between the standard brain and 

the individual brains, as well as between each individual brain and the 

other brains. (A) The mean distance between the standard (the medial brain 
structures) and the 11 individual brains is 11.0 µm, whereas the mean distance 
between the individual brains range from 12.2 to 16.1 µm. (B) The right optic 
lobe. The mean distance between the standard and the 10 individual brains is 
8.0 µm, whereas the mean distance between the individual brains range from 
9.3 to 14.5 µm (C) The left optic lobe. The mean distance between the 
standard and the 10 individual brains is 8.0 µm, whereas the mean distance 
between the individual brains range from 9.1 to 14.2 µm. On average the 
standard brain is more similar to each individual brain than the individual brains 
are to each other. The vertical bars show the standard deviation.

stimulation. The axons closely followed each other all the way from 
the left antennal lobe to the calyces of the ipsilateral mushroom 
body and laterally in the protocerebral lobe (Figure 6).

The two neurons densely innervated the same glomerulus 
(Figure 6A), but no connections to the somata were identifi ed. 
The axons followed the inner antenno-cerebral tract, each giving 
off four branches projecting in partially overlapping areas of the 
mushroom body calyces (Figures 6B–D). They continued ante-
rior laterally in the protocerebral lobe, extending several branches 
into an area posterior dorsally of the lateral horn. One branch of 
both axons extended into the lateral horn (Figures 6C,D). The 
lateral area of the protocerebral lobes also received gustatory infor-
mation, as shown by one neuron (Figure 7A).

This neuron was excited by quinine and tactile stimulation of the 
right antenna. The excitation was strongest to quinine appearing as 
two bursts, similar to the quinine responses of the receptor neurons 
(Jørgensen et al., 2007a). The response to sucrose stimulation did 
not exceed the mechanosensory response. The dendrites arborised 
in the dorsal SOG/tritocerebrum and the axon projected in wide 
areas of the protocerebral lobes. To elucidate whether the axonal 
projections of the gustatory- and the olfactory interneurons later-
ally in the protocerebral lobes are overlapping or separated, they 
were registered into the standard brain atlas (Figures 7B–D). The 
registration revealed two closely, but separated projection areas 
(smallest distance 34 µm); the gustatory area located anterior-
 ventrally to the olfactory area.

The other gustatory interneuron, with excitatory responses to 
repeated application of sucrose to the proboscis (latency: 47 ms), 
was confi ned to the SOG (Figure 8), the terminal area of the gusta-
tory receptor neurons on the antennae and the proboscis.

The interneuron showed no response to sucrose stimulation 
of the antennae. The dendrites arborized extensively in the left, 
lateral SOG with branches extending from the anterior surface of 
the neuropil to the most posterior part (Figures 8A–D). The axon 
ran contra laterally in a medial commissure before bifurcating in 
one lateral and one ventral branch. Both branches turn in posterior 
direction ramifying extensively throughout the right, ventro lateral 
SOG, each ramifi cation ending in a large beaded terminal. The soma 
was located dorso medially, close to the oesophagus (Figure 8C). 
To indicate possible connections between the gustatory receptor 
neurons and the interneuron, the antennal and the proboscis gus-
tatory receptor neurons were registered into the standard brain 
atlas together with the interneuron. Overlap with the dendritic 
arborisations of the interneuron only occurred with the proboscis 
receptor neuron projections, as shown in Figures 8C,D by the single 
axon of category two described in Kvello et al. (2006). In fact, direct 
contact occurred between a few of the neurites. No overlap with 
the antennal gustatory receptor neurons was found.

DISCUSSION
The results present a digital, three dimensional average standard 
brain atlas of Heliothis virescens, based on brain preparations of 3- to 
5-days-old females. Since the aim is to use this atlas as a common 
framework into which identifi ed neurons of different brain prepa-
rations will be transformed, the important feature is a minimized 
difference between the standard model and any individual brain. 
Both from nature and experimental procedures, the individual brain 
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The procedure used and the structures selected for making the 
moth standard brain atlas are in general the same as for the honey-
bee brain, with a few modifi cations. The division of the moth brain 
into three compartments compensated for individual differences 
of the optic lobe orientations. The segregation allowed the use of 
11 specimen for the midbrain region and 10 for the optic lobes 
because of mechanical damage. The selection of structures was 
based on staining quality, signifi cance as landmarks and relevance 

preparations differ slightly, not only in size and orientation, but also 
in shape of the whole brain as well as brain structures exemplifi ed by 
the 11 individual preparations in this study (Table 1, Figure 5). The 
ISA procedure takes this variability into account in the rigid and the 
elastic registrations as well as in the averaging procedures, resulting 
in a brain model with minimized differences to the individual brains 
(Figure 5), as previously demonstrated for the honeybee and the 
locust brain models (Brandt et al., 2005; Kurylas et al., 2008).

FIGURE 6 | Confocal images and registration of two antennal lobe 

projection neurons (simultaneously stained) into the average standard 

brain atlas of Heliothis virescens. (A) Confocal image of a section showing 
Micro-Ruby stained dendrites (De) of two antennal lobe projection neurons 
innervating a single glomerulus (Gl). Their branching pattern within the 
glomerulus could not be distinguished. (B) Confocal image showing the 
projections of the two neurons in the mushroom body calyces and in the 

lateral part of the protocerebral lobe. (C,D) Reconstruction of the left 
protocerebral lobe with the two neurons innervating one glomerulus (Gl) of the 
antennal lobe (AL), the mushroom bodies calyces (MBC) and the lateral 
protocerebral lobe (LPL) in a frontal view (C) and lateral view (D). One branch 
of both axons extends into the lateral horn (LH). (E,F) The two neurons 
registered into the standard brain atlas in a frontal view (E) and lateral view (F). 
Central body (CB).
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with respect to chemosensory coding and learning. Structures of 
the optic lobes like the medulla, lobula and lobula plate were well 
stained and also necessary to make the brain model complete. The 
well stained central body and the anterior optic tubercles are impor-
tant landmarks in the midbrain. The antennal lobe glomeruli, the 
mushroom bodies, and the lateral parts of the protocerebral lobes 
are involved in processing olfactory information (Rø et al., 2007), 
and the SOG/tritocerebrum in processing gustatory information 
(Jørgensen et al., 2006; Kvello et al., 2006). However, the staining 
quality of these structures varied, either because of how well the 

antibody penetrated the tissue or because of different synaptic 
density. As a result the weakly stained structures were collectively 
assigned to one large label (Midbrain region) whereas the well 
stained structures were given a unique label.

The antennal lobe glomeruli with high synaptic density appeared 
as distinct stained structures, easily distinguished from the dark 
surroundings. They were collectively assigned as one label, separate 
from the remaining antennal lobe. This differs from the standard 
brain of the fruit fl y, honeybee and the locust where the whole anten-
nal lobe was assigned as one label (Rein et al., 2002; Brandt et al., 

FIGURE 7 | The spatial relationship between a single gustatory interneuron 

and the two antennal lobe projection neurons visualised in the standard 

brain atlas of Heliothis virescens. (A) Confocal image of a brain section showing 
the gustatory interneuron stained with Micro-Emerald. Axon (Ax). 
(B) Reconstruction of the gustatory interneuron (black) and the two antennal lobe 
projection neurons (yellow and red) registered into the standard brain atlas (frontal 
view with selected brain structures). Mushroom body calyces (MBC), Central 
body (CB), Lateral horn (LH), Suboesophageal ganglion (SOG), Tritocerebrum (T). 

(C,D) Magnifi ed sections of the lateral parts of the left protocerebral lobe in a 
frontal view (C) and a lateral view (D). The segregated axonal projections of the 
gustatory interneuron and the antennal lobe projection neurons appear. Arrows 
point to the axonal projections of the gustatory interneuron and the arrowheads to 
the axonal projections of the antennal lobe projection neurons. Antennal lobe (AL). 
(E) Electrophysiological recordings from the interneuron during stimulation of the 
right antenna with quinine (Q), mechanosensory stimuli (M1, M2) and sucrose 
(S1, S2). Arrow points to the stimulus onset.
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2005; Kurylas et al., 2008). One reason for the separate glomerular 
labelling in the moth brain atlas was the diffi culties in determining 
the borderline between the antennal lobe and the protocerebrum. In 
addition, the antennal lobe glomeruli have a larger surface relative 
to the volume as compared to the whole antennal lobe, which is an 
advantage when registering neurons into the atlas. The particular 
registration algorithm developed for label images use information 

that lies in the borderline of the label images (Rohlfi ng et al., 2001). 
A larger surface gives the algorithm more information and conse-
quently improves the precision when registering neurons into the 
brain atlas. Finally, we also want to emphasize the glomeruli, being 
of particular interest since they relay information from olfactory sen-
sory neurons to the second order neurons. We did not fi nd it practi-
cal to include each of the 66 glomeruli as separate labels because 

FIGURE 8 | The spatial relationship between a single gustatory 

interneuron and the axonal projections of the antennal and proboscis 

gustatory receptor neurons visualized in the standard brain atlas of the 

Heliothis virescens. (A) Confocal image of a section of the suboesophageal 
ganglion with a Micro-Ruby stained gustatory interneuron. Axon (Ax), 
Dendrite (De). (B) The gustatory interneuron (yellow) and the axonal 
projections of the antennal (green) and proboscis (red and black) gustatory 
receptor neurons registered into the standard brain atlas (frontal view with a 
few selected structures) Mushroom body calyces (MBC), Anterior optic 

tubercle (AOT), Mushroom body peduncle and lobes (MBPL), Antennal lobe 
(AL), Central body (CB). (C,D) Magnifi ed section of the suboesophageal 
ganglion in a frontal view (C) and a lateral view (D). The axon terminals of the 
proboscis gustatory receptor neuron (black) overlap the dendritic 
arborisations of the gustatory interneuron with direct contact between a few 
of the neurites. (E) Electrophysiological recordings from the interneuron 
during stimulation of the proboscis with sucrose (S1, S2), quinine (Q), 
water (W) and a mechanosensory stimulus (M). Arrow points to the 
stimulus onset.
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we have already made three dimensional atlases of the antennal lobe 
glomeruli of this species (Berg et al., 2002; Skiri et al., 2005a). At 
present, the separate antennal lobe atlas seems necessary for identify-
ing the glomeruli innervated by a neuron, since this needs a detailed 
analysis of the relative position of the glomeruli. If practical and 
technically possible the atlas of the antennal lobe glomeruli may be 
registered into the standard brain atlas in the future.

The mushroom bodies were divided into the calyces and the 
 peduncle/lobe system. These two compartments were easily distin-
guished, but a further division into their sub-compartments proved 
unreliable. Consistent with previous studies of H. virescens (Rø et al., 
2007) and Spodoptera littoralis (Sjöholm et al., 2005) we could not 
distinguish any accessory calyx from the primary calyces. Such a 
division of the calyces, described in the moth Manduca sexta, may 
refl ect a functional difference between the species (Homberg et al., 
1988; Nighorn et al., 2001). Because of the diffi culties of separating 
the mushroom body peduncle and the lobe system in the H. vires-
cens brain these structures were included in the same label like in the 
other insect brain atlases (Rein et al., 2002; Brandt et al., 2005; Kurylas 
et al., 2008; Jundi et al., 2009). As shown in Heliothis virescens and 
Spodoptera littoralis the peduncle fuses anteriorly with the lobe system 
dividing into a dorsal α lobe and a medial β lobe, both intimately asso-
ciated with the γ lobe (Sjøöholm et al., 2005; Rø et al., 2007). Specifi c 
to Lepidoptera is the Y lobe which was vaguely observed in a few 
preparations and therefore was not included in the standard atlas.

The SOG, tritocerebrum and protocerebral lobes, including the 
lateral accessory lobes, the protocerebral bridge and the lateral horns 
did not appear distinct and therefore were collectively included into 
the midbrain region label. In the same label we also included the 
particular structure located posterior to the antennal lobe glomeruli 
merging into the protocerebral lobes without a distinct borderline. 
The SOG, tritocerebrum and protocerebral lobes are also included 
in the same label in the honeybee and the fruit fl y brain atlases. In 
these species as in the moth, the three structures are highly intercon-
nected and seem to lack an area with high synaptic density where 
a reliable distinction can be made (Rein et al., 2002; Brandt et al., 
2005). This differs from the locust where the SOG (not included in 
the standard locust brain atlas) is a distinct ganglion connected to 
the brain by the circumoesophageal connectives (Burrows, 1996). 
The lateral horn is another structure treated differently among the 
fi ve insect brain atlases. In H. virescens, they were weakly stained 
and therefore included in the same label as the SOG, tritocerebrum 
and protocerebral lobes like in the honeybee and M. sexta (Brandt 
et al., 2005; Jundi et al., 2009). This differs from the fruit fl y and 
the locust where the lateral horns were given a unique label (Rein 
et al., 2002; Kurylas et al., 2008). The midbrain region is by far the 
largest structure in the standard moth brain atlas. Its shape results 
in a relative small surface which is disadvantageous when register-
ing neurons into the structure. Therefore, the central body and the 
anterior optic tubercles, located within the midbrain region, serve 
as important landmarks. These two structures appeared quite dis-
tinct in all 11 preparations. Especially the central body is a stable 
landmark because its location in the middle of the brain keeps it 
protected from distortion by external factors.

The application of the average standard brain atlas is demon-
strated by the four registered interneurons, as well as the axonal pro-
jections of the gustatory receptor neurons shown in Figures 7 and 8. 

The olfactory interneurons showed the typical morphology of 
inner-tract antennal lobe projection neurons (Rø et al., 2007), 
with dendrites innervating a single glomerulus of the antennal 
lobe, and axons projecting via the inner antenno-cerebral tract to 
the calyces of the mushroom body involved in olfactory learning 
and memory (Menzel, 2001; Heisenberg, 2003), and to the lateral 
parts of the median protocerebrum considered to be a premotoric 
area (Figure 6). Interestingly, axonal projections of the quinine 
responding neuron were identifi ed in a separate, but closely located 
area of the olfactory projections. Because of the absence of distinct 
landmarks in this brain region the standard brain atlas proved 
particularly valuable in visualizing and distinguishing these target 
areas of the gustatory- and olfactory  projections (Figures 7B–D). 
However, registration of more neurons into the standard brain atlas 
combined with electrophysiology is needed to verify whether the 
projection areas of the two chemosensory modalities are completely 
separated or partly overlapping in this area of the brain. The atlas 
also proved valuable in visualising possible connections between 
the sucrose responding interneuron and the receptor neurons in 
the SOG (Figure 8). The direct contact between the intermingled 
dendritic branches of one gustatory interneuron and the projec-
tions of the proboscis gustatory receptor neuron suggest input from 
the proboscis. In contrast the non overlapping projections of the 
antennal gustatory receptor neuron indicate no antennal input. 
This was in fact shown physiologically by the excitatory responses 
of the interneuron to sucrose stimulation of the proboscis, but 
not of the antennae. Furthermore, the short and constant latency 
of the response indicate monosynaptic connections (Burrows and 
Newland, 1994; Newland, 1999). The axon projected contra laterally 
relative to the dendritic arborizations, terminating in the ventro 
lateral SOG where motorneurons of the mouthparts presumably 
are located. Thus, this neuron may receive direct synaptic input 
from the sucrose receptor neurons on the proboscis and feed into 
motor neurons involved in feeding.

The standard brain atlas is a valuable tool for visualising the 
spatial relationship between neurons from different brain prepara-
tions, detecting regions of overlap among the neurites, and thus to 
make predictions about neuronal connectivity. The procedure of 
rigid and elastic registration is particularly suited as an objective 
way to integrate neurons from different preparations into the dig-
ital standard brain atlas. The average property of the atlas ensures 
that the neurons undergo a minimal deformation in the registra-
tion procedure. In combination with physiological data the atlas 
provides an important tool for investigating and visualising the 
neural networks underlying gustatory and olfactory coding as well 
as appetitive and aversive learning and memory formation.
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